Bài 1. (a) Cho các số thực $a, b, c$ sao cho $a+b+c=3, a^{2}+b^{2}+c^{2}=29$ và $a b c=11$. Tính $a^{5}+b^{5}+c^{5}$
(b) Cho biểu thức $A=(m+n)^{2}+3 m+n$ với $m, n$ là các số nguyên dương. Chứng minh rằng nếu $A$ là một số chính phương thì $n^{3}+1$ chia hết cho $m$.
Bài 2. (a) Giải hệ phương trình: $2(x+2) \sqrt{3 x-1}=3 x^{2}-7 x-3$
(b) Giải hệ phương trình: $\left\{\begin{array}{l}x+\frac{1}{y}-\frac{10}{x}=-1 \\ 20 y^{2}-x y-y=1\end{array}\right.$
Bài 3. Cho tam giác $A B C$ có $A B<A C<B C$. Trên các cạnh $B C, A C$ lần lượt lấy các điểm $M, N$ sao cho $A N=A B=B M$. Các đường thẳng $A M$ và $B N$ cắt nhau tại $\mathrm{K}$. Gọi $H$ là hình chiếu của $K$ lên $\mathrm{AB}$. Chứng minh rằng:
(a) Tâm đường tròn nội tiếp tam giác $A B C$ nằm trên $K H$.
(b) Các đường tròn nội tiếp các tam giác $A C H$ và $B C H$ tiếp xúc với nhau.
Bài 4. Cho $x, y$ là 2 số thực dương. Tìm giá trị nhỏ nhất của biếu thức:
$P=\frac{16 \sqrt{x y}}{x+y}+\frac{x^{2}+y^{2}}{x y}$
Bài 5. Cho tam giác $A B C$ có góc $B$ tù. Đường tròn $(O)$ nội tiếp tam giác $A B C$ tiếp xúc với các cạnh $A B, C A, B C$ lần lượt tại $L, H, J$.
(a) Các tia $B O, C O$ cắt $L H$ lần lượt tại $M, N$. Chứng minh 4 điểm $B, C, M, N$ cùng thuộc một đường tròn.
(b) Gọi $d$ là đường thẳng qua $O$ và vuông góc với $A J$; $d$ cắt $A J$ và đường trung trực của cạnh $B C$ lần lượt tại $D$ và $F$. Chứng minh 4 điểm $B, D, F, C$ cùng thuộc một đường tròn.
Bài 6. Trên một đường tròn có 9 điểm phân biệt, các điểm này được nối với nhau bởi các đoạn thẳng màu xanh hoặc màu đỏ. Biết rằng mỗi tam giác tạo bởi 3 trong 9 điểm chứa ít nhất một cạnh màu đỏ. Chứng minh rằng tồn tại 4 điểm sao cho 6 đoạn thẳng nối chúng đều có màu đỏ.
LỜI GIẢI
Bài 1.
a) Cho các số thực $a, b, c$ sao cho $a+b+c=3, a^{2}+b^{2}+c^{2}=29$ và $a b c=11$. Tính $a^{5}+b^{5}+c^{5}$
b) Cho biểu thức $A=(m+n)^{2}+3 m+n$ với $m, n$ là các số nguyên dương. Chứng minh rằng nếu $A$ là một số chính phương thì $n^{3}+1$ chia hết cho $m$.
Lời giải.
a) Đặt $S_{2}=a^{2} b^{2}+b^{2} c^{2}+a^{2} c^{2} ; S_{3}=a^{3}+b^{3}+c^{3} ; S_{5}=a^{5}+b^{5}+c^{5}$
- $(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2(a b+b c+a c) $
$\quad\quad\Rightarrow 9=29+2(a b+b c+a c) $
$\quad\quad\Rightarrow a b+b c+a c=-10 $
- $(a+b+c)\left(a^{2}+b^{2}+c^{2}\right)=a^{3}+b^{3}+c^{3}+a^{2} b+a b^{2}+b^{2} c+b c^{2}+a^{2} c+a c^{2} $
$\quad\quad\Rightarrow 3.29=S_{3}+a b(a+b)+b c(b+c)+a c(a+c) $
$\quad\quad\Rightarrow 87=S_{3}+(a+b+c)(a b+b c+a c)-3 a b c $
$\quad\quad \Rightarrow S_{3}=87-3 \cdot(-10)+3.11=150 $
- $(a b+b c+a c)^{2}=a^{2} b^{2}+b^{2} c^{2}+a^{2} c^{2}+2 a b c(a+b+c) $
$\quad\quad \Rightarrow 100=S_{2}+2.11 .3 \Rightarrow S_{2}=34 $
- $\left(a^{2}+b^{2}+c^{2}\right)\left(a^{3}+b^{3}+c^{3}\right)=a^{5}+b^{5}+c^{5}+a^{2} b^{3}+a^{3} b^{2}+b^{2}c^{3}+b^{3}c^{2}+a^{3} c^{2}+a^{2} c^{3} $
$\quad\quad\Rightarrow 29.150=S_{5}+a^{2} b^{2}(a+b)+b^{2} c^{2}(b+c)+a^{2} c^{2}(a+c) $
$\quad\quad \Rightarrow 29.150=S_{5}+(a+b+c)\left(a^{2} b^{2}+b^{2} c^{2}+a^{2} c^{2}\right)-a b c(a b+b c+a c) $
$\quad\quad\Rightarrow S_{5}=29.150-3.34+11 .(-10)=4138$
Nhận xét thêm: Trên thực tế, phương trình bậc 3 nhận $a, b, c$ làm nghiệm chỉ có một nghiệm thực, mà đề thi cho 3 số $a, b, c$ thực.
b) Do $m, n$ là số nguyên dương nên ta có: $A=(m+n)^{2}+3 m+n>(m+n)^{2}$ $A=(m+n)^{2}+3 m+n=m^{2}+n^{2}+3 m+n+2 m n<m^{2}+n^{2}+4+4 m+4 n+$ $2 m n=(m+n+2)^{2}$
Mà $\mathrm{A}$ là số chính phương nên $A=(m+n+1)^{2}$
$\Rightarrow(m+n)^{2}+3 m+n=(m+n+1)^{2} $
$\Rightarrow m^{2}+n^{2}+2 m n+3 m+n=m^{2}+n^{2}+1+2 m+2 n+2 m n $
$\Rightarrow m=n+1 .$
Lại có $n^{3}+1=(n+1)\left(n^{2}-n+1\right) \vdots(n+1) \Rightarrow n^{3}+1 \vdots m$
Bài 2.
a) Giải hệ phương trình: $2(x+2) \sqrt{3 x-1}=3 x^{2}-7 x-3$
b) Giải hệ phương trình: $\left\{\begin{array}{l}x+\frac{1}{y}-\frac{10}{x}=-1 \\ 20 y^{2}-x y-y=1\end{array}\right.$
Lời giải.
a) Điều kiện: $x \geq \frac{1}{3}$
$2(x+2) \sqrt{3 x-1}=3 x^{2}-7 x-3 $
$\Leftrightarrow x^{2}+4 x+4+2(x+2) \sqrt{3 x-1}+3 x-1=4 x^{2} $
$\Leftrightarrow(x+2+\sqrt{3 x-1})^{2}=(2 x)^{2} $
$\Leftrightarrow x+2+\sqrt{3 x-1}=2 x \quad\left(\text { vì } x \geq \frac{1}{3}\right) $
$\Leftrightarrow \sqrt{3 x-1}=x-2(x \geq 2) $
$\Leftrightarrow 3 x-1=x^{2}-4 x+4 $
$\Leftrightarrow x^{2}-7 x+5=0\Leftrightarrow\left[\begin{array}{rl}x & =\frac{7+\sqrt{29}}{2}(n) \\ x & =\frac{7-\sqrt{29}}{2}(l)\end{array}\right.$
$\left\{\begin{array}{l}x+\frac{1}{y}-\frac{10}{x}=-1 \\ 20 y^{2}-x y-y=1\end{array}\right.$
Điều kiện: $y \neq 0, x \neq 0$
Chia 2 vế của (2) cho $y$ ta được:
$20 y-x-1=\frac{1}{y}$
$\Rightarrow 20 y-x=\frac{1}{y}+1$
Mà $\frac{1}{y}+1=\frac{10}{x}-x$ nên
$20 y-x=\frac{10}{x}-x$
$\Rightarrow x y=\frac{1}{2}$
Thay vào (2) ta được:
$20 y^{2}-\frac{1}{2}-y=1 \Rightarrow 40 y^{2}-2 y-3=0 \Rightarrow\left[\begin{array}{l}y=\frac{3}{10} \Rightarrow x=\frac{5}{3} \\ y=-\frac{1}{4} \Rightarrow x=-2\end{array}\right.$
Vậy nghiệm của hệ phương trình là $(x ; y) \in[(-2 ;-\frac{1}{4}),(\frac{5}{3} ; \frac{3}{10})]$
Bài 3. Cho tam giác $A B C$ có $A B<A C<B C$. Trên các cạnh $B C, A C$ lần lượt lấy các điểm $M, N$ sao cho $A N=A B=B M$. Các đường thẳng $A M$ và $B N$ cắt nhau tại $\mathrm{K}$. Gọi $H$ là hình chiếu của $K$ lên $\mathrm{AB}$. Chứng minh rằng:
a) Tâm đường tròn nội tiếp tam giác $A B C$ nằm trên $K H$.
b) Các đường tròn nội tiếp các tam giác $A C H$ và $B C H$ tiếp xúc với nhau.
Lời giải.
a) Gọi $I$ là tâm đường tròn nội tiếp tam giác $A B C$.
Tam giác $A B N$ cân tại $A$ nên phân giác góc $B A C$ cũng là đường cao, suy ra $A I \perp B N$.
Tam giác $A B M$ cân tại $B$ nên phân giác góc $A B C$ cũng là đường cao, suy ra $B I \perp A M$.
Suy ra $I$ là trực tâm tam giác $A B K$, mà $K H \perp A B$ nên $K, I, H$ thẳng hàng.
Vậy tâm đường tròn nội tiếp tam giác $A B C$ nằm trên $K H$.
b) Gọi $D$ là tiếp điểm của $(J)$ với $C H$. TA có $D H=\frac{H A+H C-A C}{2}$.
Gọi $E$ là tiếp điểm của $(L)$ với $C H$. Ta có $H E=\frac{H C+H B-B C}{2}$
Gọi $P$ và $Q$ lần lượt là tiếp điểm của $(I)$ với $A C$ và $B C$ $H D-H E=\frac{H A-A C-H B+B C}{2}=\frac{B C-A C+H A-H B}{2}$ $=\frac{B Q+C Q-A P-C P+H A-H B}{2}=0$ (vì $H$ là tiếp điểm của $(I)$ với $A B$ nên $A H=A P, B H=B Q$
Do đó $D$ trùng $E$. nên hai đường tròn $(J)$ và $(L)$ tiếp xúc nhau
Bài 4. Cho $x, y$ là 2 số thực dương. Tìm giá trị nhỏ nhất của biếu thức:
$P=\frac{16 \sqrt{x y}}{x+y}+\frac{x^{2}+y^{2}}{x y}$
Lời giải. $P=\frac{16 \sqrt{x y}}{x+y}+\frac{x^{2}+y^{2}}{x y} $
$=\frac{16 \sqrt{x y}}{x+y}+\frac{(x+y)^{2}}{x y}-2 $
$=\frac{8 \sqrt{x y}}{x+y}+\frac{8 \sqrt{x y}}{x+y}+\frac{(x+y)^{2}}{x y}-2 $
$\geq 3 \sqrt[3]{64}-2=10$
Dấu ” $=$ “xảy ra khi và chỉ khi $x=y$ Vậy $P_{\min }=10 \Leftrightarrow x=y$
Bài 5. Cho tam giác $A B C$ có góc $B$ tù. Đường tròn $(O)$ nội tiếp tam giác $A B C$ tiếp xúc với các cạnh $A B, C A, B C$ lần lượt tại $L, H, J$.
a) Các tia $B O, C O$ cắt $L H$ lần lượt tại $M, N$. Chứng minh 4 điểm $B, C, M, N$ cùng thuộc một đường tròn.
b) Gọi $d$ là đường thẳng qua $O$ và vuông góc với $A J ; d$ cắt $A J$ và đường trung trực của cạnh $B C$ lần lượt tại $D$ và $F$. Chứng minh 4 điểm $B, D, F, C$ cùng thuộc một đường tròn.
Lời giải.
a) $N, O$ nằm trên đường trung trực của đoạn $H J$ nên $N H=N J, O H=O J$ $\Rightarrow \triangle N H O=\triangle N J O \Rightarrow \angle N H O=\angle N J O$.
Mà $\angle N H O=\angle N L O$ nên $\angle N J O=\angle N L O \Rightarrow L N O J$ nội tiếp.
Lại có $B L O J$ nội tiếp nên 5 điểm $B, J, O, N, L$ cùng nằm trên một đường tròn.
Suy ra $B N O J$ là tứ giác nội tiếp, suy ra $\angle B N O=90^{\circ}$.
$M, O$ nằm trên đường trung trực của đoạn $L J$ nên $M L=M J, O L=O J \Rightarrow$ $\triangle M O L=\triangle M O J \Rightarrow \angle O L M=\angle O J M$
Mà $\angle O L H=\angle O H L$ nên $\angle O H L=\angle O J M \Rightarrow O H M J$ nội tiếp.
Lại có $O H C J$ nột tiếp nên $O, H, M, C$, $J$ cùng thuộc một đường tròn nên $O M H C$ nội tiếp $\Rightarrow \angle O M C=\angle O H C=90^{\circ}$
$\angle B N C=\angle B M C=90^{\circ} \Rightarrow B M N C$ nội tiếp.
b) Gọi $E$ là giao điểm của $\mathrm{MN}$ và $B C$. Ta chứng minh $O E \perp A J$.
Ta có $O K . O A=O H^{2}=O J^{2}$, suy ra tam giác $O K J$ và $O J A$ đồng dạng, suy ra $\angle O K J=\angle O J A$.
Mặt khác tứ giác $O K E J$ nội tiếp nên $\angle O K J=\angle O E J$.
Do đó $\angle O J A=\angle O E J$, suy ra $O E \perp A J$. Khi đó $O E$ cắt $A J$ tại $D$ và cắt trung trực $B C$ tại $F$.
Xét tam giác $T B C$ chứng minh được $M, N, Q, J$ cùng thuộc đường tròn.
Ta có $E D . E F=E J . E Q=E M . E N=E B . E C$
Suy ra $B D F C$ nội tiếp.
Bài 6. Trên một đường tròn có 9 điểm phân biệt, các điểm này được nối với nhau bởi các đoạn thẳng màu xanh hoặc màu đỏ. Biết rằng mỗi tam giác tạo bởi 3 trong 9 điểm chứa ít nhất một cạnh màu đỏ. Chứng minh rằng tồn tại 4 điểm sao cho 6 đoạn thẳng nối chúng đều có màu đỏ.
Lời giải. Giả sử không tồn tại 4 điểm nào sao cho 6 đoạn thẳng nối chúng đều có màu đỏ.
$-$ Nếu tồn tại một điểm nối ít nhất 4 điểm khác để tạo thành đoạn thẳng màu xanh, giả sử $A$ nối với $B, C, D, E$ tạo thành đoạn màu xanh, khi đó:
$-$ Nếu có hai trong 4 điểm $B, C, D, E$ nối với nhau tạo thành đoạn màu xanh thì mâu thuẫn
$-$ Nếu 4 điểm này đôi một không nối với nhau tạo thành đoạn màu xanh thì cũng mâu thuẫn.
$-$ Nếu mỗi điểm chỉ nối tối đa với 3 điểm khác để tạo thành đoạn màu xanh. Giả sử $A$ nối với $B, C, D$ tạo thành đoạn màu xanh thì $B C, C D, B D$ màu đỏ và còn lại 5 điểm $M, N, P, Q, R$ nối với $A$ tạo thành đoạn màu đỏ.
$-$ Nếu trong 5 điểm đó, điểm nào cũng nối với 2 điểm trong đó tạo thành đoạn màu xanh, khi đó, mỗi điểm chỉ tạo thêm được đoạn màu xanh với 1 điểm nữa khác 5 điểm $M, N, P, Q, R$. Mà 5 điểm này đều phải tạo với một trong 3 điểm $B, C, D$ tạo thành đoạn màu xanh nên có ít nhất hai điểm cùng tạo với 1 điểm trong $B, C, D$ tạo thành đoạn màu xanh, giả sử đoạn $D M$ và $D N$ màu xanh. Khi đó đoạn $M N$ màu đỏ và $M, N$ nối với $B, C$ tạo thành đoạn màu đỏ. Do đó $B, C, M, N$ là 4 điểm khi nối nhau tạo thành 6 đoạn màu đỏ nên mâu thuẫn.
$-$ Nếu trong 5 điểm $M, N, P, Q$, $R$ có 1 điểm nối với 1 trong 4 điểm còn lại tạo thành đoạn màu xanh, giả sử $M N$ màu xanh. Khi đó $P M, Q M, R M$ màu đỏ. Nếu $P Q, Q R, P R$ đều màu xanh thì mâu thuẫn, nếu 1 trong 3 đoạn màu đỏ, giả sử $P Q$ màu đỏ. Khi đó $A, M, P, Q$ là 4 điểm khi nối nhau tạo thành 4 đoạn màu đỏ. (mâu thuẫn).
$-$ Nếu mỗi điểm chỉ nối tối đa với 2 điểm khác tạo thành đoạn màu xanh, giả sử $A B$, $A C$ màu xanh. Khi đó 6 điểm còn lại $M, N, P, Q, R, T$ khi nối $A$ tạo thành màu đỏ. Giả sử $M B$ màu xanh thì $M$ nối được với 1 điểm nữa trong 5 điểm còn lại tạo thành đoạn màu xanh, giả sử $M N$ màu xanh. Khi đó $M P, M Q, M R, M T$ màu đỏ. Trong 4 điểm $P, Q, R, T$ tồn tại 2 điểm nối nhau tạo thành màu đỏ, giả sử $P Q$ màu đỏ. Khi đó $A, M, P, Q$ là 4 điểm nối nhau tạo thành 6 đoạn màu đỏ. Giả sử $M B, M C$ đều màu đỏ thì $M$ tạo được với tối đa 2 điểm nữa trong 5 điểm còn lại thành đoạn màu xanh. Giả sử $M N, M P$ màu xanh thì $M Q, M R, M T$ màu đỏ, trong 3 điểm $Q, R, T$ tồn tại 2 điểm nối nhau tạo thành đoạn màu đỏ, giả sử $Q R$ màu đỏ thì $A, M, Q, R$ là 4 điểm nối nhau tạo thành 6 đoạn màu đỏ (mâu thuẫn).
Vậy tồn tại 4 điểm sao cho 6 đoạn thẳng nối chúng đều có màu đỏ.