Tag Archives: luythua

Lũy thừa của một số tự nhiên

1.Lũy thừa của một số tự nhiên

Lũy thừa bậc $\mathrm{n}$ của a, kí hiệu $\mathrm{a}^{\mathrm{n}}$, là tích của $\mathrm{n}$ thừa số $\mathrm{a}$.
$$
\mathrm{a}^{\mathrm{n}}=\underbrace{\mathrm{a} \cdot \mathrm{a} \ldots \ldots \mathrm{a}}_{\mathrm{n} \text { thừa số a }} \quad(\mathrm{n} \neq 0)
$$

  • Ta đọc $\mathrm{a}^{\mathrm{n}}$ là “a $m \tilde{u} \mathrm{n}$ ” hoặc “a lũy thừa n” hoặc “lũy thừa bậc $\mathrm{n}$ của a”.
  • Số a được gọi là cơ số, n được gọi là số $m \tilde{u}$. Phép nhân nhiều thừa số bằng nhau gọi là phép nâng lên luỹ thìa.
  • Đặc biệt, $\mathrm{a}^{2}$ còn được đọc là a bình phương hay bình phương của a và a $^{3}$ còn được đọc là a lập phương hay lập phương của a.
  • Quy ước: $\mathrm{a}^{1}=\mathrm{a}$.

Ví dụ 1. $10^4 = 10 \cdot 10 \cdot 10 \cdot 10$.

2.Tính chất.

a) Khi nhân hai luỹ thừa cùng cơ số, ta giữ nguyên cơ số và cộng các số mũ.
$$
a^{m} \cdot a^{n}=a^{m+n}
$$

a) Khi chia hai luỹ thừa cùng cơ số (khác 0 ), ta giữ nguyên cơ số và trừ các số mũ.
$$
\mathrm{a}^{\mathrm{m}}: \mathrm{a}^{\mathrm{n}}=\mathrm{a}^{\mathrm{m}-\mathrm{n}}(\mathrm{a} \neq 0 ; \mathrm{m} \geq \mathrm{n})
$$
Quy ước: $\mathrm{a}^{0}=1$.

Ví dụ 2. 

a) $2^{10} = 2^7 \cdot 2^3$.

b) $3^5 = 3^7 : 3^2$.

3.Các ví dụ thực hành

Ví dụ 3. a) Viết các tích sau dưới dạng luỹ thừa:
$$
3.3 .3 ; \quad 6.6 .6 .6 .
$$
b) Phát biểu hoàn thiện các câu sau:
$3^{2}$ còn gọi là “3 …” hay “… của 3”; $5^{3}$ còn gọi là “5 …” hay “… của 5”.
c) Hãy đọc các luỹ thừa sau và chỉ rõ cơ số, số mũ: $3^{10} ; 10^{5}$.

Lời giải

 

 

Ví dụ 4. Viết các tích sau dưới dạng một luỹ thừa:  3^{3} \cdot 3^{4} ; 10^{4} \cdot 10^{3} ; \mathrm{x}^{2} \cdot \mathrm{x}^{5}$.

Lời giải

 

 

Ví dụ 5. a) Viết kết quả mỗi phép tính sau dưới dạng một luỹ thừa.
$11^{7}: 11^{3}$ $11^{7}: 11^{7}$
$7^{2} \cdot 7^{4}$ $7^{2} \cdot 7^{4}: 7^{3}$
b) Cho biết mỗi phép tính sau đúng hay sai.
$$
\begin{array}{ll}
9^{7}: 9^{2}=9^{5} ; & 7^{10}: 7^{2}=7^{5} ; \
2^{11}: 2^{8}=6 ; & 5^{6}: 5^{6}=5 .
\end{array}
$$

Lời giải

 

 

4.Bài tập rèn luyện

Bài 1.(SGK CTST Toán 6 Tập 1 – Trang 18) a) Viết kết quả mỗi phép tính sau dưới dạng một luỹ thừa.
$$
\begin{array}{lll}
5^{7} .5^{5} ; & 9^{5}: 8^{0} ; & 2^{10}: 64.16
\end{array}
$$
b) Viết cấu tạo thập phân của các số $4983 ; 54297 ; 2023$ theo mẫu sau:
$$
4983=4.1000+9.100+8.10+3
$$
$$
=4.10^{3}+9.10^{2}+8.10+3
$$
Bài 2. (SGK CTST Toán 6 Tập 1 – Trang 18)Theo Tổng cục Thống kê, tháng 10 năm 2020 dân số Việt Nam được làm tròn là 98000000 người. Em hãy viết dân số Việt Nam dưới dạng tích của một số với một luỹ thừa của $10 .$

Bài 3. (SGK CTST Toán 6 Tập 1 – Trang 18)Biết rằng khối lượng của Trái Đất khoảng $600 \ldots 00$(21  số  0) tấn, khối lượng của Mặt Trăng khoảng
$7500 \ldots 00$(18 số  0) tấn.
a) Em hãy viết khối lượng Trái Đất và khối lượng Mặt Trăng dưới dạng tích của một số với một luỹ thừa của $10 .$
b) Khối lượng Trái Đất gấp bao nhiêu lần khối lượng Mặt trăng.