Category Archives: Các phép toán

So sánh hai phân số

1.So sánh hai phân số cùng mẫu.

Trong hai phân số có cùng mẫu dương, phân số nào có tử lớn hơn thì lớn hơn, phân số nào có tử nhỏ hơn thì nhỏ hơn.

Ví dụ 1. So sánh $\frac{-3}{5}$ và $\frac{-7}{5}$.
Giải
Ta có $-7<-3$ và $5>0$ nên $\frac{-7}{5}<\frac{-3}{5}$.

Chú ý: Với hai phân số có cùng một mẫu nguyên âm, ta đưa chúng về hai phân số có cùng mẫu nguyên dương rồi so sánh.

2. So sánh hai phân số khác mẫu.

Để so sánh hai phân số khác mẫu, ta đưa hai phân số đó về hai phân số có cùng mẫu dương rồi so sánh hai phân số mới nhận được.

Ví dụ 2: So sánh $\dfrac{-4}{-15}$ và $\dfrac{-2}{-9}$.
Giải
Ta có: $\dfrac{-4}{-15}=\dfrac{4}{15}=\dfrac{4.9}{15.9}=\dfrac{36}{135} ; \dfrac{-2}{-9}=\dfrac{2}{9}=\dfrac{2.15}{9.15}=\dfrac{30}{135}$.
Vì $\dfrac{36}{135}>\dfrac{30}{135}$ nên $\dfrac{-4}{-15}>\dfrac{-2}{-9}$.

3. Các ví dụ.

Ví dụ 3. So sánh:
a) $\dfrac{-21}{10}$ và 0 ;
b) 0 và $\dfrac{-5}{-2}$;
c) $\dfrac{-21}{10}$ và $\dfrac{-5}{-2}$.
Ví dụ 4. Bạn Nam rất thích ăn sô cô la. Mẹ Nam có một thanh sô cô la, mẹ cho Nam
chọn $\ddfrac{1}{2}$ hoặc $\dfrac{2}{3}$ thanh sô cô la đó. Theo em bạn Nam sẽ chọn phần nào?

4. Bài tập sách giáo khoa

Bài 1. (SGK Toán 6 tập 2 – Trang 15) So sánh hai phân số.
a) $\frac{-3}{8}$ và $\frac{-5}{24}$;
b) $\frac{-2}{-5}$ và $\frac{3}{-5}$;
c) $\frac{-3}{-10}$ và $\frac{-7}{-20}$;
d) $\frac{-5}{4}$ và $\frac{23}{-20}$.
Bài 2. (SGK Toán 6 tập 2 – Trang 15) Căn cứ vào chiều cao trung bình của học sinh, người ta đưa ra chuẩn chiều cao bàn, ghế học sinh như sau :
Chiều cao ghế bằng chiều cao cơ thể nhân với 0,27 . Chiều cao bàn bằng chiều cao cơ thể nhân với 0,46 . Em hãy tính xem, với một học sinh cao $1,5 \mathrm{~m}$ như trong hình thì chiều cao ghế và chiều cao bàn là bao nhiêu thì thích hợp. Ghi kết quả dưới dạng phân số.

Bài 3. (SGK Toán 6 tập 2 – Trang 15)

a) So sánh $\frac{-11}{5}$ và $\frac{-7}{4}$ với $-2$ bằng cách viết $-2$ ở dạng phân số có mẫu số thích hợp. Từ đó suy ra kết quả so sánh $\frac{-11}{5}$ với $\frac{-7}{4}$.
b) So sánh $\frac{2020}{-2021}$ với $\frac{-2022}{2021}$.

Bài 4. (SGK Toán 6 tập 2 – Trang 15)

Sắp xếp các số $2 ; \frac{5}{-6} ; \frac{3}{5} ;-1 ; \frac{-2}{5} ; 0$ theo thứ tự tăng dần.

Tính chất cơ bản của phân số

1. Tính chất 1.

Nếu nhân cả tử và mẫu của một phân số với cùng một số nguyên khác 0 thì ta được một phân số mới bằng phân số đã cho.

Ví dụ 1.

a) $\dfrac{-5}{6}=\frac{(-5) \cdot 6}{6.6}=\dfrac{-30}{36}$;

b) $\dfrac{-5}{6}=\frac{(-5) \cdot(-9)}{6 \cdot(-9)}=\dfrac{45}{-54}$.

  • Có thể biểu diễn số 12 ở dạng phân số có mẫu số là $-5$ như sau: $12=\dfrac{12}{1}=\dfrac{12 \cdot(-5)}{1 .(-5)}=\dfrac{-60}{-5}$.

Nhận xét: Có thể biểu diễn số nguyên ở dạng phân số với mẫu số (khác 0 ) tuỳ ý.

  • Áp dụng tính chất 1 , ta có thể quy đồng mẫu số hai phân số bằng cách nhân tử và mẫu của mổi phân số với số nguyên thích hợp.

Giải:

Ta thực hiện $\dfrac{7}{-6}=\dfrac{7.10}{-6.10}=\dfrac{70}{-60} ; \quad \dfrac{-15}{10}=\dfrac{-15 \cdot(-6)}{10 \cdot(-6)}=\dfrac{90}{-60}$.

Nhận xét: Mẫu số giống nhau ở hai phân số là $-60$ còn gọi là $m \tilde{a}$ áu số chung của hai phân số. Khi quy đồng mẫu số hai phân số, có thể có nhiều cách chọn mẫu số chung. Chúý: Có thể quy đồng mẫu số của nhiều phân số bằng cách tìm mẫu số chung của nhiều phân số.

Ví dụ 3. Quy đồng mẫu số của ba phân số $\dfrac{3}{4} ; \dfrac{2}{5}$ và $\dfrac{-7}{3}$.

Ta thực hiện $\dfrac{3}{4}=\dfrac{3.15}{4.15}=\dfrac{45}{60} ; \dfrac{2}{5}=\dfrac{2 \cdot 12}{5.12}=\dfrac{24}{60} ; \dfrac{-7}{3}=\dfrac{-7 \cdot 20}{3.20}=\dfrac{-140}{60}$.
Mẫu số chung của ba phân số trên là 60 .

 

2. Tính chất 2

Nếu chia cả tử và mẫu của một phân số cho cùng một ước chung của chúng thì ta được một phân số mới bằng phân số đã cho.

Ví dụ 4.
a) $\dfrac{-35}{60}=\dfrac{(-35): 5}{60: 5}=\dfrac{-7}{12}$;
b) $\dfrac{12}{-27}=\dfrac{12:(-3)}{-27:(-3)}=\dfrac{-4}{9}$.

Áp dụng tính chất 2 , ta có thể rút gọn phân số bằng cách chia cả tử và mẫu cho cùng ước
chung khác 1 và $-1$.

Ví dụ 5. Rút gọn phân số $\dfrac{12}{-52}$.

Giải.

Ta có: $\dfrac{12}{-52}=\dfrac{12: 4}{(-52): 4}=\dfrac{3}{-13}$.

3. Bài tập sách giáo khoa

Bài 1. Áp dụng tính chất 1 và tính chất 2 để tìm một phân số bằng mỗi phân số sau:
a) $\dfrac{21}{13}$;
b) $\dfrac{12}{-25}$;
c) $\dfrac{18}{-48}$;
d) $\dfrac{-42}{-24}$.

Bài 2. Rút gọn các phân số sau: $\dfrac{12}{-24} ; \dfrac{-39}{75} ; \dfrac{132}{-264}$.

Bài 3. Viết mỗi phân số dưới đây thành phân số bằng nó có mẫu số dương:
$$
\dfrac{1}{-2} ; \dfrac{-3}{-5} ; \dfrac{2}{-7}
$$
Bài 4. Dùng phân số có mẫu số dương nhỏ nhất để biểu thị xem số phút sau đây chiếm bao nhiêu phần của mộ\operatorname{tg} i ờ ? ~
a) 15 phút;
b) 20 phút;
c) 45 phút;
d) 50 phút.

Bài 5. Dùng phân số để viết mỗi khối lượng sau theo tạ, theo tấn.
a) $20 \mathrm{~kg}$;
b) $55 \mathrm{~kg}$
c) $87 \mathrm{~kg}$
d) $91 \mathrm{~kg}$.

Bài 6. Dùng phân số có mẫu số dương nhỏ nhất biểu thị phần tô màu trong mỗi hình sau.

Phân số

1.Phân số là gì?

Ta gọi $\dfrac{\mathrm{a}}{\mathrm{b}}$, trong đó $\mathrm{a}, \mathrm{b} \in \mathbb{Z}, \mathrm{b} \neq 0$ là phân số, a là tử số (tử) và b là mẫu số (mẫu) của phân số. Phân số $\dfrac{\mathrm{a}}{\mathrm{b}}$ đọc là a phần b.

Ví du 1: Phân số $\dfrac{7}{-8}$ có tử số là 7 , mẫu số là $-8$ và được đọc là “bảy phần âm tám”.

Chú ý: Ta có thể dùng phân số để ghi (viết, biểu diễn) kết quả phép chia một số nguyên cho một số nguyên khác $0 .$
Vi du 2: Phân số $\frac{2}{-5}$ là ghi kết quả phép chia 2 cho $-5$.

2.Hai phân số bằng nhau.

Hai phân số $\dfrac{\mathrm{a}}{\mathrm{b}}$ và $\dfrac{\mathrm{c}}{\mathrm{d}}$ được gọi là bằng nhau, viết là $\dfrac{\mathrm{a}}{\mathrm{b}}=\dfrac{\mathrm{c}}{\mathrm{d}}$, nếu $\mathrm{a} \cdot \mathrm{d}=\mathrm{b} \cdot \mathrm{c}$.
Ví dụ 3

a) $\dfrac{-12}{-15}=\dfrac{8}{10}$ vì $(-12) \cdot 10=(-15) .8$ (cùng bằng $-120$ ).

b) $\dfrac{9}{8}$ không bằng $\dfrac{5}{4}$, vì $9.4$ không bằng $8.5$. Viết: $\frac{9}{8} \neq \frac{5}{4}$.

Chú ý: Điều kiện $\mathrm{a} \cdot \mathrm{d}=\mathrm{b}$. $\mathrm{c}$ gọi là điều kiện bằng nhau của hai phân số $\dfrac{\mathrm{a}}{\mathrm{h}}$ và $\dfrac{\mathrm{c}}{\mathrm{d}}$.

3. Biểu diễn số nguyên.

Mỗi số nguyên $\mathrm{n}$ có thể coi là phân số $\dfrac{\mathrm{n}}{1}$ (viết $\dfrac{\mathrm{n}}{1}=\mathrm{n}$ ). Khi đó số nguyên $\mathrm{n}$ được biểu diễn ở dang phân số $\dfrac{\mathrm{n}}{1}$.
Ví dụ 4: $\dfrac{-7}{1}=-7 ; 125=\dfrac{125}{1} .$

Bài tập sách giáo khoa

Bài 1. Vẽ lại hình vẽ bên và tô màu để phân số biểu thị phần tô màu bằng $\dfrac{5}{12}$.

Bài 2. Đọc các phân số sau.
a) $\dfrac{13}{-3}$;
b) $\dfrac{-25}{6}$;
c) $\dfrac{0}{5}$;
d) $\dfrac{-52}{5}$.

Bài 3. Một bể nước có 2 máy bơm để cấp và thoát nước. Nếu bể chưa có nước, máy bơm thứ nhất sẽ bơm đầy bể trong 3 giờ. Nếu bể đầy nước, máy bơm thứ hai sẽ hút hết nước trong bể sau 5 giờ. Dùng phân số có tử số là số âm hay số dương thích hợp để biểu thị lượng nước mỗi máy bơm bơm được sau 1 giờ so với lượng nước mà bể chứa được.

Bài 4. Tìm cặp phân số bằng nhau trong các cặp phân số sau:
a) $\dfrac{-12}{16}$ và $\dfrac{6}{-8}$;
b) $\dfrac{-17}{76}$ và $\dfrac{33}{88}$.

Bài 5. Viết các số nguyên sau ở dạng phân số.
a) 2 ;
b) $-5$;
c) $0 .$

Tập hợp số nguyên

Tập hợp số nguyên
Ta đã biết $\mathrm{N}={0 ; 1 ; 2 ; 3 ; \ldots}$ là tập hợp số tự nhiên.
0 $\quad$

Các số tự nhiên khác 0 còn được gọi là các số nguyên dương. Số nguyên dương có thể được viết là: $+1 ;+2 ;+3 ; \ldots$ hoặc thông thường bỏ đi dấu “+” và chỉ ghi là: $1 ; 2 ; 3 ; \ldots$
Các số $-1 ;-2 ;-3 ; \ldots$ là các số nguyên âm.Số 0 không phải là số nguyên âm và cũng không phải là số nguyên dương.
Tập hợp gồm các số nguyên âm, số 0 và các số nguyên dương được gọi là tập hợp
số nguyên.

Kí hiệu là $\mathbb{Z}$.

Ta có $\mathbb{Z} = \{\cdots;-3;-2;-1;0;1;2;3;\cdots \}$.

Biểu diễn số nguyên trên trục số.

Số đối của một số nguyên

Hai số nguyên trên trục số nằm ở hai phía của điểm 0 và cách đều điểm 0 thì được gọi là hai số đối nhau.

Ví dụ 1. Số đối của 6 là – 6; số đối của – 2021 là 2021.

Chú ý. 

  • Số đối của một số nguyên âm là số nguyên dương;
  • Số đối của một số nguyên dương là số nguyên âm.
  • Số đối của 0 là 0.

Bài tập rèn luyện.

Bài 1. Dùng số nguyên thích hợp để diễn tả các tình huống sau:
a) Thưởng 5 điểm trong một cuộc thi đấu.
b) Bớt 2 điểm vì phạm luật.
c) Tăng 1 bậc lương do làm việc hiệu quả.
d) Hạ 2 bậc xếp loại do thi đấu kém.
Bài 2. Các phát biểu sau đúng hay sai?
a) $9 \in \mathbb{N}$
b) $-6 \in \mathbb{N}$
c) $-3 \in \mathbb{Z}$
d) $0 \in \mathbb{Z}$
e) $5 \in \mathbb{Z}$
g) $20 \in \mathbb{N}$.

Bài 3. Vẽ một đoạn của trục số từ $-10$ đến $10 .$ Biểu diễn trên đó các số nguyên sau đây:
$\begin{array}{llllll}+5 ; & -4 ; & 0 ; & -7 ; & -8 ; & 2 ;\end{array}$
3; $\quad 9$;
$-9 .$

Bài 4. Hãy vẽ một trục số rồi vẽ trên đó những điểm nằm cách điểm 0 hai đơn vị. Những điểm này biểu diễn các số nguyên nào?

Bài 5. Tìm số đối của các số nguyên sau: $-5 ;-10 ; 4 ;-4 ; 0 ;-100 ; 2021 .$

Tài liệu tham khảo

Chân trời Sáng tạo, Sách giáo khoa toán 6, NBX GD, Trần Nam Dũng (Chủ biên)