Tag Archives: Đề thi

Đề thi và đáp án tuyển sinh vào lớp 10 PTNK không chuyên 2011

Đề thi vào lớp 10 trường Phổ thông Năng khiếu năm 2011

Bài 1. Cho phương trình $(x^2-mx-2m^2)\sqrt{x-3} = 0$ $(1)$.

a) Giải phương trình $(1)$ khi $m = 2$.

b) Tìm $m$ để phương trình $x^2-mx-2m^2 = 0$ có hai nghiệm phân biệt $x_1, x_2$ thỏa $x_1^2+2x_2^2 = 7m^2+2$.

c) Chứng minh rằng phương trình $(1)$ không thể có quá hai nghiệm.

Giải

a) Điều kiện $x \geq 3$. Khi m = 2 ta có phương trình:

$\left( x^2 -2x -8 \right) \sqrt{x-3}=0 \Leftrightarrow \left[ \begin{array}{l} x=3 \,\, (n)\\ x=4 \,\, (n)\\ x=-2 \,\, (l) \end{array} \right. $

b) Ta có: $x^2 -mx-2m^2=0$

$\Delta = m^2 + 8m^2 =9m^2$, suy ra phương trình có nghiệm $x=2m$, $x=-m$

TH1: $x_1=2m$, $x_2 = -m$ ta có $4m^2=7m^2 +2 $ (VN)

TH2: $x_1=-m$, $x_2 =2m$ ta có $9m^2 = 7m^2 +2 \Leftrightarrow m=1, m=-1$

c) Điều kiện $x \ge 3$, phương trình $x^2 -mx – 2m^2 =0$ luôn có nghiệm $x_1$, $x_2$ và $x_1x_2 = -2m^2 \le 0$ nên không thể có hai nghiệm đều dương. Suy ra phương trình $(1)$ có nhiều nhất là hai nghiệm.

Bài 2.

a) Giải phương trình $\sqrt{x+2}+\sqrt{5-2x}=1+\sqrt{6-x}$.

b) Giải hệ phương trình $\left\{\begin{array}{l} x^2+y^2=2y+1\\ xy=x+1 \end{array} \right.$

Giải

Điều kiện: $-2 \le x \le \dfrac{5}{2}$

$\sqrt{x+2}+\sqrt{5-2x} = 1+ \sqrt{6-x} $

$\Leftrightarrow x+2+5-2x + 2\sqrt{x+2}\sqrt{5-2x}=1+6-x+ 2\sqrt{6-x} $

$\Leftrightarrow \sqrt{\left( x+2 \right) \left( 5-2x \right) } = \sqrt{6-x}$

$\Leftrightarrow -2x^2 +x+10 =6-x $

$\Leftrightarrow \left[ \begin{array}{l} x=-1 \,\, (n) \\ x=2 \,\, (n) \end{array} \right. $

b) Từ (2) ta có $y= \dfrac{x+1}{x}$ thế vào (1) ta có:

$x^2 + \dfrac{\left( x+1 \right) ^2}{x^2} = \dfrac{2(x+1)}{x}+1 $

$\Leftrightarrow x^4 + x^2 +2x+1 = 2x(x+1) + x^2 $

$\Leftrightarrow x^4 -2x^2 +1 = 0 \Leftrightarrow x=1, x=-1 $ $

Với $x = 1, y = 2.$

Với $x = -1 , y = 0.$

Bài 3.

a) Rút gọn biểu thức $$R = \left(\dfrac{x-1}{\sqrt{x}-1}+\dfrac{\sqrt{x^3}-1}{1-x}\right):\left(\dfrac{(\sqrt{x}-1)^2+\sqrt{x}}{\sqrt{x}+1}\right)$$ với $x \geq 0, x \neq 1$.

b) Chứng minh $R < 1$.

Giải

a) $R = \left(\dfrac{x-1}{\sqrt{x}-1}+\dfrac{\sqrt{x^3}-1}{1-x}\right):\left(\dfrac{(\sqrt{x}-1)^2+\sqrt{x}}{\sqrt{x}+1}\right)$

$= \left[ \dfrac{(\sqrt{x}+1)(\sqrt{x}-1)}{\sqrt{x}-1} – \dfrac{(\sqrt{x}-1)(x+\sqrt{x} +1)}{(\sqrt{x}+1)(\sqrt{x}-1)}\right] : \dfrac{ x-2\sqrt{x} + 1+ \sqrt{x}}{\sqrt{x}+1}$

$= \left( \sqrt{x} +1 – \dfrac{x+\sqrt{x} +1}{\sqrt{x} -1}\right) \cdot \dfrac{\sqrt{x}+1}{ x-\sqrt{x} + 1}$

$= \dfrac{\sqrt{x}}{\sqrt{x}+1} \cdot \dfrac{\sqrt{x}+1}{ x-\sqrt{x} + 1}$

$=\dfrac{\sqrt{x}}{x-\sqrt{x}+1}$

b) $R<1 \Leftrightarrow \dfrac{\sqrt{x}}{x-\sqrt{x}+1}<1 \Leftrightarrow \sqrt{x}< x-\sqrt{x}+1 \Leftrightarrow \left( \sqrt{x}-1 \right) ^2 >0$ (đúng vì $x \ne 1$).

Bài 4. Một tổ mua nguyên vật liệu để thuyết trình tại lớp hết 72.000 đồng, cho phí được chia đều cho mỗi thành viên của tổ. Nếu tổ giảm bớt 2 người thì mỗi người phải đóng thêm 3000 đồng. Hỏi số người của tổ?

Giải

Gọi số tổ viên là $x$ $(x>2)$, số tiền mỗi tổ đóng lúc đầu là $y$. Ta có hệ phương trình:

$\left\{ \begin{array}{l} xy=72000 \\ (x-2)(y+3000)=72000 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} y=\dfrac{72000}{x} \ (1)\\ y+3000=\dfrac{72000}{x-2}\ (2) \end{array} \right.$

Lấy $(2) -(1)$ ta được: $\dfrac{72000}{x-2} – \dfrac{72000}{x}  =3000$

$\Leftrightarrow x^2 – 2x – 48 = 0 \Leftrightarrow \left[ \begin{array}{l} x=8 \, (n) \\ x=-6 \, (l) \end{array} \right. $

Vậy số người của tổ là $8$ người.

Bài 5. Cho tam giác $ABC$ có $\angle BAC = 75^\circ, \angle BCA = 45^\circ, AC = a\sqrt{2}$. $AK$ vuông góc với $BC$ và $K$ thuộc $BC$.

a) Tính độ dài các đoạn $KC$ và $AB$ theo $a$.

b) Gọi $H$ là trực tâm và $O$ là tâm đường tròn ngoại tiếp tam giác $ABC$. Tính $\angle OHC$.

c) Đường tròn tâm $I$ nội tiếp tam giác $ABC$. Tính bán kính đường tròn ngoại tiếp tam giác $HIO$ theo $a$.

Giải

a) Tam giác $ACK$ vuông cân tại $C$, suy ra $AK = \dfrac{AC}{\sqrt{2}}=a$

$\sin \angle{ABK} =\dfrac{AK}{AB}=\dfrac{\sqrt{3}}{2} \Rightarrow AB= \dfrac{2a}{\sqrt{3}}$

b) Ta có $\angle{AOC} = 2\angle{ABC}=120^\circ $ và $\angle{AHC}=2\angle{EHF} =180^\circ – \angle{BAC}=120^\circ $.

Suy ra $\angle{AHC}=\angle{AOC}$, suy ra $AHOC$ nội tiếp.

Do đó $\angle{OHC}=\angle{OAC}=30^\circ $

c) Ta có $\angle{AIC}=180^\circ – \angle{IAC}-\angle{ICA}$

$=180^\circ – \dfrac{1}{2}\left( \angle{BAC} + \angle{ACB} \right)$

$=120^\circ = \angle{AOC}$.

Do đó tứ giác $AIOC$ nội tiếp.

Vậy 5 điểm $A$, $H$, $I$, $O$, $C$ cùng thuộc đường tròn.

Gọi $D$ là điểm chính giữa cung $AC$.

Ta có $OAD$ và $OCD$ đều, suy ra $DA = DC = DO$, hay $D$ là tâm đường tròn ngoại tiếp, và bán kính $DO =DA=\dfrac{AB}{\sqrt{2}}= \dfrac{a\sqrt{2}}{\sqrt{3}}$

 

 

 

 

Đề thi và lời giải chọn đội tuyển PTNK năm 2020

Chúc mừng các bạn đã đỗ vào Đội tuyển Toán PTNK thi VMO năm 2020-2021. Chúc các em có một chặng đường học tập và thi cử thành công.

Năm nay danh sách có 7 bạn 12, 2 bạn 11 và đặc biệt có một học sinh lớp 10.

Sau đây là đề bài và đáp án đề thi chọn đội tuyển năm nay, được thực hiện bởi thầy Lê Phúc Lữ, giáo viên tại trung tâm giáo dục STAR EDUCATION (và một số đồng nghiệp).

Loi giai de PTNK 2020

Đề ôn thi vào lớp 10 Chuyên Toán.

Thời gian làm bài 150 phút.

Bài 1. (1, 5 điểm) Cho phương trình $(\sqrt{x} – 1)(x^2 – (m^2+1)x + 1) = 0$
a) Giải phương trình khi $m = -2$.
b) Tìm $m$ để phương trình có 3 nghiệm phân biệt $x_1<x_2<x_3$ và thỏa $x_1^2 + 4x_2^2+x_3^2 = 27$.

Bài 2. (2 điểm) Cho các số dương $a, b, c$ thỏa $a+ b+ c = abc$.
a) Tìm $a, b, c$ nếu $a, b, c$ là các số nguyên dương.
b) Chứng minh $ab+ac+bc \geq 9$ và $ab+ac+bc\geq 3 + \sqrt{1+a^2}+\sqrt{1+b^2}+\sqrt{1+c^2}$.

Bài 3.  (1, 5 điểm) Số nguyên dương $n$ được gọi là số đẹp nếu tồn tại các số nguyên dương $x, y, z$ không nhất thiết phải khác nhau sao cho: $$n = \left[ {x;y} \right] + \left[ {y;z} \right] + \left[ {z;x} \right]$$ với $\left[ {a;b} \right]$ là bội chung nhỏ nhất của hai số $a, b$
a) Chứng minh rằng $n=2021$ là số đẹp.
b) Chứng minh rằng mọi số lẻ khác 1 đều là số đẹp.
c) Chứng minh rằng $n=2^{2021}$ không phải là số đẹp.

Bài 4. (3 điểm) Cho đoạn thẳng $BC$ cố định và điểm $A$ thay đổi sao cho $\angle BAC = \alpha < 60^\circ$ không đổi và $AB, AC >BC$. Trên $BC$ lấy các điểm $M, N$ sao cho $BM = MN = NC$. Đường tròn ngoại tiếp các tam giác $ABN$ và $ACM$ cắt nhau tại $D$ và cắt các cạnh $AC, AB$ lần lượt tại $E, F$.

a) Tìm vị trí của $A$ sao cho $AE \cdot AC + AF \cdot AB$ lớn nhất.

b) Chứng minh rằng $\dfrac{DB}{DC} = \dfrac{AC}{AB}$.

c) Gọi $I$ là tâm đường tròn ngoại tiếp tam giác $AEF$. Chứng minh $I$ luôn thuộc một đường cố định.

Bài 5. (2 điểm) Một giải đấu bóng đá gồm 8 đội đá với nhau. Mỗi lượt, 8 đội chia làm 4 cặp đấu, thắng được 3 điểm, hòa 1 điểm và thua 0 điểm.
a) Giải đấu diễn ra hai lượt.
i)  Chứng minh rằng có 2 đội có điểm bằng nhau.
ii) Chứng minh rằng có thể tìm được 4 đội $A, B, C, D$ đôi một chưa đấu với nhau.
b) Kết thúc giải người ta thấy rằng không có trận nào kết thúc với tỉ số hòa. Chứng minh rằng có thể tồn tại 5 đội $A, B, C, D, E$ xếp thành một hàng sao cho đội đứng trước thắng đội đứng sau.

HẾT

Lời giải

Bài 1. 

a) Khi $m = -2$ ta có phương trình $(\sqrt{x}-1)(x^2-5x+1) = 0$.

Giải phương trình ta có nghiệm $x = 1, x = \dfrac{5+\sqrt{21}}{2}, x= \dfrac{5-\sqrt{21}}{2}$.

b) Điều kiện $x \geq 0$. Ta có $x = 1$ là một nghiệm của phương trình.

Phương trình (1) có ba nghiệm phân biệt khi và chỉ khi phương trình

$x^2-(m^2+1)x + 1 = 0$. (2) có hai nghiệm phân biệt không âm và khác 1.

  • $\Delta (m^2+1)^2 – 4 = (m^2-1)(m^2+3) > 0$.
  • $1^2 -(m^2+1)1 + 1 \neq 0 \Leftrightarrow m \neq \pm 1$.

Khi đó phương trình có hai nghiệm là $a<b$ thỏa $a+b = m^2+1 > 0, ab = 1$.

Do đó $a, b > 0$ và có tích bằng 1, nên một số nhỏ hơn 1, 1 số lớn hơn 1.

Từ đó ta có $x_2 = 1$, $x_1  =a, x_3 = b$. Khi đó

$x_1^2+4x_2^2 + x_3^2 = 27$

$(a+b)^2 – 2ab = 23$

$m^2 = 25$

$m = \pm 5$. (Nhận)

Bài 2.

a) Do vai trò $a, b, c$ như nhau nên giả sử $a \geq b geq c > 0$. Khi đó

$a + b+ c = abc \Leftrightarrow \dfrac{1}{ab} + \dfrac{1}{bc} + \dfrac{1}{ac} = 1 \leq \dfrac{3}{c^2}$.

Suy ra $c = 1$. Khi đó $ab = a+b +1 \Leftrightarrow (a-1)(b-1) = 2$. Giải ra được $a = 3, b=2$.

Vậy phương trình có nghiệm $(3;2;1)$ và các hoán vị.

b)

Áp dụng bdt $(x+y+z)(\dfrac{1}{x} + \dfrac{1}{y}+ \dfrac{1}{z}) \geq 9$ và từ $\dfrac{1}{ab} + \dfrac{1}{bc} + \dfrac{1}{ac} = 1$.

Suy ra $ab+bc+ac \geq 9$.

Ta có bdt $3(x^2+y^2+z^2) \geq (x+y+z)^2 \geq 3(xy+yz+xz)$. (Tự chứng minh)

Ta có $P = (ab+bc+ac-3)^2 = (ab+bc+ac)^2 – 6(ab+bc+ac)+9$.

Mà $(ab+bc+ac)^2 \geq 3abc(a+b+c)$ và $abc = a+b+c$.

Suy ra $(ab+bc+ac)^2 \geq 3(a+b+c)^2$.

Do đó $P \geq 3(a^2+b^2+c^2) + 9 \geq (\sqrt{1+a^2} + \sqrt{1+b^2}+\sqrt{1+c^2})^2$.

Từ đó

$ab+bc+ac-3 \geq \sqrt{1+a^2} + \sqrt{1+b^2}+\sqrt{1+c^2}$

$ab+bc+ac \geq 3+\sqrt{1+a^2} + \sqrt{1+b^2}+\sqrt{1+c^2}$.

Bài 3. 

a) $ 2021 = [1;1] + [1010;1] + [1010;1]$.

b) Nếu $ n = 2k + 1$ và $k \geq 1$. Chọn $x = y =1,z=k$ ta có $n = [1;1] + [k;1] + [k;1]$.

c) Chú ý các nhận xét sau:

  • Mọi số nguyên dương đều biểu diễn với dạng $p\cdot 2^n$ trong đó $p$ là số lẻ.
  • Bội chung nhỏ nhất của $p\cdot 2^n$ và $q\cdot 2^m$ với $n>m$ là $r\cdot 2^n$ với $r=[p;q]$ lẻ.

Giả sử $n =2^{2021}$ là số đẹp, tức là tồn tại $x, y, z$ nguyên dương sao cho $2^{2021} = [x;y] + [y;z] + [z;x]$.

Do $2^{2021}$ là số chẳn nên chỉ có hai trường hợp xảy ra, hoặc cả ba số $\left[ {x;y} \right],\left[ {y;z} \right],\left[ {z;x} \right]$ đều là số chẳn, hoặc trong ba số này có hai số lẻ và một số chẳn.

Nếu 3 số $x, y, z$ lẻ thì $[x;y] + [y;z] + [z;x]$ lẻ vô lý.

Nếu 1 số lẻ, hai số chẵn cũng tương tự.

Trường hợp 2 số chẵn. Giả sử $x, y$ chẵn. Ta xét các trường hợp sau:

  • Nếu $z$ lẻ. Khi đó ta có: $\left[ {x;y} \right] = {2^a}{m_1}$ với $m_1$ là số lẻ, $\left[ {y;z} \right] = {2^b}{m_2}$, với $m_2$ là số lẻ, $\left[ {z;x} \right] = {2^a}{m_3}$, với $m_2$ là số lẻ. Dễ thấy $a, b < 2021$.
    • Từ đó: ${2^a}{m_1} + {2^b}{m_2} + {2^a}{m_3} = {2^{2021}} \Leftrightarrow {2^b}\left( {{2^{a – b}}{m_1} + {m_2} + {2^{a – b}}{m_3}} \right) = {2^{2021}} \Leftrightarrow {2^{a – b}}{m_1} + {m_2} + {2^{a – b}}{m_3} = {2^{2021 – b}}$. Do vế trái của đẳng thức là một số lẻ, vế phải là một số chẳn. Từ đó ta có trường hợp này không thể xảy ra.
  • Nếu $z$ là số chẵn. Như vậy, $x, y, z$ đều là số chẳn, đặt: $z=2^{c}t_{3}$, với ($t_{3}$ là số tự nhiên lẻ) không mất tính tổng quát, giả sử: $2021 > a \ge b \ge c \ge 0$. Vậy: $\left[ {x;y} \right] = {2^a}{m_1}$, $\left[ {y;z} \right] = {2^b}{m_2}$, $\left[ {z;x} \right] = {2^a}{m_3}$ với $m_1, m_2, m_3$ là ba số tự nhiên lẻ.
    • Từ đó: ${2^a}{m_1} + {2^b}{m_2} + {2^a}{m_3} = {2^{2021}} \Leftrightarrow {2^b}\left( {{2^{a – b}}{m_1} + {m_2} + {2^{a – b}}{m_3}} \right) = {2^{2021}} \Leftrightarrow {2^{a – b}}{m_1} + {m_2} + {2^{a – b}}{m_3} = {2^{2021 – b}}$. Do vế trái của đẳng thức là một số lẻ, vế phải là một số chẳn. Từ đó ta có trường hợp này không thể xảy ra.

Bài 4. 

a) Ta có $BF\cdot BA = BM \cdot BC = \dfrac{1}{3}BC^2$ và $CE \cdot CA = \dfrac{1}{3}BC^2$.

Do $AB, AC > BC$ nên $F, E$ nằm giữa $AB$ và $AC$.

Khi đó $X = AF \cdot AB + AE \cdot AC = AB^2-BF \cdot BC + AC^2-CE \cdot CA = AB^2+AC^2-\dfrac{2}{3}BC^2$.

Do đó $X$ lớn nhất khi và chỉ khi $AB^2+AC^2$ lớn nhất.

Ta có $BC^2=BH^2+CH^2 = (AB\sin \alpha)^2+(AC – AB \cos \alpha)^2$

$= AB^2+AC^2-2AB\cdot AC \cos \alpha$

$\geq (AB^2+AC^2) – (AB^2+AC^2)\cos \alpha$.

$\geq (AB^2+AC^2)(1-\cos \alpha)$

Suy ra $AB^2+AC^2$ lớn nhất bằng $\dfrac{BC^2}{1-\cos\alpha}$ khi $AB = AC$.

Vậy $AF \cdot AB + AE \cdot AC $ lớn nhất khi và chỉ khi $AB = AC$.

b) Ta có $\angle DBF  = \angle DEC, \angle DFB = \angle DCE$.

Suy ra $\triangle DBF = \triangle DCE$, do đó $\dfrac{DB}{DC} = \dfrac{BF}{CE}$ (1)

Mà $BF \cdot AB = CE \cdot AC = \dfrac{1}{3}BC^2$.

Suy ra $\dfrac{BF}{CE} = \dfrac{AC}{AB}$. (2)

Từ (1) và (2) ta có $\dfrac{DB}{DC} = \dfrac{AC}{AB}$.

c) Gọi $K$ là giao điểm thứ hai của $(AEF)$ và $(ABC)$. Khi đó

$\triangle KFB \backsim \triangle KEC$, suy ra $\dfrac{KB}{KC} = \dfrac{BF}{CE}$.

Mà $\dfrac{BF}{CE} = \dfrac{AC}{AB}$. Suy ra $\dfrac{KB}{KC} = \dfrac{AC}{AB}$.

Do đó $\triangle KBC \backsim \triangle ACB$, suy ra $KB = AC, KC = AB$.

từ đó $AKCB$ là hình thang cân, nên trung trực của $AK$ và $BC$ trùng nhau.

Do đó tâm $I$ của đường tròn ngoại tiếp tam giác $AEF$ thuộc trung trực của $AK$ hay thuộc trung trực $BC$ cố định.

Bài 5.

a) Nếu mỗi đội đá nhau được 2 trận.

  • Thì số điểm mội đội có thể nhận là $0, 1, 2, 3, 4, 6$. Do đó theo nguyên lý Dirichlet cho ít nhất 2 đội có cùng số điểm.
  • Gọi 8 đội là $A, B, C, D, E, F, G, H$, sau hai vòng mỗi đội đá đúng hai trận.
    • Không có ba đội nào đôi một đá với nhau, vì giả sử $A, B, C$ đôi một đá với nhau, thì vòng 1, $A$ đá với $B$ thì $C$ không đá với ai, nên phải cần ít nhất 3 vòng để điều này xảy ra.
    • Giả sử $A$ đá với $B, C$ thì $BC$ không đá với nhau nên $B, C$ đá với đội khác.
      • Nếu $B, C$ đá cùng một đội $D$. Khi đó nhóm $E, F, G, H$ cũng có hai đội chưa đá với nhau và cũng không đá với nhóm $A, B, C, D$. Giả sử là $E, F$ chưa đá với nhau. Khi đó 4 đội $A, D, E, F$ đôi một chưa đá với nhau trận nào.
      • Nếu $B, C$ đá với hai đội khác nhau là $D, E$. Lý luận tương tự ta chỉ suy ra được là $E, D$ cùng đấu với $F, G$ và $G,F$ đấu với $H$. Khi đó $A – B  – D – F – H – G – E – C – A$. Chọn 4 đội $A, D, H, E$ thỏa đề bài.

b)  Xét đội $A$ thắng nhiều nhất trong đó thắng $B, C$, xét đội $B$ và $C$ thì nếu $B$ thắng $C$ ta có $A – B – C$ là dãy mà đội trước thắng đội sau, ngược lại ta có dãy $A – C – B$.

Vậy giả sử ta có $A$ thắng $B$,$B$ thắng $C$, ta kí hiệu $A -> B -> C$.

Xét tới đội $D$ nào đó. Có các trường hợp sau:

  • $D -> A$ hoặc $C -> D$. Khi đó ta có $D ->A->B->C$ hoặc $A-> B -> C-> D$.
  • Nếu không có điều này, thì $A ->D$ và $D->C$. Khi đó $B, D$.
    • Nếu $D->B$ thì ta có $A->D->B->C$.
    • Nếu $B ->D$ thì ta có $A -> B ->D ->C$.

Trong các trường hợp ta đều có dãy 4 người mà người này thắng người kia. Vậy ta đã có $A-> B-> C->D$.

Xét $E$, tương tự như $D$.

  • Nếu $E$ thắng $A$ hoặc $D$ thắng $E$ thì bài toán được chứng minh.
  • Ngược lại, $A$ thắng $E$ và $E$ thắng $D$. Khi đó ta xét mối quan hệ giữa $E$ và $B,C$.
    • Nếu $E$ thắng $B$. Khi đó ta có $A-E-B-C-D$.
    • Nếu $E$ thua $B, C$, khi đó $A-B-C-E-D$.
    • Nếu $E$ thua $B$ và thắng $C$, khi đó $A-B-E-C-D$.

Vậy lúc nào cũng tìm được 5 đội xếp thành một hàng mà đội trước thắng đội sau.

 

Đề thi xếp lớp chuyên 9 tại Star Education – Năm học 2018 2019

Mỗi năm Star Education đều tổ chức thi xếp lớp cho các em học sinh mới. Đối với môn toán có hai đề thi, đề thứ nhất dành cho các bạn không chuyên, đề thứ hai dành cho các bạn thi vào các lớp 9TC1, 9TC2. Đề chuyên thường gồm đầy đủ các phần: Đại số, Hình học, Số học, Tổ hợp. Vì là đề xếp lớp nên đề dàn trải và khá dài, để đánh giá toàn diện các em và tư vấn vào lớp phù hợp. Sau đây xin giới thiệu đề thi xếp lớp năm 2018 – 2019 cho các bạn học sinh tham khảo.

Thời gian làm bài: 150 phút.

Bài 1. (2 điểm)
a) Phân tích đa thức thành nhân tử: $x^5+x+1$
b) Cho các số $a, b, c$ khác $0$ thỏa: $a^3+b^3+c^3=3abc$. Tính: $P = \left( {1 + \dfrac{a}{b}} \right)\left( {1 + \dfrac{b}{c}} \right)\left( {1 + \dfrac{c}{a}} \right)$
Bài 2. (3,0 điểm) Giải các phương trình sau:
a) $(x-1)(x-2)(x-6)(x-7)=81$;
b) $\dfrac{{12x}}{{{x^2} + 4x + 2}} + \dfrac{{3x}}{{{x^2} + 2x + 2}} = 9$;
c) $|x – 1 |^{2017} + (2 – x)^{2018} = 1$.
Bài 3. (2,0 điểm)
a)  Cho các số $x, y$ thỏa $|x| > 1, |y| >1$. Chứng minh rằng $|x| +|y| \geq |\dfrac{x+y}{1+xy}|$.
b) Cho các số $x,y$ không âm thỏa $x^3 + y^3 < x- y$. Chứng minh $y \leq x \leq 1$ và $x^2 + y^2 \leq 1$.

Bài 4. (3 điểm)
a) Tìm các số nguyên $x$ thỏa $\dfrac{2x^2-4x+1}{x-3}$ cũng là số nguyên.
b) Cho các số $x, y, z$ thỏa $(x-y)(y-z)(z-x) = x+y+z$. Chứng minh rằng $x+y+z$ chia hết cho 27.
c) Cho $n$ là số tự nhiên. Chứng minh rằng $n^3+3^n$ chia hết cho 7 khi và chỉ khi $n^33^n+1$ chia hết cho 7.

Bài 5. (5,0 điểm) Cho tam giác nhọn $ABC$, các đường cao $AD, BE, CF$ cắt nhau tại $H$.
a)  Chứng minh $DB \cdot DC = DH \cdot DA$ và $\angle BDF = \angle CDE$. (2 điểm)
b) Gọi $M, N$ lần lượt là trung điểm $BF, CE$. Chứng minh $\angle MDF = \angle NDC$. (1 điểm)
c) $AD$ cắt $EF$ tại $K$. Gọi $P$ là trung điểm của $AH$. Chứng minh $\dfrac{HK}{HD} = \dfrac{AK}{AD}$ và $PK \cdot PD = PH^2$. (2 điểm)

Bài 6. (2,0 điểm) Cho tam giác $ABC$ vuông tại $A$ có $BC = 2a$ cố định. $A$ thay đổi. Đường cao $AH$.
a) Tìm diện tích lớn nhất của tam giác $ABC$.
b) Phân giác các góc $\angle BAH, \angle CAH$ cắt $BC$ tại $MN$. Tìm giá trị lớn nhất của độ dài $MN$.

Bài 7. (3,0 điểm) Cho tập $X = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$.
a)Tìm tất cả các cách chia tập hợp $X$ thành 3 tập hợp rời nhau, mỗi tập có 3 phần tử và tổng các phần tử của mỗi tập bằng nhau.
b) Người ta điền các số của tập $X$ vào bảng vuông $3 \times 3$ mỗi số được xuất hiện một lần sao cho tổng các hàng, các cột và hai đường chéo là một số chia hết cho 9.
i) Chỉ ra một cách điền thỏa đề bài.
ii) Chứng minh rằng với với mọi cách điền thì ô chính giữa bảng luôn là một số chia hết cho 3.

 

HẾT

 

 

Đề thi học sinh giỏi Star Education: Lớp 8

Đề thi kiểm tra chất lượng lớp 8 Chuyên toán. 

Thời gian làm bài: 150 phút

Nộp bài vào: hocthemstar20192020@gmail.com

Đề bài

Bài 1. (2 điểm) Cho các số $ a,b,c $ khác 0 thỏa $ \dfrac{a+b-c}{ab}-\dfrac{b+c-a}{bc}-\dfrac{a+c-b}{ac}=0. $
Chứng minh rằng trong các số $a, b, c$ có một số bằng tổng hai số còn lại.

Bài 2. (3 điểm) Giải các phương trình và bất phương trình sau:

a) $(x+1)^3 + (3x- 4)^3 +(3-4x)^3 = 0$.

b) $ x^2+\dfrac{x^2}{(x+1)^2}=3 $.

c) $\dfrac{3x+4}{x-1} \leq 2$.

Bài 3.  (4 điểm) Giải các bài toán sau:

a) Cho $a, b$ không âm và thỏa $a+b = 2$. Chứng minh $ab \leq 1$ và $a^2b^2(a^2+b^2) \leq 2$.

b) Cho $a> 0$. Tìm giá trị nhỏ nhất của $A = a^2  -6(a+\dfrac{4}{a}) + \dfrac{16}{a^2} + 2020$.

Bài 4. (3 điểm) Cho $n$ là số tự nhiên.

a) Chứng minh rằng nếu $n$ lẻ thì $ n^n-n $ chia hết cho 24.

b) Chứng minh phân số $ \dfrac{21n+17}{14n+3} $ không là số nguyên với mọi $n$.

c) Tìm tất cả các giá trị của $n$ để $2^{2n} + 2^n + 1$ chia hết cho 7.

Bài 5. (5 điểm) Cho tam giác $ABC$ nhọn có $BC = 2a$ cố định, $A$ thay đổi sao cho $\angle BAC = 60^\circ$. Các đường cao $BD, CE$ cắt nhau tại $H$. Gọi $M$ là trung điểm của $BC$.

a) (2 điểm) Chứng minh tam giác $MDE$ đều và tính diện tích tam giác theo $a$.

b) (2 điểm) Đặt $x = AB, y = AC$. Chứng minh $AD = \dfrac{1}{2}x$ và $x^2 + y^2 – xy = 4a^2$. Tính diện tích lớn nhất của tam giác $ABC$ theo $a$.

c) (1 điểm) Vẽ $HK \bot AM$, $K$ thuộc $AM$. Tính góc $\angle DKE$.

Bài 6. (3 điểm) Có 68 bạn tham gia một kì thi toán của trung tâm STAR EDU, đề bài gồm 6 câu hỏi, được đánh số từ 1 đến 6. Nếu làm đúng câu số $n$ thì được $n$ điểm, ngược lại thì bị trừ $n$ điểm.

a) Chứng minh rằng có ít nhất hai ngườicó kết quả làm bài trùng nhau.

b) Chứng minh rằng có ít nhất bốn người có số điểm bằng nhau.

Hết

Đáp án

Bài 1. Qui đồng ta có $c(a+b-c) – a(b+c-a) – b(a+c-b) = 0$

$a^2+b^2-c^2-2ab =0$

$(a-b)^2-c^2=0$

$(a-b-c)(a-b+c)=0$

$a=b+c$ hoặc $b=a+c$, tao có điều cần chứng minh.

Bài 2.

a) Đặt $a = x+1, b = 3x-4, c = 3-4x$ thì $a+b+c=0$

Ta có $a^3+b^3+c^3=3abc$

Phương trình đương đương $x+1 = 0$ hoặc $3x-4= 0$ hoặc $3-4x = 0$.

Giải ra được tập nghiệm $S = \{-1, \dfrac{4}{3}, \dfrac{3}{4} \}$.

b) Ta có $x^2 + \dfrac{x^2}{(x+1)^2} – \dfrac{2x^2}{x+1} + \dfrac{2x^2}{x+1}-3=0$

$(x-\dfrac{x}{x+1})^2 +\dfrac{2x^2}{x+1} – 3 = 0$

$(\dfrac{x^2}{x+1})^2+\dfrac{2x^2}{x+1}-3=0$.

Đặt $t = \dfrac{x^2}{x+1}$. Ta có $t^2 +2t – 3 = 0 \Leftrightarrow t = 1, t = -3$.

Khi $t = 1$ ta có $x^2 -x-1 = 0$ , giải ra $x = \dfrac{1+\sqrt{5}}{2}, x = \dfrac{1-\sqrt{5}}{2}$.

Khi $t = -3$ ta có $x^2+3x+3 = 0$ (vô nghiệm).

c) $\dfrac{3x+4}{x-1} \leq 2$

$\dfrac{3x+4}{x-1}-2 \leq 0$

$\dfrac{x+6}{x-1} \leq 0$

$x+6 \leq 0, x-1 > 0$ hoặc $ x+6 \geq 0, x-1< 0$

$x \leq -6, x > 1$ (vô nghiệm) hoặc $ -6\leq x < 1$.

Kết luận: $-6 \leq x < 1$.

Bài 3.

a) $ab \leq \dfrac{(a+b)^2}{4} = 1$. Khi đó $a^2b^2 \leq ab$.

$a^2b^2(a^2+b^2) \leq ab(4-2ab) = -2(ab-1)^2+2 \leq 2$.

b) Đặt $t = a + \dfrac{4}{a}$ ta có $t \geq 4$ vì $a + \dfrac{4}{a}-4 = \dfrac{(a-2)^2}{4a} \geq 0$.

Và $t^2 = a^2+\dfrac{16}{a^2} + 8$.

Khi đó ta có $A = a^2  -6(a+\dfrac{4}{a}) + \dfrac{16}{a^2} + 2020=t^2-6t+2012 = (t-2)(t-4) + 2004 \geq 2004$.

Đẳng thức xảy ra khi $t = 4$ hay $a=2$.

Vậy giá trị nhỏ nhất của $A$ là $2004$ khi $a = 2$.

Bài 4. 

a) Đặt $n=2k+1$ ta có $A = n^n-n = (2k+1)^{2k+1} – (2k+1)$

$(2k+1)((2k+1)^{2k}-1)$

Ta có $(4k(k+1)+1)^k-1 \vdots 4k(k+1)+1 – 1  \vdots 8$

Vậy $A \vdots 8$.

$n^n – n$ chia hết cho $n$ và $n-1$, nếu $n= 3k, 3k+1$ thì $A$ chia hết cho 3.

Xét $n = 3q+2 $ với $q$ lẻ (vì $n$ lẻ) thì

$3q+2 \equiv 2 (\mod 3) \Rightarrow (3q+2)^{3q+2} \equiv 2^{3q+2} (\mod n)$

Mà $2 \equiv -1 (\mod 3) và $3q+2$ lẻ nên $2^{3q+2} \equiv -1 (\mod 3$.

Do đó $A \equiv – 1 – 3q-2 \equiv 0 (\mod 3)$

Hay $A$ chia hết cho 3.

Mà $(3,8)=1$. Do đó $A$ chia hết cho 24.

b) Đặt $A = \dfrac{21n+17}{14n+3}$.

Nếu $n = 0$ thì $A = \dfrac{17}{3}$ không là số nguyên.

Nếu $n > 0$ ta chứng minh $A < 4$ thật vật $\dfrac{21n+17}{14n+3} – 4 = \dfrac{5-35n}{14n+3} < 0$

Suy ra $A < 4$, dễ thấy $A > 1$, do đó $1 < A< 4$.

Nếu $A = 2$ ta có $21n + 17 = 2(14n+3)$ hay $7n = 11$ (vô lý)

Nếu $A = 3$ ta có $21n+17 = 3(14n+3)$ hay $21n = 8$ (vô lý)

Vậy $A$ không là số nguyên với mọi $n$.

c) Ta có $2^3 \equiv 1 (\mod 7)$, suy ra $2^{3k} \equiv 1 (\mod 7)$.

$4^3 \equiv 1 (\mod 7)$, suy ra $4^{3k} \equiv 1 (\mod 7)$.

Nếu $n = 3k$ ta có $2^{2n} + 2^n + 1  =4^{3k} + 2^{3k} + 1 \equiv 3 (\mod 7)$.

Nếu $n = 3k + 1$ ta có $2^{2n} + 2^n + 1 = 4.4^{3k} + 2.2^{3k} + 1 \equiv 0 (\mod 7)$.

Nếu $n = 3k+2$ ta có $2^{2n} + 2^n + 1 = 16 \cdot 4^{3k} + 4 \cdot 2^{3k} + 1 =0 (\mod 7)$.

Vậy với $n = 3k$ hoặc $n =3k+1$ thì $2^{2n} + 2^{n} + 1$ chia hết cho 7.

 

Bài 5. 

a) Tam giác $BEC, BDC$ vuông tại $D, E$ và $M$ là trung điểm cạnh huyền nên $MD = \dfrac{1}{2}BC = ME = MB = MC$. Suy ra $MDE$ cân tại $M$.

$\angle EMC + \angle DMB = 2\angle B + 2 \angle C = 240^\circ$, suy ra $\angle DME = 60^\circ$.

Do đó tam giác $DME$ đều, cạnh $MD = \dfrac{1}{2}BC = a$. Diện tích bằng $S  = \dfrac{a^2\sqrt{3}}{4}$.

b) Tam giác $ABD$ vuông tại $D$ có $\angle  A = 60^\circ$, suy ra $AD = \dfrac{1}{2}AB = \dfrac{1}{2}x$, suy ra $\angle CD = y -\dfrac{1}{x}$ và $BD = \dfrac{3}{2}x$.

Khi đó $BD^2 + CD^2 = BC^2$, hay $x^2+y^2-xy = 4a^2$.

$S_{ABC} = \dfrac{1}{2}BD \cdot AC = \dfrac{\sqrt{3}}{4} x \cdot y$.

Mà $xy \leq x^2+y^2-xy = 4a^2$, suy ra $S_{ABC} \leq a^2\sqrt{3}$.

Diện tích tam giác $ABC$ lớn nhất bằng $a^2\sqrt{3}$ khi $AB = AC$ hay tam giác $ABC$ đều.

Bài 6.

a) Điểm của mỗi học sinh có dạng $\pm 1 \pm 2 \pm3 \pm4 \pm 5 \pm 6$, có tất cả $2^6 = 64$ trường hợp có thể xảy ra. Do đó theo nguyên lý Diriclet thì có ít nhất 2 trường hợp trùng nhau, hay có ít nhất 2 thí sinh làm bài trùng nhau.
b) Số điểm cao nhất là $21$, thấp nhất là $-21$. Hơn nữa một người không thể có số điểm chẵn. Do đó số điểm của một thí sinh thuộc tập $A = \{-21, -19, \cdots, 19, 21\}$, có 22 phần tử.
Có 68 thí sinh tham gia nên theo nguyên lý Dirichlet thì có ít nhất 4 thí sinh có số điểm bằng nhau.

Đề thi cuối khóa STAR 2017 -2018: Toán 8

Đề bài

Bài 1. Giải các phương trình sau:

a) $ x^2 – 4x + 3 = 0$

b) $ \dfrac{1}{x-1} + \dfrac{2x^2 -5}{x^3 – 1} = \dfrac{4}{x^2 + x +1}$

c) $ |x-3| -3x = 1 $

d) $(x+3)^4 + (x+ 5)^4 = 2$

Bài 2. Giải các bất phương trình sau:

a) $ x – 5 > -5x + 3 $

b) $ \dfrac{2x-3}{-4 } \ge \dfrac{4-x}{-3}$

c) $ x^2 – 3x + 2 \le 0 $

d) $ \dfrac{x+1}{991} + \dfrac{x+5}{995} < \dfrac{x+4}{994} + \dfrac{x+9}{999}. $

Bài 3. 

a)  Quãng đường từ $ A $ đến $ B $ dài 180 $ km $. Xe thứ nhất khởi hành từ $ A $ đến $ B $. Cùng lúc đó và trên quãng đường $ AB $, xe thứ hai khởi hành từ $ B $ đến $ A $ với vận tốc lớn hơn vận tốc xe thứ nhất là $ 10km/h $. Biết hai xe gặp nhau tại nơi cách $ A $ là $ 80km/h $. Tính vận tốc của mỗi xe.

b) Dân số hiện nay của phường 12, quận 10 là 41618 người. Cách đây 2 năm dân số của phường là 40000 người. Hỏi trung bình mỗi năm dân số của phường đã tăng bao nhiêu phần trăm? ( giả sử \% tăng dân số mỗi năm là như nhau)

Bài 4. Một ngọn đèn đặt trên cao ở vị trí $A$, hình chiếu vuông góc của nó trên mặt đất là $H$. Người ta đặt 2 chiếc cọc có cùng độ cao là $1,6m$, thẳng đứng ở 2 vị trí $B$ và $C$ và 2 điểm $ B $, $ C $ thẳng hàng với $H$. Khi đó bóng cọc ở 2 vị trí $ B $, $ C $ ở trên mặt đất có độ dài lần lượt là $0,4m$ và $0,6m$. Biết $BC = 1,4m$. Hãy tính độ cao $AH$ của cột đèn.

Bài 5. Cho tam giác $ABC$ nhọn, các đường cao $ AD, BE, CF $ cắt nhau tại $ H $. Chứng minh rằng:
a) $ AF\cdot AB = AE\cdot AC $ và $ HF\cdot HC = HE\cdot HB. $
b) $ BE $ là phân giác của $ \widehat{DEF} $ . Từ đó chứng minh $ H $ là giao điểm các đường phân giác của $ \Delta DEF $.
c) $ BH\cdot BE + CH\cdot CF = BC^2 $
d)  Gọi $ O $ là giao điểm 3 đường trung trực, $ G $ là trọng tâm. Chứng minh $ G, H, O $ thẳng hàng và $ \dfrac{OG}{GH} = \dfrac{1}{2} $.