Category Archives: Bất đẳng thức

Bất đẳng thức Cauchy – Phương pháp tách ghép

1. Phương pháp tách ghép

Ví dụ 1: Cho các số dương $a,b,c$. Chứng minh rằng $\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ca}{b} \ge a+b+c.$

Giải

Áp dụng bất đẳng thức Cauchy ta có:

$\dfrac{ab}{c}+\dfrac{bc}{a} \ge 2b$

$\dfrac{bc}{a}+\dfrac{ca}{b} \ge 2c$

$\dfrac{ca}{b}+\dfrac{ab}{c} \ge 2a.$

Cộng vế theo vế các bất đẳng thức trên ta được

$2\left( \dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ca}{b}\right)  \ge 2 (a+b+c)$

$\Leftrightarrow \dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ca}{b} \ge a+b+c.$

Dấu ‘=’ xảy ra khi và chỉ khi $a=b=c$.

Ví dụ 2: Cho các số dương $a,b,c$. Chứng minh rằng

$$\dfrac{a^3}{bc}+\dfrac{b^3}{ca}+\dfrac{c^3}{ab} \ge a+b+c$$

Giải

Áp dụng bất đẳng thức Cauchy ta có

$\dfrac{a^3}{bc} +b+c \ge 3a $

$\dfrac{b^3}{ca}+c+a \ge 3b$

$\dfrac{c^3}{ab}+a+b \ge 3c.$

Cộng vế theo vế ba bất đẳng thức trên ta được

$\dfrac{a^3}{bc}+\dfrac{b^3}{ca}+\dfrac{c^3}{ab}+2(a+b+c) \ge 3(a+b+c)$

$\Leftrightarrow \dfrac{a^3}{bc}+\dfrac{b^3}{ca}+\dfrac{c^3}{ab} \ge a+b+c.$

Dấu ‘=’ xảy ra khi và chỉ khi $a=b=c.$

Ví dụ 3: Cho $a,b,c$ là 3 cạnh của một tam giác. Chứng minh rằng $$abc \ge (a+b-c)(b+c-a)(c+a-b).$$

Giải

Áp dụng bất đẳng thức $xy \le \dfrac{(x+y)^2}{4}$. Ta được:

$(a+b-c)(b+c-a) \le \dfrac{(a+b-c+b+c-a)^2}{4}=b^2$

$(b+c-a)(c+a-b) \le \dfrac{(b+c-a+c+a-b)^2}{4}=c^2$

$(c+a-b)(a+b-c) \le \dfrac{(c+a-b)(a+b-c)^2}{4} = a^2.$

Do $a,b,c$ là các cạnh của một tam giác nên các vế của bất đẳng thức trên đều dương do đó nhân vế theo vế ta được

$[(a+b-c)(b+c-a)(c+a-b)]^2 \le (abc)^2$

$\Leftrightarrow (a+b-c)(b+c-a)(c+a-b) \le abc.$

Dấu “=” xảy ra khi và chỉ khi $a=b=c.$

2. Bài tập

Bài 1: Cho $a,b,c>0$. Chứng minh $\dfrac{a^4+b^4+c^4}{a+b+c} \ge abc$.

Bài 2: Cho $a,b,c>0$. Chứng minh:

a) $\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a} \ge a+b+c$

b) $\dfrac{a^3}{b^2}+\dfrac{b^3}{c^2}+\dfrac{c^3}{a^2}\ge a+b+c$

c) $\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a} \ge ab+bc+ca.$

d) $\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2} \ge \dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}.$

Bài 3: Chứng minh rằng với mọi $a,b,c$ dương ta có: $$abc \ge (a+b-c)(b+c-a)(c+a-b).$$

Bài 4: Cho $a,b,c$ là 3 cạnh của một tam giác. Chứng minh:

a) $(p-a)(p-b)(p-c) \le \dfrac{1}{8}abc$.

b) $\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c} \ge 2(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c})$.

c) $\dfrac{\sqrt{a}}{\sqrt{a+b-c}}+\dfrac{\sqrt{b}}{\sqrt{b+c-a}}+\dfrac{\sqrt{c}}{\sqrt{c+a-b}} \ge 3$

Bài 5: Cho 3 số không âm $a,b,c$ chứng minh rằng: $$ a+b+c \ge \sqrt[3]{ab^2}+\sqrt[3]{bc^2}+\sqrt[3]{ca^2}. $$

Bài 6: Cho $a,b,c \ge 0$. Chứng minh: $$ a^3+b^3+c^3 \ge a^2\sqrt{bc}+b^2\sqrt{ca}+c^2\sqrt{ab}. $$

Bài 7: Cho $a,b,c$ là các số dương. Chứng minh rằng: $$ (a^2+bc)(b^2+ca)(c^2+ab) \ge abc(a+b)(b+c)(c+a). $$

Bài 8: Cho các số dương $x, y, z$. Chứng minh rằng: $$\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z} \le \dfrac{1}{4}(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}).$$

Bài 9: Cho các số thực dương $a,b,c$ thoả mãn $a+b+c=3$. Chứng minh: $$\dfrac{ab}{\sqrt{c^2+3}}+\dfrac{bc}{\sqrt{a^2+3}}+\dfrac{ca}{c^2+3} \le \dfrac{3}{2}.$$

Bài 10: Cho các số dương $a,b,c$ thoả $a+b+c=1$. Chứng minh: $$\dfrac{c+ab}{a+b}+\dfrac{a+bc}{b+c}+\dfrac{b+ac}{a+c} \ge 2.$$

Bài 11: Cho các số dương $a,b,c$. Chứng minh: $$\dfrac{ab}{a+3b+2c}+\dfrac{bc}{b+3c+2a}+\dfrac{ac}{c+3a+2b} \le \dfrac{a+b+c}{6}.$$

Bài 12: Cho các số dương $a,b,c$ thoả $a+b+c=1$. Chứng minh: $$\frac {a}{b} + \frac {a}{c} + \frac {c}{b} + \frac {c}{a} + \frac {b}{c} + \frac {b}{a} + 6 \geq 2\sqrt{2}\left (\sqrt{\frac{1-a}{a}} + \sqrt{\frac{1-b}{b}} + \sqrt{\frac{1-c}{c}}\right ).$$

Bài 13: Cho các số dương $a,b,c$ thoả $a+b+c=3$. Chứng minh: $\sqrt{a}+\sqrt{b}+\sqrt{c} \ge ab+bc+ca.$

Bất đẳng thức Cauchy – Phương pháp chọn điểm rơi

1. Chọn điểm rơi

Ví dụ 1: Cho $a \ge 2$. Tìm GTNN của $P=a+\dfrac{1}{a}$.

Giải

Ta có $P =\dfrac{a}{4}+\dfrac{1}{a}+\dfrac{3a}{4} \ge 2 \sqrt{ \dfrac{a}{4}. \dfrac{1}{a}}+\dfrac{3.2}{4} =\dfrac{5}{2}.$

Dấu bằng xảy ra khi và chỉ khi $\begin{cases} \dfrac{a}{4}=\dfrac{1}{a}&\\ a=2 \end{cases} \Leftrightarrow a=2.$

Ví dụ 2: Cho $a \ge 2$. Tìm GTNN của $P=a+\dfrac{1}{a^2}$.

Giải

Ta có: $P=\dfrac{a}{8}+\dfrac{a}{8}+\dfrac{1}{a^2} +\dfrac{6a}{8} \ge 3 \sqrt[3]{\dfrac{a}{8}. \dfrac{a}{8}. \dfrac{1}{a^2}}+\dfrac{6a}{8}$

$\hspace{6,5cm} \ge \dfrac{3}{4}+\dfrac{6.2}{8} \ge \dfrac{9}{4}.$

Dấu “=” xảy ra khi và chỉ khi $\begin{cases} \dfrac{a}{8}=\dfrac{1}{a^2}&\\ a=2 \end{cases} \Leftrightarrow a=2.$

Ví dụ 3: Cho các số không âm $a,b,c$ thoả $a^2+b^2+c^2=1$. Tìm GTNN của $P=a^3+b^3+c^3.$

Giải

Ta có: $a^3+a^3+\dfrac{1}{3\sqrt{3}} \ge \sqrt{3} a^2$

$b^3+b^3+\dfrac{1}{3\sqrt{3}} \ge \sqrt{3} b^2$

$c^3+c^3+\dfrac{1}{3\sqrt{3}} \ge \sqrt{3} c^2$

Cộng vế theo theo vế ba băt đẳng thức trên ta được

$2(a^3+b^3+c^3)+\dfrac{1}{\sqrt{3}} \ge \sqrt{3}(a^2+b^2+c^2)$

$\Leftrightarrow a^3+b^3+c^3 \ge \dfrac{1}{\sqrt{3}}.$

Dấu bằng xảy ra khi và chỉ chỉ $\begin{cases} a^2+b^2+c^2=1 &\\ a^3=b^3=c^3=\dfrac{1}{3\sqrt{3}} \end{cases} \Leftrightarrow a=b=c=\dfrac{1}{\sqrt{3}}.$

Ví dụ 4: Cho $ a, b, c>0$, $a+b+c=1$. Chứng minh $ \sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a} \le \sqrt{6}. $

Giải

Đặt $P = \sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a} $.

Áp dụng bất đẳng thức $\sqrt{xy} \le \dfrac{x+y}{2}$ ta được:

$\sqrt{(a+b) \cdot \dfrac{2}{3}} \le \dfrac{a+b+\dfrac{2}{3}}{2}$

$\sqrt{(b+c) \cdot \dfrac{2}{3}} \le \dfrac{b+c+\dfrac{2}{3}}{2}$

$\sqrt{(c+a) \cdot \dfrac{2}{3}} \le \dfrac{c+a+\dfrac{2}{3}}{2}.$

Cộng vế theo vế các bất đẳng thức trên ta được:

$\sqrt{\dfrac{2}{3}} \cdot P \le \dfrac{2(a+b+c)+2}{2}=2 \Leftrightarrow P \le \sqrt{6}$

Dấu bằng xảy ra khi và chỉ khi $\begin{cases} a+b+c=1&\\ a+b=b+c=c+a=\dfrac{2}{3} \end{cases} \Leftrightarrow a=b=c=\dfrac{1}{3}.$

Ví dụ 5: Cho $a, b>0$, $a+b \le 1$. Tìm GTNN của $P=\dfrac{1}{a^2+b^2}+\dfrac{1}{ab}+4ab.$

Giải

Ta có: $\dfrac{1}{a^2+b^2}+\dfrac{1}{ab}+4ab = \dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\left( 4ab+\dfrac{1}{4ab}\right) + \dfrac{1}{4ab}$

$\hspace{5,4cm} \ge \dfrac{4}{(a+b)^2}+2\sqrt{4ab. \dfrac{1}{4ab}}+\dfrac{1}{(a+b)^2} \ge 7.$

Dấu “=” xảy ra khi và chỉ khi $\begin{cases} a+b=1&\\a=b \end{cases} \Leftrightarrow a=b=\dfrac{1}{2}.$

Ví dụ 6: Cho các số dương $a,b,c$ thoả $abc=1$. Chứng minh rằng $$\dfrac{a^2}{1+b}+\dfrac{b^2}{1+c}+\dfrac{c^2}{1+a} \ge \dfrac{3}{2}.$$

Giải

Đặt $P = \dfrac{a^2}{1+b}+\dfrac{b^2}{1+c}+\dfrac{c^2}{1+a} $

Ta có: $\dfrac{a^2}{1+b}+\dfrac{1+b}{4} \ge a$

$\dfrac{b^2}{1+c}+\dfrac{1+c}{4} \ge b$

$\dfrac{c^2}{1+a}+\dfrac{1+a}{4} \ge c.$

Cộng vế theo vế các bất đẳng thức trên ta được: $$P \ge (a+b+c)-\dfrac{1}{4}(a+b+c)-\dfrac{3}{4} \ge \dfrac{3}{4}.3.\sqrt[3]{abc}-\dfrac{3}{4}= \dfrac{3}{2}.$$

Dấu “=” xảy ra khi và chỉ khi $a=b=c=1.$

2. Bài tập

Bài 1: Cho $a \ge 6.$ Tìm GTNN của $ a^2+\dfrac{18}{a}$.

Bài 2: Cho $x \ge 1$. Tìm GTNN của $P=3x+\dfrac{1}{2x}.$

Bài 3: Cho $a,b>0$, $a+b \le 1$. Tìm GTNN của $P=ab+\dfrac{1}{ab}.$

Bài 4: Cho $a,b>0$. Tìm GTNN của $P=\dfrac{a+b}{\sqrt{ab}}+\dfrac{\sqrt{ab}}{a+b}.$

Bài 5: Cho $a,b>0$, $a+b \le 1$. Tìm GTNN của $P=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}$.

Bài 6: Cho $a,b>0$ thỏa $a+b \le 1$. Tìm GTNN của $P=\dfrac{1}{1+a^2+b^2}+\dfrac{1}{2ab}$.

Bài 7: Cho $a,b>0$, $a+b=1$. Chứng minh:

a) $a^3+b^3 \ge \dfrac{1}{4}$.

b) $a^4+b^4 \ge \dfrac{1}{8}.$

Bài 8: Cho $a, b, c >0$, $a+b+c=1$. Tìm GTLN của $$ P=\sqrt[3]{a+b}+\sqrt[3]{b+c}+\sqrt[3]{c+a}. $$

Bài 9: Cho $a, b, c >0$, $a+b+c=3$. Tìm GTLN của $$ P=\sqrt[3]{a(b+2c)}+\sqrt[3]{b(c+2a)}+\sqrt[3]{c(a+2b)}. $$

Bài 10: Cho $a, b, c >0$, $abc=1$. Chứng minh $$ \dfrac{a^3}{(a+1)(b+1)}+\dfrac{b^3}{(c+1)(a+1)}+\dfrac{c^3}{(a+1)(b+1)} \ge \dfrac{3}{4}. $$

Bài 11: Cho $a, b, c >0$, $a+b+c=3$. Chứng minh $$ \dfrac{a^3}{b(2c+a)}+\dfrac{b^3}{c(2a+b)}+\dfrac{c^3}{a(2b+c)} \ge 1.$$

Bài 12: Cho các số dương $a,b,c$ thoả $abc=1$. Chứng minh $$\dfrac{1}{a^3(b+c)}+\dfrac{1}{b^3(c+a)}+\dfrac{1}{c^3(a+b)} \ge \dfrac{3}{2}$$

Bài 13: Cho các số thực dương $a,b,c$. Chứng minh rằng $$\dfrac{b^2c}{a^3(b+c)}+\dfrac{c^2a}{b^3(c+a)}+\dfrac{a^2b}{c^3(a+b)} \ge \dfrac{1}{2}(a+b+c).$$

Bài 14: Cho $x, y, z>0$, $xyz=1$. Chứng minh $x^3+y^3+z^3 \ge x+y+z$.

Bài 15: Cho $a,b,c>0$. Tìm GTNN của $P=a^3+b^3+c^3$. Biết $a^2+b^2+c^2=3$.

Bài 16: Cho $a,b,c>0$ và $a+2b+3c \ge 20$. Tìm GTNN của $$S=a+b+c+\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}.$$

Bài 17: Cho các số dương $a,b,c$ thoà $a+b+c=1$. Chứng minh $$a\sqrt[3]{1+b-c}+b \sqrt[3]{1+c-a}+c\sqrt[3]{1+a-b} \le 1.$$

Bất đẳng thức Cauchy – Các kĩ thuật cơ bản

1. Bất đẳng thức Cauchy

Tính chất 1: Cho các số $a, b$ thì ta có: $ab \leq \dfrac{1}{4} (a+b)^2 \leq \dfrac{1}{2}(a^2+b^2)$.

Tính chất 2: Cho $a, b$ là các số không âm thì $ a+b \geq 2\sqrt{ab}$.

2. Các kĩ thuật cơ bản

Ví dụ 1: Cho $x,y$ là các số thực thỏa mãn $x+y=2$. Chứng minh rằng $xy(x^2+y^2) \le 2 $.

Giải

Áp dụng bất đẳng thức $ab \le \dfrac{(a+b)^2}{4}$ ta được:

$xy(x^2+y^2)=\dfrac{1}{2}\cdot 2xy(x^2+y^2) \le \dfrac{1}{2} \dfrac{(x^2+y^2+2xy)^2}{4}=\dfrac{1}{8}(x+y)^4=2.$

Dấu bằng xảy ra khi và chỉ khi $x=y=\dfrac{1}{2}.$

Ví dụ 2: Cho các số dương $a,b$. Chứng minh rằng $\dfrac{a^2}{b}+\dfrac{b^2}{a} \ge \sqrt{2(a^2+b^2)}.$

Giải

Bất đẳng thức cần chứng minh tương đương với

$a^3+b^3\ge ab\sqrt{2(a+b)} \Leftrightarrow (a+b)(a^2+b^2-ab) \ge \sqrt{ab}.\sqrt{2ab(a^2+b^2)}$

Mặt khác ta có:

$0 <\sqrt{ab} \le \dfrac{a+b}{2}$

$0 \le \sqrt{2ab(a^2+b^2)} \le \dfrac{2ab+a^2+b^2}{2} \le a^2+b^2 \le 2(a^2+b^2-ab).$

Nhân vế theo vế hai bất đẳng thức trên ta được điều phải chứng minh.

Dấu “=” xảy ra khi và chỉ khi $a=b.$

Ví dụ 3: Cho các số thực dương $x,y,z$ thoả $\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1$. Chứng minh $(x-1)(y-1)(z-1) \ge 8.$

Giải

Bất đẳng thức đã cho được viết lại dưới dạng $ \left( \dfrac{x-1}{x}\right) \left( \dfrac{y-1}{y}\right) \left( \dfrac{z-1}{z}\right)  \ge \dfrac{8}{xyz}$

$\Leftrightarrow \left( 1-\dfrac{1}{x}\right) \left( 1-\dfrac{1}{y}\right) \left( 1-\dfrac{1}{z}\right)  \ge \dfrac{8}{xyz}.$

Theo bất đẳng thức Cauchy ta có:

$1-\dfrac{1}{x}=\dfrac{1}{y}+\dfrac{1}{z} \ge 2 \sqrt{\dfrac{1}{y}\cdot  \dfrac{1}{z}}=\dfrac{2}{\sqrt{yz}}.$

Tương tự ta cũng có $1-\dfrac{1}{y} \ge \dfrac{2}{\sqrt{zx}}$ và $1-\dfrac{1}{z} = \dfrac{2}{\sqrt{xy}}$.

Nhân vế theo vế các bất đẳng thức trên ta có điều phải chứng minh.

Dấu “=” xảy ra khi và chỉ khi $x=y=z=3.$

Ví dụ 4: Cho các số dương $a,b,c$. Chứng minh rằng $\dfrac{abc}{(1+a)(a+b)(b+c)(c+16)} \le \dfrac{1}{81}.$

Giải

Ta có: $(1+a)(a+b)(b+c)(c+16)= \left( 1+\dfrac{a}{2}+\dfrac{a}{2}\right) \left( a+\dfrac{b}{2}+\dfrac{b}{2}\right) \left( b+\dfrac{c}{2}+\dfrac{c}{2}\right) (c+8+8)$

$\hspace{7,5cm} \ge 3\sqrt[3]{\dfrac{a^2}{4}}\cdot  3\sqrt[3] {\dfrac{ab^2}{4}}\cdot 3\sqrt[3]{\dfrac{bc^2}{4}}\cdot 3\sqrt[3]{64c} =81abc.$

Do đó $\dfrac{abc}{(1+a)(a+b)(b+c)(c+16)} \le \dfrac{1}{81}.$

Dấu “=” xảy ra khi và chỉ khi $a=2, b=4, c=8.$

3. Bài tập

Bài 1: Cho $x,y,z$ là các số thực dương. Chứng minh rằng $ \dfrac{x^2}{x^2+2yz}+\dfrac{y^2}{y^2+2xz}+\dfrac{z^2}{z^2+2xy} \ge 1. $

Bài 2: Cho $a,b,c>0$. Chứng minh

a) $\dfrac{1}{a}+\dfrac{1}{b} \ge \dfrac{4}{a+b}$.

b) $\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \ge \dfrac{9}{a+b+c}$.

c) $(a+b+2)\left( \dfrac{1}{a+1}+\dfrac{1}{b+1}\right)  \ge 4$.

Bài 3: Cho $a>b>0$. Chứng minh

a) $a+\dfrac{1}{(a-b)b} \ge 3$.

b) $a+\dfrac{1}{(a-b)(b+1)} \ge 2$.

c) $a+\dfrac{4}{(a-b)(b+1)^2} \ge 3$.

Bài 4: Cho $a,b>1$. Chứng minh $a\sqrt{b-1}+b\sqrt{a-1} \le ab$.

Bài 5: Cho $c>0$ và $a,b \ge c$. Chứng minh rằng $\sqrt{c(a-c)}+\sqrt{c(b-c)} \le \sqrt{ab}$.

Bài 6: Cho $x,y$ là các số thực dương thỏa mãn $x+y=2$. Chứng minh rằng $x^2y^2(x^2+y^2) \le 2.$

Bài 7: Cho $a,b,c$ là các số không âm thỏa $a^2+b^2 \le 2$. Chứng minh rằng $a\sqrt{3a(a+2b)}+b\sqrt{3b(b+2a)} \le 6.$

Bài 8: Cho $a,b,c>0$. Chứng minh $a(1+b)+b(1+c)+c(1+a) \ge 3 \sqrt[3]{abc}(1+\sqrt[3]{abc})$.

Bài 9: Cho $x,y >0$ và $x+y = 1.$ Chứng minh rằng $8(x^4+y^4)+\dfrac{1}{xy} \ge 5. $

Bài 10: Cho các số thực dương $a,b,c$. Chứng minh rằng $$ \frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc} \le \frac{1}{abc}. $$

Bài 11: Cho $a,b,c$ là các số thực không âm thỏa mãn $a+b+c=1$. Chứng minh rằng $b+c \ge 16abc.$

Bài 12: Cho các số thực dương $a,b,c$ thoả $ab+bc+ca \ge a+b+c$. Chứng minh $a+b+c \ge 3.$

Bài 13: Cho các số dương $a,b,c$ thoả $abc=1$. Chứng minh $$\dfrac{\sqrt{1+a^3+b^3}}{c}+\dfrac{\sqrt{1+b^3+c^3}}{a}+\dfrac{\sqrt{1+a^3+c^3}}{b} \ge 3 \sqrt{3}.$$

Bài 14: Cho các số dương $a, b, c$ thoả $a+b+c=abc$. Chứng minh $\dfrac{a}{b^3}+\dfrac{b}{c^3}+\dfrac{c}{a^3} \ge 1.$

Chuyên đề: Chứng minh bất đẳng thức bằng phương pháp biến đổi tương đương

1. Phương pháp biến đổi tương đương

Ví dụ 1: Chứng minh các bất đẳng thức sau:

a) $a^2+b^2+c^2 \ge ab+bc+ca$

b)  $a^4+b^4+c^4 \ge abc(a+b+c)$

Giải

a) Ta có: $a^2+b^2+c^2 \ge ab+bc+ca $

$\Leftrightarrow 2(a^2+b^2+c^2) \ge 2(ab+bc+ca)$

$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2 \ge 0$ .

Bất đẳng thức cuối cùng hiển nhiên đúng với mọi $a,b,c$. Dấu “=” xảy ra khi và chỉ khi $a=b=c.$

b) Áp dụng câu (a) liên tiếp ta có:

$a^4+b^4+c^4  \ge a^2b^2+b^2c^2+c^2a^2= (ab)^2+(bc)^2+(ca)^2$

$\hspace{2,6cm}  \ge ab\cdot bc+bc\cdot ca+ca\cdot ab=abc(a+b+c)$.

Dấu ‘=’ xảy ra khi $a=b=c.$

Ví dụ 2: Với mọi $x \in \mathbb{R}$. Chứng minh $2x^4+1 \ge 2x^3+x^2.$

Giải

Ta có  $2x^4+1-2x^3-x^2=1-x^2-2x^3(1-x)$

$\hspace{5,4cm} =(1-x)(1+x)-2x^3(1-x)$

$\hspace{5,4cm} = (1-x)(x+1-2x^3)$

$\hspace{5,4cm} =(1-x)[x(1-x^2)+1-x^3]$

$\hspace{5,4cm} =(1-x)^2[(1+x)^2+x^2] \ge 0. \forall x \in \mathbb{R}.$

Từ đó suy ra $2x^4+1 \ge 2x^3+x^2, \forall x \in \mathbb{R}$. Dấu “=” xảy ra khi $x=1.$

Ví dụ 3: Với mọi $x \in \mathbb{R}$. Chứng minh rằng $x^{12}-x^9+x^4-x+1 >0.$

Giải

Ta xét hai trường hợp $x<1$ và $x \ge 1.$

  • Trường hợp $x<1$, ta có $x^{12}-x^9+x^4-x+1=x^{12}+(x^4-x^9)+(1-x). $

 Vì $x<1$ nên $1-x>0, x^4-x^9>0$ do đó $x^{12}-x^9+x^4-x+1 >0.$

  •  Trường hợp $x \ge 1$, ta có $x^{12}-x^9+x^4-x+1=x^8(x^4-x)+(x^4-x)+1.$

 Vì $x \ge 1$ nên $x^4-x \ge 0$ do đó $x^{12}-x^9+x^4-x+1 >0.$

Ví dụ 4: (PTNK chuyên toán 1998) Cho $x, y, z, p, q, r$ là các số thực dương thỏa mãn điều kiện $x + y + z = p + q + r=1$ và $p,q,r \leq \dfrac{1}{2}$.

a) Chứng minh rằng nếu $x \leq y \leq z$ thì $px + qy + rz \geq \dfrac{x+y}{2}$

b) Chứng minh rằng $px + qy + rz \geq 8xyz$

Giải

a) Ta có $px+ qy + rz \geq \left( p-\dfrac{1}{2}\right) x + \dfrac{1}{2}x + (q+r)y \\ \ge \left( p-\dfrac{1}{2}\right) x + \left( q+r-\dfrac{1}{2}\right) y + \dfrac{1}{2}(x+y)\\ \ge \left( p-\dfrac{1}{2}\right) (x-y) + \dfrac{1}{2}(x+y) \\ \geq \dfrac{1}{2}(x+y)$

Vì $p – \dfrac{1}{2}\leq 0, x – y \leq 0$ nên $(p-\dfrac{1}{2})(x-y) \geq 0$.

b) Vai trò của $x, y, z$ như nhau, ta có thể giả sử $x \leq y \leq z$.

Áp dụng câu a, ta cần chứng minh $x+y \geq 16xyz$.

Ta có $4xy \leq (x+y)^2$, suy ra $16xyz \leq 4z(x+y)^2 = 4z(1-z)(x+y)$.

Mà $4z(1-z) \leq (z+1-z)^2 = 1$.

Do đó $16xyz \leq x+y$ (điều cần chứng minh).

Ví dụ 5: (PTNK Chuyên toán 2013) Cho $x, y$ là hai số không âm thỏa $x^3+y^3 \le x- y$.

a) Chứng minh rằng $y \leq x \leq 1$.

b) Chứng minh rằng $x^3+y^3 \leq x^2 + y^2 \leq 1$.

Giải

a) Ta có $x – y \geq x^3 + y^3 \geq 0$, suy ra $x \geq y$.

Ta có $x \geq y + y^3 + x^3 \geq x^3$, suy ra $x(1-x)(1+x) \geq 0$. Suy ra $0\leq x \leq 1$.

Do đó $0 \leq y \leq x \leq 1$.

b) Từ câu a ta có $0 \leq y \leq x \leq 1$, suy ra $x^3 \leq x^2, y^3 \leq y^2$. Suy ra $x^3+y^3 \leq x^2+y^2$.

Ta có $x – y \geq x^3+y^3 \geq x^3-y^3 \geq 0$.

Suy ra $x^2+y^2+xy \leq 1$, suy ra $x^2+y^2 \leq 1$.

Vậy $x^3+y^3\leq x^2+y^2 \leq 1$.

Ví dụ 6: Cho các số $x, y, z$ thỏa $|x| \leq 1, |y| \leq 1, |z| \leq 1$. Chứng minh rằng: $\sqrt{1-x^2} + \sqrt{1-y^2} + \sqrt{1-z^2} \leq \sqrt{9-(x+y+z)^2} $

Giải

Bình phương hai vế của bất đẳng thức, ta được bất đẳng thức tương đương:

$ 3-x^2-y^2-z^2 + 2\sqrt{1-x^2}\sqrt{1-y^2} + 2\sqrt{1-y^2}\sqrt{1-z^2}  + 2\sqrt{1-z^2}\sqrt{1-x^2} \leq 9-(x+y+z)^2\\ \Leftrightarrow \sqrt{1-x^2}\sqrt{1-y^2} + \sqrt{1-y^2}\sqrt{1-z^2} + \sqrt{1-z^2}\sqrt{1-x^2}  \leq 3-xy-yz-xz  $

Để hoàn tất chứng minh, ta cần chứng minh $\sqrt{1-x^2}\sqrt{1-y^2} \leq 1-xy (*)$.

Thật vậy do $1-xy\geq 0$ nên (*) tương đương với $(1-x^2)(1-y^2) \leq (1-xy)^2 \Leftrightarrow (x-y)^2 \geq 0$ (đúng).

2. Bài tập

Bài 1: Chứng minh các bất đẳng thức sau:

a) $a^2+b^2+1 \ge ab+a+b$

b) $a^2+b^2+c^2+d^2 +e^2 \ge a(b+c+d+e)$

c) $3(ab+bc+ca) \le (a+b+c)^2 \le 3(a^2+b^2+c^2)$

Bài 2: Cho $x,y >0$. Chứng minh $\dfrac{x^2}{y}+\dfrac{y^2}{x} \ge x+y$

Bài 3: Với mọi $x, y \ne 0$. Chứng minh

a) $\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2} \ge \dfrac{x}{y}+\dfrac{y}{x}$

b) $\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4 \ge 3(\dfrac{x}{y}+\dfrac{y}{x})$.

Bài 4: Cho $x,y \ge 1$. Chứng minh $\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2} \ge \dfrac{2}{1+xy}$.

Bài 5: Cho $x,y>0$. Chứng minh rằng $\dfrac{1}{(1+x)^2}+\dfrac{1}{(1+y)^2} \ge \dfrac{1}{1+xy}$.

Bài 6: Cho $a>0$. Chứng minh $\dfrac{a}{a^2+1}+\dfrac{5(a^2+1)}{2a} \ge \dfrac{11}{2}$.

Bài 7: Cho $ab \ne 0$. Chứng minh $\dfrac{4a^2b^2}{(a^2+b^2)^2}+\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2} \ge 3$.

Bài 8: Cho $a,b>0$. Chứng minh $\dfrac{a^2b}{2a^3+b^3}+\dfrac{2}{3} \ge \dfrac{a^2+2ab}{2a^2+b^2}$.

Bài 9: Cho $a^2+b^2 \ne 0$. Chứng minh$\dfrac{2ab}{a^2+4b^2}+\dfrac{b^2}{3a^2+2b^2} \le \dfrac{3}{5}$.

Bài 10: Cho $a,b,c,d>0$. Chứng minh rằng nếu $\dfrac{a}{b}<1$ thì $\dfrac{a}{b}< \dfrac{a+c}{b+c}$. Từ đó suy ra

a) $\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}<2$

b) $1<\dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}<2$

c) $2< \dfrac{a+b}{a+b+c}+\dfrac{b+c}{b+c+d}+\dfrac{c+d}{c+d+a}+\dfrac{d+a}{d+a+b}<3$.