Tag Archives: HeThucLuongTrongTamGiacVuong

Hệ thức lượng trong tam giác vuông – Chứng minh đẳng thức P2

Bài 1. Cho tam giác $ABC$ vuông tại $A$ có $BC = 3\sqrt{5}$, hình vuông $ADEF$ có $D$ thuộc $AB$, $E$ thuộc $BC$ và $F$ thuộc $AC$. Biết hình vuông có cạnh 2, tính độ dài các cạnh $AB, AC$ (giả sử $AB < AC$).
Lời giải. Đặt $BD = x, CF = y$, vì $AB < AC$ nên $x < y$.
Ta có $\triangle BDE \backsim \triangle EFC \Rightarrow BD \cdot CF = ED \cdot EF = 4$.
Mặt khác $AB^2 + AC^2 = BC^2 \Rightarrow (x+2)^2+(y+2)^2 = 45 \Rightarrow (x+y)^2 + 4(x+y) -45 = 0 \Rightarrow x+y = 5$.
Suy ra $x(5-x) = 4$, giải ra được $x = 1, y = 4$.
Từ đó suy ra $AB = 3, AC = 6$.

Bài 2. Cho tam giác $ABC$ nhọn trung tuyến $AM$. \begin{enumerate}
a) Chứng minh rằng $4AM^2 + BC^2=2(AB^2+AC^2)$.
b) Vẽ trung tuyến $BN$. Tìm điều kiện về độ dài các cạnh của tam giác $ABC$ để $AM \bot AN$.
Lời giải.
a) Gọi $H$ là chân đường cao kẻ từ $A$, giả sử $H$ nằm giữa $B$ và $M$. Ta có:

$AB^2 + AC^2 = 2AH^2 + BH^2 + CH^2$
$= 2AH^2 + (BM – HM)^2 + (CM + HM)^2 $
$= 2AH^2 + 2HM^2 + 2BM^2 = 2AM^2 + \dfrac{BC^2}{2}$

b) Gọi $G$ là trọng tâm tam giác: $GM=\dfrac{1}{3}AM,GB=\dfrac{2}{3}BN$. Ta có $AM\perp BN$ khi và chỉ khi:\

$GM^2 + GB^2 = BM^2$
$\Leftrightarrow \dfrac{1}{9}AM^2 + \dfrac{4}{9}BN^2 = \dfrac{1}{4}BC^2$
$\Leftrightarrow \dfrac{1}{9} \left( \dfrac{AB^2 + AC^2}{2} – \dfrac{BC^2}{4} \right) + \dfrac{4}{9}\left(\dfrac{AB^2 + BC^2}{2} – \dfrac{AC^2}{4}\right) = \dfrac{BC^2}{4}$
$\Leftrightarrow 5AB^2 = AC^2 + BC^2$

Bài 3. Cho tam giác $ABC$, hai đường phân giác $BD$ và $CE$ cắt nhau tại $I$ thỏa mãn $BD\cdot CE = 2\cdot BI\cdot CI$. Tam giác $ABC$ là tam giác gì? vì sao?
Lời giải.

Đặt $ BC = a, CA = b, AB = c $. Ta có, $ AI $ là phân giác trong $ \triangle ABD $\
Suy ra:
$ \dfrac{BI}{c} = \dfrac{DI}{AD} = \dfrac{BD}{c + AD} \Rightarrow \dfrac{BI}{BD} = \dfrac{c}{c+ AD} $
Chứng minh tương tự
$ \dfrac{CD}{CE} = \dfrac{b}{b + AE} $
Như vậy điều cần chứng minh tương đương với

$\dfrac{BI}{BD} \cdot \dfrac{CI}{CE} = \dfrac{1}{2} \Leftrightarrow \dfrac{bc}{(c + AD)(b + AE)} = \dfrac{1}{2}$
$\Leftrightarrow bc = AD\cdot b + AE\cdot c + AD\cdot AE \qquad (*)$

Mặt khác, trong tam giác $ ABC $ ta có
$ BD $ là phân giác $ \angle ABC$ ta có $\dfrac{AD}{c} = \dfrac{CD}{a} = \dfrac{b}{a + c} \Rightarrow AD = \dfrac{bc}{a + c}$
$ CD $ là phân giác $ \angle ACB$ ta có \dfrac{AE}{b} = \dfrac{BE}{a} = \dfrac{c}{a + b} \Rightarrow AE = \dfrac{bc}{a + b}$
Do đó (*) tương đương với

$bc = \dfrac{b^2c}{a + c} + \dfrac{bc^2}{a + b} + \dfrac{b^2c^2}{(a+b)(a+c)}$
$\Leftrightarrow a^2 = b^2 + c^2$

Vậy tam giác $ ABC$ vuông tại $ A $.

Bài 4. Cho tam giác $ABC$ đều cạnh $a$. $M$ là một điểm thay đổi bên trong tam giác. Gọi $D, E, F$ lần lượt là hình chiếu vuông góc của $M$ trên các cạnh $BC, AC, AB$. Tìm giá trị nhỏ nhất của biểu thức: $P = AF^2 + BD^2 + CE^2$.
Lời giải.
Ta có $AM^2 = AF^2 + MF^2 = AE^2 + ME^2$. Suy ra $AF^2 – AE^2 = ME^2 – MF^2$.
Tương tự $BD^2 – BF^2 = MF^2 – MD^2, CE^2 – CD^2 = MD^2 -MD^2$.
Khi đó $AF^2 -AE^2 + BD^2 – BF^2 + CE^2-CE^2 = 0 \Leftrightarrow AF^2 +DB^2 + CE^2 = AE^2+BF^2+CE^2$.
Mặt khác $AF^2 + BF^2 \geq \dfrac{(AF+BF)^2}{2} = \dfrac{a^2}{4}$.
Tương tự thì $BD^2 +CD^2 \geq \dfrac{a^2}{2}$ và $CE^2+AE^2 \geq \dfrac{a^2}{2}$.
Do đó $P =AF^2 + BD^2 + CE^2 \geq \dfrac{3a^2}{4}$.
Đẳng thức xảy ra khi $D, E, F$ lần là trung điểm của $BC, AC, AB$.
Vậy $P_{min} = \dfrac{3a^2}{4}$.

Bài 5. Cho hình vuông $ABCD$ cạnh $a$. Các điểm $M, N$ lần lượt thay đổi trên cạnh $BC, CD$ sao cho $\angle MAN = 45^\circ$. Chứng minh chu vi tam giác $CMN$ không đổi và tìm giá trị lớn nhất của diện tích tam giác $CMN$.

Trên tia đối của tia $DC$ lấy điểm $K$ sao cho $\angle KAN = \angle MAN = 45^\circ$.
Do $\angle KAD+\angle DAN =45^\circ \quad \text{và} \quad \angle DAN+\angle MAB =45^\circ \quad \text{nên} \quad \angle KAD =\angle MAB$
$\Rightarrow \triangle KAD =\triangle MBA$(ch-cgv) $\Rightarrow AK=AM \quad \text{và} \quad KD=BM$
Khi đó $\triangle KAN=\triangle MAN$(c-g-c) $\Rightarrow MN=KN$
Ta có:
$P_{\triangle CMN}=MN+MC+NC=KN+MC+NC
=KD+DN+NC+MC=BM+MC+NC+ND=DC+CB=2a$.
Vậy chu vi của $\triangle CMN$ luôn không đổi và bằng $2a$
Đặt $MC=x,NC=y$
$P_{\triangle CMN}=MN+MC+NC=x+y+\sqrt{x^2+y^2}=2a$
Áp dụng bất đẳng thức Cauchy:
$2a=x+y+\sqrt{x^2+y^2}\ge 2\sqrt{xy}+ \sqrt{2xy}=\left(\sqrt{2}+2\right)\sqrt{xy} \Rightarrow xy\le \dfrac{4a^2}{(\sqrt{2}+2)^2}$
$S_{\triangle CMN}=\dfrac{1}{2}xy\le \dfrac{1}{2}.\dfrac{4a^2}{6+4\sqrt{2}}=\dfrac{a^2}{\sqrt{2}+3}$

Bài 6. Cho $\triangle A B C$ vuông ờ $A, A H \perp B C, H \in B C . H E \perp A C$,
$H F \perp A B$
\begin{enumerate}
a) Chứng minh rằng $H A^{3}=B F \cdot C E \cdot B C$.
b) Chứng minh rằng $\sqrt[3]{B F^{2}}+\sqrt[3]{C E^{2}}=\sqrt[3]{B C^{2}}$.
c) Gọi $M, N$ là hình chiếu của $E, F$ lên $B C$.
Chứng minh rằng $\sqrt{M C}+\sqrt{N B}=\sqrt{B C}$.
d) Chứng minh rằng $\sqrt[3]{N B \cdot N F}+\sqrt[3]{M C \cdot M E}=\sqrt[3]{A B \cdot A C}$.

Bài 7. Cho tam giác $ABC$ vuông tại $A$, $M$ là điểm thuộc cạnh $BC$ thỏa $MA^2 = MB \cdot MC$. Chứng minh rằng $M$ là trung điểm của $BC$ hoặc $M$ là chân đường cao từ $A$ đến $BC$.

Hệ thức lượng trong tam giác – Tính toán độ dài

Dạng 1. Tính toán

Áp dụng đầu tiên của các hệ thức lượng trong tam giác vuông đó là tính toán độ dài khi biết một số yếu tố cho trước, việc tính toán này xem ra là bài toán dễ tuy vậy đòi hỏi tính chính xác và áp dụng định lí một cách thành thục.

  • Phương pháp chủ yếu là áp dụng định lí thiết lập mối quan hệ giữa yếu tố đã cho và yếu tố chưa biết, từ đó tính được đối tượng cần tính.
  • Với các bài toán khó hơn phải thiết lập các phương trình hoặc hệ phương trình để giải.
  • Ta cũng hay vẽ thêm các đường vuông góc để tao ra tam giác vuông hay đường cao, từ đó mới có thể áp dụng được hệ thức lượng.

Ví dụ 1. Cho tam giác $ABC$ vuông tại $A$ có $AB = 6cm, BC = 10cm$, đường cao $AH$ ($H$ thuộc $BC$).

a)Tính độ dài cạnh $AC,AH$.
b) Tính $BH, CH$.
Lời giải.
a) Áp dụng định lý Pitago cho tam giác $ABC$ ta có:\
$AB^2 + AC^2 = BC^2$ $\Leftrightarrow 6^2 + AC^2 = 10^2$ \
$\Rightarrow AC = \sqrt{10^2-6^2} =8(cm)$.\
Áp dụng hệ thức lượng cho tam giác vuông $ABC$ ta có:\
$AH \cdot BC = AB \cdot AC \Rightarrow
AH = \dfrac{AB \cdot AC}{BC} = \dfrac{6\cdot 8}{10} = \dfrac{24}{5} (cm)$.
b) Áp dụng hệ thức lượng cho tam giác vuông $ABC$ ta có: \
$BH \cdot BC = AB^2 \Rightarrow BH = \dfrac{AB^2}{BC} =\dfrac{18}{5} (cm)$ \
và $CH = BC – BH = 10 – \dfrac{18}{5} = \dfrac{32}{5} (cm)$. \

Ví dụ 2. Cho tam giác $ABC$ vuông tại $A$, đường cao $AH$. Cho $BH = 4, CH = 9$. Tính
a) Tính $AH, AB, AC$.
b)Vẽ $HD \bot AB$ và $HE \bot AC$( với $D$ thuộc $AB$ và $E$ thuộc $AC$). Tính $AD$ và $AE$.
Lời giải

Ta có $BC = BH + CH = 4 + 9 = 13$.
a) Tam giác $ABC$ vuông tại $A$ có đường cao $AH$ nên:
$AH^2 = BH \cdot CH = 36 \Rightarrow AH = 6$;
$AB^2 = BH \cdot BC = 4\cdot 13\Rightarrow AB = 2\sqrt{13}$;
$AC^2 = CH \cdot BC = 9 \cdot 13 \Rightarrow CH = 3\sqrt{13}$.
b)
Tam giác $ABH$ vuông tại $H$ có đường cao $HD$ nên:\
$AD\cdot AB = AH^2 \Rightarrow AD = \dfrac{AH^2}{AB} = \dfrac{36}{2\sqrt{13}} = \dfrac{18\sqrt{13}}{13}$;
Tương tự ta có $AE\cdot AC = AH^2 \Rightarrow AE = \dfrac{AH^2}{AC} = \dfrac{36}{3\sqrt{13}} = \dfrac{12\sqrt{13}}{13}$.

Ví dụ 3. Cho hình chữ nhật $ABCD$ có $AB = 2AD$ và $AC = 4\sqrt{5}$.

a)Tính độ dài cạnh của hình chữ nhật.
b) Vẽ $AH \bot BD$. Tính $AH, CH$.

Lời giải

a) Ta có $BD = AC = 4\sqrt{5}$.
Đặt $AD = x$, suy ra $AB = 2x$.
Ta có $BD^2 = AB^2 + CD^2\
\Leftrightarrow 80 = 5x^2 \Rightarrow x = 4$.
Do đó $AB = 8, AD = 4$.
b) Tam giác $ABD$ vuông có đường cao $AH$ nên
$AH \cdot BD = AB \cdot AD
\Rightarrow AH = \dfrac{AB \cdot AD}{BD} = \dfrac{8}{\sqrt{5}}$.
Vẽ $HK \bot CD$.
Ta có $\triangle DHK \backsim ADH$, suy ra $$\dfrac{HK}{DH} = \dfrac{DK}{AH} = \dfrac{DH}{AD} = \dfrac{1}{\sqrt{5}}$$
Suy ra $DK = \dfrac{8}{5}, KH = \dfrac{4}{5}$.
Khi đó $CK = CD – DK = 8-\dfrac{8}{5} = \dfrac{32}{5}$.
Và $CH = \sqrt{CK^2+HK^2}= \sqrt{\dfrac{32^2}{5^2}+\dfrac{4^2}{5^2}} = \dfrac{4\sqrt{65}}{5}$.

Ví dụ 4. Cho tam giác $ABC$ cân tại $A$ có $AB = 10, BC = 16$. Gọi $M$ là trung điểm $BC$.

a)Tính độ dài $AM$.
b) Vẽ $MD$ vuông góc $AB$. Tính $AM$.
Lời giải

Tam giác $ABC$ cân tại $A$ nên trung tuyến $AM$ cũng là đường cao, suy ra $AM \bot BC$. \
$AM^2 + MB^2 = AB^2 \Rightarrow AM = \sqrt{AB^2-MB^2}=\sqrt{10^2-8^2}=6$.
\item Tam giác $ABM$ vuông tại $M$ có $MD$ là đường cao:\ $AD\cdot AB = AM^2 \Rightarrow AD = \dfrac{AM^2}{AB} = \dfrac{36}{10} = \dfrac{18}{5}$.\

Ví dụ 5. Cho hình thang cân $ABCD$ có đáy nhỏ $AB = 3$, đáy lớn $CD = 7$, cạnh bên $AD = 5$. Tính diện tích hình thang $ABCD$.}

Lời giải

Vẽ đường cao $AH, BK$ của hình thang $ABCD$.
Ta có $\triangle AHD = \triangle BKC$ (ch.gn), suy ra $HD = CK$.
Hơn nữa $ABKH$ là hình chữ nhật nên $HK = AB =3$.
Suy ra $DH = CK = 2$.
Tam giác $ADH$ vuông tại $H$, suy ra $AD^2 = DH^2 + AH^2$

$\Rightarrow AH = \sqrt{AD^2-DH^2}=\sqrt{25-4}=\sqrt{21}$
Khi đó $S_{ABCD} = \dfrac{1}{2}AH \cdot (AB+CD) = 5\sqrt{21}$.

Bài tập rèn luyện

Bài 1. Cho tam giác vuông $A B C$, đặt $A B=c, A C=b, B C=a$, đường cao $A H=h, B H=c^{\prime}$, $C H=b^{\prime}$. Tính độ dài các đoạn thẳng còn lại khi biết:
(a) $a=13, b=12$.
(b) $b^{\prime}=3, c^{\prime}=12$.
(c) $b=5, h=4$.
(d) $h=3, a=10$.
Bài 2. Cho hình thang vuông $A B C D$ có $\angle A=\angle D=90^{\circ}$. Cho $A D=h, A B=a, C D=b, B C=$ c. Tính các độ dài chưa biết khi cho:
(a) $a=3, b=7, h=3$.
(b) $a=5, c=13, b=10$.
Bài 3. Cho tam giác $A B C$ vuông tại $A$ có $A B=9 cm, B C=15 cm, A H$ là đường cao $(H$ thuộc cạnh $B C$ ). Tính độ dài các đoạn thẳng $B H, C H, A C$ và $A H$.
Bài  4. Cho tam giác $A B C$ vuông tại $A$, đường cao $A H$.
Biết $B H=\frac{9}{5} ; C H=\frac{16}{5}$.
(a) Tính $A H, A B, A C$.
(b) Gọi $D, E$ là hình chiếu vuông góc vuông góc của $H$ trên $A B, A C$.
Chứng minh $ A D \cdot A B=A E \cdot A C$.
(c) Đường thẳng $D E$ cắt đường thẳng $B C$ tại $F$. Chứng minh $F B \cdot F C=F D \cdot F E$.
Bài 5. Cho tam giác $A B C$ vuông tại $A$. Biết tỉ số hai cạnh góc vuông là $\frac{3}{4}$, độ dài cạnh góc vuông nhỏ bằng $6 \mathrm{~cm}$. Tính độ dài cạnh huyền, độ dài hình chiếu vuông góc của các cạnh góc vuông lên cạnh huyền.

Bài 6. Tam giác $A B C$ nhọn có đường cao $A H$, biết rằng $A B=26 cm, A C=25 cm$, đường cao $A H=24 ~cm$. Tính độ dài cạnh $B C$.
Bài 7. Cho tam giác $A B C$ vuông tại $A$ có $B C=\sqrt{13} cm$.
Tính $A B, A C$, cho biết $A B=\frac{2}{3} A C$.
Bài 8. Cho tam giác $A B C$ vuông tại $A$ có $A H$ là đường cao. $B H=1 cm, C H=4 cm$. Tính $B C$, $A H, A B$ và $A C$.

Tài liệu tham khảo

Nguyễn Tăng Vũ, Bài tập hình học 9 cơ bản và nâng cao, Star Education

Chứng minh ba điểm thẳng hàng

Đề bài. Cho tam giác $OBA$ vuông tại $B$ đường cao $BH$. Gọi $C$, $D$ lần lượt là điểm đối xứng của $B$, $O$ qua $H$. Từ $B$ kẻ hai tiếp tuyến $BP$, $BQ$ đến đường tròn đường kính $AD$. Chứng minh ba điểm $C$, $P$, $Q$ thẳng hàng.

Cách 1 (sử dụng tam giác đồng dạng)

Gọi $I$ là trung điểm $AD$. Qua $C$ kẻ đường thằng vuông góc với $BI$, cắt $BI$ tại $J$ và cắt $OA$ tại $K$. Nếu chứng minh được

\[ IJ.IB = IQ^2 = IP^2 \qquad (*)\]

ta sẽ chứng minh được $QJ \bot BI$ và $PJ \bot BI$ nhờ các tam giác đồng dạng. Từ đó suy ra được $C, P, Q$ thẳng hàng (cùng nằm trên đường thẳng vuông góc với $BI$ tại $J$).

Vì $IJ.IB = IH.IK$ nên việc chứng minh (*) có thể đưa về chứng minh $IH.IK = IA^2$ (xem chứng minh ở đây).

Cách 2 (tứ giác nội tiếp, phương tích)

Do tứ giác $BOCD$ là hình thoi, nên $CD$ song song $OB$, tia kéo dài $CD$ sẽ vuông góc với $AB$ tại $E$. Tứ giác $HEAC$ nội tiếp có

\[BE.BA = BH.BC \]

Lại có $BP$, $BEA$ lần lượt là tiếp tuyến và cát tuyến của đường tròn đường kính $AD$ nên

\[ BE.BA = BP^2 \]

Suy ra được $BH.BC = BP^2$, suy ra tam giác $BPC$ và $BHP$ đồng dạng (c.g.c), ta có được $\angle BCP = \angle BPH$. Chứng minh tương tự với $\angle BCQ = \angle BQH$.

Mặt khác, năm điểm $B,Q,I,P,H$ cùng nằm trên đường tròn đường kính $BI$, nên $\angle BPH = \angle BQH$ (cùng chắn cung $AH$).

Vậy $\angle BCP = \angle BCQ$, suy ra ba điểm $C,P,Q$ thẳng hàng (đpcm).