Sử dụng phương pháp điểm trùng để chứng minh hình học

Trong việc giải các bài toán hình học, có một kĩ thuật khá là đặc biệt và cũng thường được sử dụng đó là sử dụng điểm trùng, kĩ thuật này dựa trên sự xác định duy nhất của hình để thực hiện.

Tình huống thường gặp nhất, ta cần chứng minh tính chất hay sự tồn tại của một số đối tượng hình học, chẳng hạn như giao điểm của một số đường thẳng. Khi đó, gọi hai hay một số giao điểm (dĩ nhiên tồn tại) của một số cặp hay một số đối tượng. Sau đó, ta sẽ chứng minh các giao điểm (đối tượng) mà ta vừa dựng là trùng nhau. Đôi khi để thực hiện điều này, ta cũng cần gọi thêm một số đối tượng khác cùng đi qua điểm đang xét rồi xét sự đồng quy của chúng với các đối tượng gọi thêm nhằm có thêm tính chất của các điểm mà ta cần chứng minh trùng nhau.

Ta chú ý một số tính chất sau:

Định lý 1. Về giao điêm của các đối tượng hình học:

  1. Hai đường thẳng có nhiều nhất 1 giao điêm.
  2. Hai đường tròn có nhiều nhất 2 giao điểm.
  3. Một đường thẳng và một đường tròn có nhiều nhất 2 giao điểm.
  4. Một tia có gốc nằm trong đường tròn và đường tròn đó có nhiều nhât 1 giao điềm.

Sau đây ta xét một số ví dụ trong chương trình toán hình học lớp 9.

Ví dụ 1. Cho đường tròn tâm $O$ đường kính $AB$, $C$ thuộc đường tròn. Tiếp tuyến tại $C$ cắt tiếp tuyến tại $A, B$ của $(O)$ tại $D, E$. Gọi $H$ là hình chiếu của $C$ trên $AB$.

a. $DB$ cắt $CH$ tại $N$. Chứng minh $A, N, E$ thẳng hàng.

b.Đường thẳng qua $A$ song song $HE$ và đường thẳng qua $B$ song song với $HD$ cắt nhau tại $M$. Chứng minh $D, M, E$ thẳng hàng.


a. $BC$ cắt $AD$ tại $F$, ta chứng minh được $D$ là trung điểm của $AF$.

Khi đó $\dfrac{CN}{DF} = \dfrac{PN}{PD} = \dfrac{HN}{AD}$.

Mà $AD = DF$, suy ra $CN = HN$ hay $N$ là trung điểm của $CH$.

Gọi $N’$ là giao điểm của $AE$ và $CH$, chứng minh tương tự ta cũng có $N’$ là trung điểm của $CH$. Do đó $N \equiv N’$ hay $A, N, E$ thẳng hàng.

b. Phân tích: vẽ hình chính xác và trực giác ta dự đoán được $M$ là trung điểm của $DE$, hơn nữa điểm $M$ là được xác định duy nhất do là giao điểm của 2 đường, do đó ta có thể gọi $M’$ là trung điểm và chứng minh $M’ \equiv M$ bằng cách chứng minh $AM’||HD$ và $BM’||HC$. Thực ra do vai trò như nhau nên chỉ cần chứng minh $AM’||HD$ là đủ.

Ta có $\dfrac{HA}{HB} = \dfrac{CD}{CE} = \dfrac{AD}{BE}$. Suy ra $\triangle AHD \backsim \triangle BHE$. Suy ra $\angle AHD = \angle BHE$

Suy ra $\angle KHA = \angle BHE = \angle AHD$. Từ đó ta có tam giác $HDK$ cân tại $H$ và $A$ là trung điểm $AD$.

Tam giác $DHE$ có $M’A$ là đường trung bình nên $AM’||EK$ hay $AM’||HE$.

Chứng minh tương tự ta có $BM’||HD$.

Vậy $M’ \equiv M$. Hay $D, M, E$ thẳng hàng.

Ví dụ 2. (LHP 2019) Cho tam giác đều $A B C$. Gọi $M, N$ là hai điểm nằm trên cạnh $B C$ sao cho $\angle M A N=30^{\circ}(M$ nằm giữa $B$ và $N)$. Gọi $K$ là giao điểm của hai đường tròn $(A B N)$ và $(A C M)(K$ khác $A)$. Chứng minh rằng hai điểm $K$ và $C$ đối xứng với nhau qua $A N$.

Lời giải

Việc chứng minh trực tiếp $K, C$ đối xứng qu $AN$ nhìn có vẻ dễ nhưng khi tìm cách chứng minh thì liên kết lại hơi khó, cảm giác như bị thiếu thiếu gì đó, ta phải vẽ thêm yếu tố phụ mới có thể làm được. Do đó ta nghĩ tới kĩ thuật điểm trùng, tức là dựng ra một điểm $K’$ đối xứng với $C$ qua $AN$ và chứng minh $K’$ là giao điểm của hai đường tròn.

Gọi $K$ là điểm đối xứng của $C$ qua $A N$. Có
$$
\angle A K^{\prime} N=\angle A C N=\angle A B N
$$
nên tứ giác $A B K^{\prime} N$ nội tiếp. Suy ra $K^{\prime} \in(A B N)$. Có
$$
\angle M A K^{\prime}+\angle N A C=\angle M A K^{\prime}+\angle K^{\prime} A N=30^{\circ}
$$
$$
\angle B A M+\angle N A C=30^{\circ}
$$
suy ra $\angle M A K^{\prime}=\angle B A M$.
Suy ra $\triangle A B M=\triangle A K^{\prime} M(c-g-c)$ nên $\angle A K^{\prime} M=\angle A B C=\angle A C B$ ta thu được $K^{\prime} \in(A M C)$. Vậy $K \equiv K^{\prime}$ ta có điều phải chứng minh.

Ví dụ 3. Cho tam giác $ABC$ nhọn nội tiếp đường tròn $(O)$, có $H$ là trực tâm tam giác $ABC$ và $AD$ là đường kính của $(O)$. Trên các cạnh $AB, AC$ lấy $E, F$ sao cho $AE = AF$ và $E, H, F$ thẳng hàng. Đường tròn ngoại tiếp tam giác $AEF$ cắt phân giác góc $\angle BAC$ tại $P$. Chứng minh $H, P, D$ thẳng hàng.

Lời giải

Gọi $P’$ là giao điểm phân giác góc $\angle BAC$ và $HD$. Ta chứng minh $P’ \equiv P$, hay cần chứng minh $AEPF$ nội tiếp.

Ta có tính chất quen thuộc $\angle HAB = \angle DAC$, nên $AP’$ cũng là phân giác $\angle HAD$.

Ta có $\angle AEF = \angle ABH + \angle EHB$, $\angle AFE = \angle ACH + \angle FHC$.

Mà $\angle ABH = \angle ACH$ và $\angle AEF = \angle AFE$ nên $\angle EHB = \angle FHC = \angle EHL$.

Do đó $HE$ là phân giác $\angle LHB$, suy ra $\dfrac{LE}{EB} = \dfrac{HL}{HB}$. (1)

Tam giác $AHL $ và tam giác $ADC$ đồng dạng, suy ra $\dfrac{HL}{CD} = \dfrac{AH}{AD}$.

Mà $CD = BH, \dfrac{AH}{AD} = \dfrac{HP’}{P’D}$, suy ra $\dfrac{HL}{HB} = \dfrac{HP’}{P’D}$. (2)

Từ (1) và (2) ta có $\dfrac{LE}{EB} = \dfrac{HP’}{P’D}$, suy ra $P’E ||HL||BD$, suy ra $P’E \bot AB$.

Chứng minh tương tự ta có $P’F \bot AC$.

Do đó $AEP’F$ nội tiếp, suy ra $P’ \equiv P$. Hay $D, P, H$ thẳng hàng.

Ví dụ 4. (PTNK 2022) Cho tam giác $A B C$ có trực tâm $H, D$ đối xứng với $H$ qua $A$. $I$ là trung điểm của $C D$, đường tròn $(I)$ đường kính $C D$ cắt $A B$ tại $E, F(E$ thuộc tia $A B)$
a) Chứng $\operatorname{minh} \angle E C D=\angle F C H$ và $A E=A F$.
b) Chứng minh $H$ là trực tâm của $\triangle C E F$.
c) $B H$ cắt $A C$ tại $K$. Chứng minh $E F K H$ nội tiếp và $E F$ là tiếp tuyến chung của $(C K E)$ và $(C K F)$.
d) Chứng minh tiếp tuyến tại $C$ của $(I)$ và tiếp tuyến tại $K$ của $(K E F)$ cắt nhau trên đường thẳng $A B$.

Lời giải. Các câu a, b, c dành cho bạn đọc, ở đây mình trình bày lời giải cho câu d.

Lấy $N$ đối xứng với $K$ qua $A B$.
$$
\angle E N F=\angle E K F=\angle E H F=180^{\circ}-\angle E C F \Rightarrow N \in(I) \text {. }
$$
$A P=A K=A N \Rightarrow \angle K N P=90^{\circ} \Rightarrow N P | B C \Rightarrow E N P F$ là hình thang cân.
$\Rightarrow \angle E C N=\angle F C P \Rightarrow \triangle E C N \backsim \triangle A C F$ và $\triangle E C A \backsim \triangle N C F$.
$\Rightarrow \frac{N E}{A F}=\frac{E C}{A C}$ và $\frac{E A}{N F}=\frac{C A}{C F}$
$\Rightarrow \frac{N E}{E C}=\frac{A F}{A C}=\frac{A E}{A C}=\frac{N F}{C F}$
Tiếp tuyến tại $N$ và $C$ của $(I)$ cắt nhau tại $S, S F$ cắt $(I)$ tại $E^{\prime}\left(E^{\prime} \neq F\right)$
$\triangle S E^{\prime} N \backsim \triangle S N F \Rightarrow \frac{N E^{\prime}}{N F}=\frac{S E^{\prime}}{S N}$
$\triangle S E^{\prime} C \backsim \triangle S C F \Rightarrow \frac{E^{\prime} C}{C F}=\frac{S E^{\prime}}{S C}$
$\Rightarrow \frac{N E^{\prime}}{N F}=\frac{E^{\prime} C}{C F}$
Từ (1) và $(2)$ suy ra: $E \equiv E^{\prime}$
Mà tiếp tuyến tại $N$ của $(I)$ đối xứng với tiếp tuyến tại $K$ của $(E H F)$ qua $A B$ nên ta có đpcm.

Bài tập rèn luyện.

Bài 1. Cho đường tròn $(O)$ và điểm $A$ nằm ngoài $(O)$. Từ $A$ vẽ các tiếp tuyến $AB, AC$ đến $(O)$, một cát tuyến qua $A$ cắt $(O)$ tại $D, E$ sao cho $D$ nằm giữa $A$ và $E$ và tia $AE$ nằm giữa hai tia $AB, AO$. Đường thẳng qua $D$ song song $BE$ cắt $BC$ tại $F$. Gọi $K$ là điểm đối xứng của $B$ qua $E$, chứng minh $A, P, K$ thẳng hàng.

Bài 2. Cho tam giác $ABC$ đều, trên cạnh $AB, AC$ lấy $M,N$ thỏa $\dfrac{AM}{BM} + \dfrac{AN}{CN} = 1$. Chứng minh rằng $MN$ tiếp xúc với một đường tròn cố định.

Bài 3. Cho tam giác $A B C$ có các đường cao $A A_1, B B_1, C C_1$ và trực tâm $H$. Chúng minh rằng đường thẳng Euler của các tam giác $A B_1 C_1, B C_1 A_1, C A_1 B_1$ đồng quy.

Bài 4. (Nga 2017) Cho hình thang cân $ABCD$ có $BC < AD$ và $BC \parallel AD$. Đường tròn $w$ qua $B, C$ cắt cạnh $AB$ tại $X$, đường chéo $BD$ tại $Y$. Tiếp tuyến tại $C$ của $w$ cắt $AD$ tại $Z$. Chứng minh $X, Y, Z$ thẳng hàng.

Leave a Reply

Your email address will not be published. Required fields are marked *