Cực trị hình học (Lớp 9)

Bài toán cực trị hình học thường xuất hiện trong các kì thi học sinh giỏi cũng như thi tuyển sinh, đây là câu hỏi gây khó khăn cho nhiều bạn học sinh vì để giải bài toán cực trị đòi hỏi các kiến thức tổng hợp: bài toán quỹ tích, sử dụng các bất đẳng thức đại số,… ngoài ra cũng phải biết và vận dụng được một số bài toán cực trị cơ bản. Bài viết này giúp các em làm quen với các bài toán cực trị trong chương trình lớp 9, từ đó giúp ôn tập tốt hơn trong kì thi tuyển sinh sắp tới.

Cực trị hình học là các bài toán tìm giá trị lớn nhất, giá trị nhỏ nhất của các đối tượng hình học như: các biểu thức về độ dài, diện tích, chu vi,…khi giá trị của các biểu thức này thay đổi.

Ta có một số chú ý sau khi giải bài toán cực trị hình học.

Chú ý 1. Để tìm giá trị lớn nhất của biểu thức $P$. Ta thường làm theo các bước sau:

  • Chứng minh $P \leq M$ ( $M$ phải là giá trị không đổi).
  • Tìm điều kiện để xảy ra đẳng thức.
  • Kết luận.

Chú ý 2. Để chứng minh với mô hình $H$ có biểu thức $P$ đạt giá trị lớn nhất (hoặc nhỏ nhất), ta có thể chọn mô hình $H^{\prime}$ bất kì với biểu thức tương ứng là $P^{\prime}$ và ta chứng minh $P \geq P^{\prime}$ (hoặc $P \leq P^{\prime}$ ).

Chú ý 3. Để làm các bài toán cực trị hay bất đẳng thức thường có hai hướng để suy nghĩ:

  • Đưa bài toán ban đầu về các bài toán cực trị quen thuộc đã biết cách giải.
  • Sử dụng các bất đẳng thức Đại số áp dụng lên các yếu tố Hình học.

Một số bài toán cực trị quan trọng.

Tính chất 1. (Đường xiên và hình chiếu) Cho điểm $A$ và đường thẳng $d, M$ là điểm thay đổi trên $d$. Khi đó, $A M$ nhỏ nhất khi và chỉ khi $M$ là hình chiếu vuông góc của $A$ trên $d$.

Tính chất 2. (Bất đẳng thức tam giác) Cho 3 điểm $A, B, C$.

  • $A B+B C \geq A C$. Đẳng thức xảy ra khi và chỉ khi $B$ nằm giữa $A$ và $C$.
  • $|A C-A B| \leq B C$. Đẳng thức xảy ra khi $A, B, C$ thẳng hàng và $A$ nằm ngoài đoạn thẳng $B C$.

Tính chất 3. Trong một tam giác vuông thì độ dài đuờng cao xuất phát tù đỉnh góc vuông không lớn hơn nủa độ dài canh huyền.
Chứng minh
Cho tam giác $A B C$ vuông tại $A$, đường cao $A H$. Cần chứng minh $A H \leq \frac{1}{2} B C$.
Gọi $M$ là trung điểm của $B C$ ta có $A M=\frac{1}{2} B C$.
Mà $A H \leq A M$. Suy ra $A H \leq \frac{1}{2} B C$.
Đẳng thức xảy ra khi $H \equiv M$ hay tam giác $A B C$ vuông cân.

Tính chất 4. Cho đường tròn $(O)$ và dây cung $B C$ cố định. Tìm điểm $A$ thuộc cung lớn $\overparen{B C}$ sao cho
a) Chu vi tam giác ABC lớn nhất.
b) Diện tích tam giác ABC lớn nhất.
Chứng minh
a) Trên tia đối của tia $A B$ lấy điểm $D$ sao cho $A D=A C \Rightarrow A B+A C=B D$. Hơn nữa $\angle B D C=\frac{1}{2} \angle B A C$ không đổi.
Suy ra $D$ thuộc cung chứa góc $\frac{1}{2} \angle B A C$ dựng trên đoạn $B C$.
Do đó $B D$ lớn nhất khi $B D$ là đường kính, lúc này $A$ là điểm chính giữa $\overparen{\mathrm{BC}}$.
Vậy chu vi tam giác $A B C$ lớn nhất $\Leftrightarrow A$ là điểm chính giữa cung $B C$.
b) Vẽ đường cao $A H$, gọi $M$ là trung điểm $B C$.
Ta có $A H \leq A M \leq O A+O M$ không đổi.
Diện tích tam giác $A B C$ lớn nhất khi và chỉ khi $A H$ lớn nhất hay khi $H \equiv M$.
Lúc này $A$ là điểm chính giữa cung $B C$.
Vậy diện tích tam giác $A B C$ lớn nhất $\Leftrightarrow A$ là điểm chính giữa $\overparen{\mathrm{BC}}$.

Tính chất 5. Cho đường tròn $(O)$ và điểm $A$ nằm ngoài đường tròn. Tìm $M$ thuộc (O) đề AM là lớn nhất, nhỏ nhất.
Chứng minh.
a) Ta có $A M \leq O A+O M$. Đẳng thức xảy ra khi $O$ nằm giữa $A, M$. Vậy $A M$ lớn nhất khi và chỉ khi $M$ là giao điểm của tia đối tia $O A$ và $(O)$.
b) Tương tự như trên ta có $A M \geq O A-O M$. Đẳng thức xảy ra khi $M$ nằm giữa $O$ và $A$.
Vậy $A M$ nhỏ nhất khi và chỉ khi $M$ là giao điểm của tia $O A$ và $(O)$.

Bất đẳng thức thường dùng. Cho các số $a, b, c$ không âm. Ta có các bất đẳng thức sau:

  • $a+b \geq 2 \sqrt{a b}$
  • $a^2+b^2 \geq \frac{1}{2}(a+b)^2 \geq 2 a b$.
  • $a+b+c \geq 3 \sqrt[3]{a b c}$
    $\frac{1}{a}+\frac{1}{b} \geq \frac{4}{a+b}$
  • $a+b \leqslant \sqrt{2\left(a^2+b^2\right)}$.
    Dấu bằng xảy ra khi và chỉ khi $a=b$.

Một số ví dụ

Ví dụ 1. Cho tam giác $A B C$ có $\angle B A C=60^{\circ}$. M là điểm thay đổi trên cạnh $B C$.
Gọi $D$, E lần lượt là hình chiếu của $M$ trên $A B, A C$. Tìm vị trí của $M$ đề $D E$ có độ dài nhỏ nhất.
Lời giải.
Gọi $I$ là trung điểm $A M$.
Ta có $A D M E$ nội tiếp đường tròn $(I)$. Kẻ đường kính $D F$ của đường tròn $(I)$.
Xét tam giác $D F E$ vuông tại $E$.
Ta có $\angle D F E=\angle A D E=60^{\circ}($ cùng chắn $\overparen{\mathrm{DE}}$ ) $\Rightarrow \angle F D E=30^{\circ}$.
Suy ra $D E=D F \cos \widehat{D F E}=\frac{D F}{2}=\frac{A M}{2}$.
Do đó $D E$ nhỏ nhất khi và chỉ khi $A M$ nhỏ nhất, hay $M$ là chân đường cao hạ từ $A$. Vậy $D E$ nhỏ nhất khi và chỉ khi $M$ là chân đường cao từ $A$ của tam giác $A B C$.

Ví dụ 2. Cho đuờng tròn $(O)$ và dây cung $B C$ cố định. A là điểm thay đổi trên cung lơn BC. Gọi I là tâm đường tròn nội tiếp của tam giác $A B C$.
a) Tìm vị trí của A để diện tích tam giác BIC là lớn nhất.
b) Tìm vị trí của A để AI lớn nhất.
Lời giải.
a) Ta có $\angle B A C \Rightarrow \angle B I C=90^{\circ}+\frac{1}{2} \angle A$ không đổi. Do đó $I$ thuộc cung chứa góc $\alpha=90^{\circ}+\frac{1}{2} \angle A$ dựng trên đoạn $B C$.
Khi đó diện tích tam giác $I B C$ lớn nhất khi và chỉ $I$ là điểm chính giữa cung, hay $A$ là điểm chính giữa cung $B C$.
b) $A I$ cắt $(O)$ tại $D$ khác $A, D$ là điểm chính giữa cung $B C$. Ta có $D I=D C$ không đổi.
Ta có $A I=D A-D I$, do đó $A I$ lớn nhất khi và chỉ khi $D A$ lớn nhất, hay $D A$ là đường kính, khi đó $A$ là điểm chính giữa cung $B C$.
Vậy $A I$ lớn nhất khi và chỉ khi $A$ là điểm chính giữa cung $B C$.

Ví dụ 3. Cho tam giác $A B C$ nội tiếp đường tròn w. P là một điểm thay đổi thuộc cung BC không chúa A. Gọi $H, K$ lần lượt là hình chiếu của A trên $P B, P C$. Tìm vi trí của $P$ để
a) Độ dài đoạn thẳng HK là lớn nhất.
b) Giá trị biểu thúc $A H \cdot P B+A K \cdot P C$ là lớn nhất.
Lời giải.
a) Ta có $\triangle A H B \backsim \triangle A K C \Rightarrow \triangle A H K \sim \triangle A B C$.
Suy ra $\frac{H K}{B C}=\frac{A H}{A B} \leqslant 1$. Do đó $K H \leqslant B C$.
Đẳng thức xảy ra khi $H \equiv B$ hay $A P$ là đường kính.
Vậy $K H$ lớn nhất bằng $B C$ khi $A P$ là đường kính.
b)
$$
\text { Ta có: } \begin{aligned}
A H \cdot P B+A K \cdot P C & =2 S_{A P B}+2 S_{A P C} \
& =2 S_{A B P C} \
& =2\left(S_{A B C}+S_{P B C}\right)
\end{aligned}
$$
Suy ra $A H \cdot P B+A K \cdot P C$ lớn nhất khi và chỉ khi $S_{P B C}$ lớn nhất, hay $P$ là điểm chính giữa cung $B C$.
Vậy $A H \cdot P B=A K \cdot P C$ lớn nhất khi $P$ là điểm chính giữa cung $B C$.

Ví dụ 4. (Thi vào lớp 10 Chuyên Toán trường Chuyên Lam Sơn tỉnh Thanh Hóa năm 2010) Cho đường tròn $(O)$ bán kính $R=1$ và điểm $A$ thỏa $O A=\sqrt{2}$. Từ $A$ vẽ các tiếp tuyến $A B, A C$ với $B, C$ là các tiếp điểm. Các điểm $D, E$ thay đổi trên các đoạn $A B, A C$ sao cho $\angle D O E=45^{\circ}$.
(a) Chứng minh $D E$ tiếp xúc với $(O)$.
(b) Tìm giá trị lớn nhất và nhỏ nhất của $DE$.
Hướng dẫn giải
(a) Ta chứng minh được $A B O C$ là hình vuông. Đường thẳng qua $O$ vuông góc $O D$ cắt $A C$ tại $F$, suy ra $\angle D O E=\angle F O E$.
Ta có $\triangle O B D=\triangle O C F \Rightarrow C F=B D, O F=O D$.
Khi đó $\triangle O E F=\triangle O E D \Rightarrow \angle O E F=\angle O E D$, vẽ $O H \perp D E$, suy ra $O H=O C$, do đó $D E$ là tiếp tuyến của $(O)$.
(b) Ta có $E H=C E, B D=D B$, suy ra $A E+A D+D E=A B+A C=2$.
Đặt $x=A D, y=A E$, suy ra $D E=\sqrt{x^2+y^2}$ và $x+y+\sqrt{x^2+y^2}=2$.
Ta có $\sqrt{x^2+y^2} \leq x+y \leq \sqrt{2\left(x^2+y^2\right)}$, suy ra $2 \sqrt{x^2+y^2} \leq x+y+\sqrt{x^2+y^2} \leq(1+$ $\sqrt{2}) \sqrt{x^2+y^2}$, từ đó suy ra $2-\sqrt{2} \leq \sqrt{x^2+y^2} \leq 1$ hay $2-\sqrt{2} \leq D E \leq 1$.

Từ đó $DE$ lớn nhất bằng 1 khi D trùng B, nhỏ nhất là $2 – \sqrt{2}$ khi $AD = AE$.

Ví dụ 5. Cho nửa đường tròn đường kính $BC=2a$, $A$ thay đổi trên nửa đường tròn. Đường cao $AH$.

a) Tìm giá trị lớn nhất của $BH + AH$.

b) Phân giác góc $BAH, CAH$ cắt $BC$ tại $MN$. Tìm vị giá trị lớn nhất của $MN$.

Lời giải.

a) Rõ ràng $BH + AH$ lớn nhất chỉ khi $H$ thuộc đoạn $OC$ vì nếu $H$ thuộc đoạn $BC$ ta lấy $A’$ đối xứng với $A$ qua trung trực $BC$ ta sẽ có $A’H + BH’ > AH+BH$.

Khi đó $BH + AH = BO + OH + AH$ = a + OH + AH$.

Mà $OH + AH \leq \sqrt{2(OH^2+AH^2)} = a\sqrt{2}$

Do đó $AH + BH \leq a + a\sqrt{2}$, đẳng thức xảy ra khi $AH = OH$ và $H$ là trung điểm $OC$.

Vậy giá trị lớn nhất của $BH+AH$ là $a+a\sqrt{2}$ khi $H$ là trung điểm $OC$.

b) Ta có $\angle BAN = \angle BAH + \angle HAN = \angle ACB + \angle CAN = \angle BNA$, suy ra $BN = BA$

Chứng minh tương tự thì $CM = AC$

Khi đó $MN = BN +CM – BC = AB + AC – BC \leq \sqrt{2{AB^2+AC^2}} – BC = 2a(\sqrt{2}-1)$.

Do đó $MN$ lớn nhất là $2a(\sqrt{2}-1)$ khi $AB = AC$.

Bài tập rèn luyện

Bài 1. Cho tam giác $A B C$ nội tiếp đường tròn $(O), A B<A C$. Phân giác trong $\angle B A C$ cắt $(O)$ tại $D$ khác $A$. Trên tia $A B$ lấy $M$ tuỳ ý sao cho đường tròn ngoại tiếp $\triangle A D M$ cắt $A C$ tại $N$ khác $A, C$. Xác định vị trí tâm $I$ của đường tròn ngoại tiếp $\triangle A D M$ để độ dài đoạn thẳng $M N$ nhỏ nhất.

Bài 2. Cho đường tròn tâm $O$ đường kính $B C, A$ là điểm di động trên đường tròn $(O)$ ( $A$ khác $B, C)$. Kẻ $A H \perp B C$ tại $H$. Kẻ $H P \perp A B$ tại $P$. Tìm vị trí điểm $A$ sao cho bán kính đường tròn ngoại tiếp $\triangle B P C$ đạt giá trị lớn nhất.
Bài 3. Cho $\triangle A B C$ vuông tại $A$ có $A B<A C$ ngoại tiếp đường tròn $(O)$.
Gọi $D, E, F$ lần lượt là tiếp điểm của $(O)$ với các cạnh $A B, A C, B C$. $M$ là điểm di động trên đoạn $C E$. Gọi $N$ là giao điểm của $B M$ với cung nhỏ $E F$ của $(O)$. Các điểm $P, Q$ lần lượt là hình chiếu của $N$ trên các đường thẳng $D E, D F$. Xác định vị trí điểm $M$ để độ dài $P Q$ lớn nhất.

Bài 4. Cho 3 đường tròn có tâm thẳng hàng và ngoài nhau, đường tròn thứ tư tiếp xúc ngoài với cả ba đường tròn trên. Chứng minh rằng bán kính đường tròn thứ tư lớn hơn bán kính của một trong ba đường tròn kia.

Bài 5. (Đề thi Olympic 30-4 năm 2000)Trên đường tròn tâm $O$ bán kính $R$ cho năm điểm phân biệt $A, B, C, D, E$ theo thứ tự đó sao cho $A B=B C=D E=R$. Gọi $M, N$ lần lượt là trung điểm của $C D$ và $A E$. Hãy xác định giá trị lớn nhất có thể có của chu vi tam giác $B M N$.

Leave a Reply

Your email address will not be published. Required fields are marked *