ĐỀ THI VÀO LỚP 10 CHUYÊN TOÁN PHỔ THÔNG NĂNG KHIẾU 2019

Bài 1. Cho phương trình $a x^{2}+b x+c=0(1)$ thỏa mãn các điều kiện:

$a>0 \text { và } 2 \sqrt{|a c|}<|b|<a+c$

(a) Chứng minh rằng phương trình (1) có hai nghiệm phân biệt $x_{1}, x_{2}$ và

$\left(1-x_{1}\right)\left(1-x_{2}\right)>0 \text { và }\left(1+x_{1}\right)\left(1+x_{2}\right)>0$

(b) Biết rằng $a>c$. Chứng minh rằng $-1<x_{1}, x_{2}<1$

Bài 2. (a) Tìm tất cả những số tự nhiên $n$ sao cho $2^{n}+1$ chia hết cho $9 .$

(b) Cho $n$ là số tự nhiên $n>3$. Chứng minh rằng $2^{n}+1$ không chia hết cho $2^{m}-1$ với mọi số tự nhiên $m$ sao cho $2<m \leq n$.

Bài 3. Cho $a$ và $b$ là hai số thực phân biệt thỏa mãn điều kiện $a^{4}-4 a=b^{4}-4 b$.

(a) Chứng minh rằng $0<a+b<2$.

(b) Biết rằng $a^{4}-4 a=b^{4}-4 b=k>0$. Chứng minh rằng $-\sqrt{k}<a b<0$.

Bài 4. Cho tam giác $A B C$ có $A B<A C$. Gọi $d_{1}$, $d_{2}$ lần lượt là các đường phân giác trong và ngoài góc $\angle B A C$. Gọi $M, N$ lần là hình chiếu vuông góc của $B$ lên $d_{1}, d_{2}$. Gọi $P, Q$ lần lượt là hình chiếu vuông góc của $C$ lên $d_{1}, d_{2}$.

(a) Chứng minh rằng $M N$ và $P Q$ lần lượt đi qua trung điểm của $A B, A C$.

(b) Chứng minh rằng $M N$ và $P Q$ cắt nhau trên $B C$.

(c) Trên $d_{1}$ lấy các điểm $E$ và $F$ sao cho $\angle A B E=\angle B C A$ và $\angle A C F=\angle C B A$. ( $E$ thuộc nữa mặt phẳng bờ $A B$ chứa $C ; F$ thuộc nữa mặt phẳng bờ $A C$ chứa $B)$. Chứng minh rằng $\frac{B E}{C F}=\frac{A B}{A C}$.

(d) Các đường thẳng $B N$ và $C Q$ lần lượt cắt $A C$ và $A B$ tại các điểm $K$ và $L$. Chứng minh rằng các đường thẳng $K E$ và $L F$ cắt nhau trên đường thẳng $B C$.

Bài 5. Trong một buổi gặp gỡ giao lưu giữa các học sinh đến từ $n$ quốc gia, người ta nhận thấy rằng cứ 10 học sinh bất kỳ thì có ít nhất 3 học sinh đến từ cùng một quốc gia.

(a) Gọi $k$ là số các quốc gia có đúng 1 học sinh tham dự buổi gặp gỡ. Chứng minh rằng $n<\frac{k+10}{2}$.

(b) Biết rằng số các học sinh tham dự buổi gặp gỡ là 60 . Chứng minh rằng có thể tìm được ít nhất là 15 học sinh đến cùng một quốc gia.

 

LỜI GIẢI

 

Bài 1. Cho phương trình $a x^{2}+b x+c=0(1)$ thỏa mãn các điều kiện:

$a>0 \text { và } 2 \sqrt{|a c|}<|b|<a+c$

(a) Chứng minh rằng phương trình (1) có hai nghiệm phân biệt $x_{1}, x_{2}$ và

$\left(1-x_{1}\right)\left(1-x_{2}\right)>0 \text { và }\left(1+x_{1}\right)\left(1+x_{2}\right)>0$

(b) Biết rằng $a>c$. Chứng minh rằng $-1<x_{1}, x_{2}<1$

Lời giải.

(a) Có

$|b|>2 \sqrt{|a c|}$

nên $b^{2}>4 a c$. Suy ra $\Delta=b^{2}-4 a c>0$ vậy phương trình có hai nghiệm phân biệt.

$|b|<a+c$

$\Leftrightarrow-a-c<b<a+c $

$\Leftrightarrow\left\{\begin{array}{l}a+b+c>0 \\ a-b+c>0\end{array}\right.$

Suy ra

$\left(1-x_{1}\right)\left(1-x_{2}\right)$

$=1-\left(x_{1}+x_{2}\right)+x_{1} x_{2}$

$=1+\frac{b}{a}+\frac{c}{a}$

$=\frac{a+b+c}{a}>0$

$\left(1+x_{1}\right)\left(1+x_{2}\right)$

$=1+\left(x_{1}+x_{2}\right)+x_{1} x_{2}$

$=1-\frac{b}{a}+\frac{c}{a}$

$=\frac{a-b+c}{a}>0$

(b) Có

$\left(1-x_{1}\right)\left(1-x_{2}\right)>0$

Xét Trường hợp :

$\left\{\begin{array}{l}x_{1}>1 \\ x_{2}>1\end{array} \Rightarrow x_{1} x_{2}>1 \Rightarrow \frac{c}{a}>1 \Rightarrow c>a\right.$

mâu thuẫn với giả thiết $a>c$.

Vậy $x_{1}, x_{2}<1$.

$\left(1+x_{1}\right)\left(1+x_{2}\right)>0$

Xét trường hợp:

$\left\{\begin{array}{l}x_{1}<-1 \\ x_{2}<-1\end{array} \Rightarrow x_{1} x_{2}>1 \Rightarrow \frac{c}{a}>1 \Rightarrow c>a\right.$

mâu thuẫn với giả thiết $a>c$.

Vậy $x_{1}, x_{2}>-1$.

Bài 2. (a) Tìm tất cả những số tự nhiên $n$ sao cho $2^{n}+1$ chia hết cho 9 .

(b) Cho $n$ là số tự nhiên $n>3$. Chứng minh rằng $2^{n}+1$ không chia hết cho $2^{m}-1$ với mọi số tự nhiên $m$ sao cho $2<m \leq n$.

Lời giải.

(a) $n=3 k$, suy ra $2^{n}+1=8^{k}+1 \equiv(-1)^{k}+1(\bmod 9)$. Suy ra $k$ lẻ, $k=$ $2 t+1$. Suy ra $n=3(2 t+1)=6 t+3$.

Nếu $n=3 k+1$ ta có $2^{n}+1=3 \cdot 8^{k}+1 \equiv(-1)^{k} \cdot 3+1(\bmod 9)$, suy ra $2^{n}+1$ không chia hết cho 9 .

Nếu $n=3 k+2$ ta có $2^{n}+1=4 \cdot 8^{k}+1 \equiv 4(-1)^{k}+1$, suy ra $2^{n}+1$ không chia hết cho 9 .

Vậy với $n=6 t+2$, với $t$ là số tự nhiên là các số cần tìm.

(b) Cách 1: Ta có $2^{k m}-1: 2^{m}-1$. Từ $2^{2 n}=\left(2^{n}+1\right)\left(2^{n}-1\right)$ chia hết cho $2^{m}-1$. Đặt $2 n=k m+q(0 \leq q<m)$.

Khi đó $2^{2 n}-1=2^{k m+q}-2^{q}+2^{q}-1=2^{q}\left(2^{k m}-1\right)+2^{q}-1$ chia hết cho $2^{m}-1$, suy ra $2^{q}-1$ chia hết cho $m$ mà $0 \leq 2^{q}-1<2^{m}-1$, suy ra $q=0$. Do đó $2 n=k m$.

Trường hợp 1: Nếu $m$ lẻ, suy ra $k$ chẵn, $k=2 k^{\prime}$, suy ra $n=k^{\prime} m, 2^{n}+1=$ $2^{k^{\prime} m}+1=2^{k^{\prime} m}-1+2$ chia hết cho $2^{m}-1$, suy ra 2 chia hết cho $2^{m}-1$ (vô lý)

Trường hợp 2: Nếu $m$ chẵn $m=2 m^{\prime}$ thì $n=k m^{\prime}$, suy ra $2^{k m^{\prime}}+1$ chia hết cho $2^{m}-1$, mà $2^{m}-1$ chia hết cho $2^{m^{\prime}}-1$ nên $2^{k m^{\prime}}+1$ chia hết cho $2^{m^{\prime}}-1$, suy ra 2 chia hết cho $2^{m^{\prime}}-1$ vô lý vì $m^{\prime}>1$.

Cách 2: Ta có $2^{n-m}\left(2^{m}-1\right): 2^{m}-1$, suy ra $2^{n}-2^{n-m}: 2^{m}-1$, mà $2^{n}+1: 2^{m}-$ 1 suy ra $2^{n-m}+1$ chia hết cho $2^{m}-1$.

Lý luận tương tự ta có $2^{n-k m}+1$ chia hết cho $2^{m}-1$. Giả sử $n=k m+$ $q, 0 \leq q<m$. Chọn $k$ như trên ta có $2^{q}+1$ chia hết cho $2^{m}-1$. Mà $q<m$ nên $2^{q}+1=2^{m}-1$, giải ra $q=1, m=2$ (vô lý).

Bài 3. Cho $a$ và $b$ là hai số thực phân biệt thỏa mãn điều kiện $a^{4}-4 a=$ $b^{4}-4 b$.

(a) Chứng minh rằng $0<a+b<2$.

(b) Biết rằng $a^{4}-4 a=b^{4}-4 b=k>0$. Chứng minh rằng $-\sqrt{k}<a b<0$.

Lời giải.

(a) Ta có $a^{4}-b^{4}=4(a-b)$, mà $a^{4}-b^{4}=(a-b)(a+b)\left(a^{2}+b^{2}\right)$ nên đẳng thức được viết lại thành

$(a-b)(a+b)\left(a^{2}+b^{2}\right)=4(a-b)$

Mà $a \neq b$ nên $(a+b)\left(a^{2}+b^{2}\right)=4$. Vi $a^{2}+b^{2}>0($ do $a, b$ không thể đồng thời bằng 0 ) nên ta có $a+b>0$.

Ngoài ra, ta cũng có đánh giá $a^{2}+b^{2}>\frac{(a+b)^{2}}{2}$ (đẳng thức không xảy ra vì $a \neq b$ ) nên

$4>\frac{(a+b)^{3}}{2} \Leftrightarrow(a+b)^{3}<8 \Leftrightarrow a+b<2 .$

Vậy ta được $0<a+b<2$.

(b) Rõ ràng $a b \neq 0$, ta sẽ chứng minh $a, b$ trái dấu. Ta xét hai trường hợp:

  • Nếu $a>0, b>0$ thì $a^{4}-4 a=a\left(a^{3}-4\right)>0$ nên $a>\sqrt[3]{4}>1$. Tương tự thì $b>1$. Khi đó $a+b>2$, mâu thuẫn với a).

  • Nếu $a<0, b<0$ thì $a+b<0$, cũng mâu thuẫn với a).

Do đó $a, b$ trái dấu và $a b<0$.

Không mất tính tổng quát, giả sử $a<0<b$ thì đặt $c=-a>0$, ta viết lại $c^{4}+4 c=b^{4}-4 b=k>0$. Từ đây dễ thấy $(b-c)\left(b^{2}+c^{2}\right)=4$ và $b \neq c$.

Ta cần chứng minh

$-\sqrt{k}<a b \Leftrightarrow-\sqrt{k}<-b c \Leftrightarrow b c<\sqrt{k} .$

Cộng hai vế của các đẳng thức trên lại, ta có

$2k =b^{4}-4 b+c^{4}+4 c=b^{4}+c^{4}-4(b-c)=b^{4}+c^{4}-(b-c)^{2}\left(b^{2}+c^{2}\right)=2 b c\left(b^{2}-b c+c^{2}\right)$

Suy ra $k=b c\left(b^{2}-b c+c^{2}\right)$, mà $b^{2}-b c+c^{2}>b c$ (đẳng thức không xảy ra vì $b \neq c)$ nên $k>b c \cdot b c=(b c)^{2} \Leftrightarrow b c<\sqrt{k}$. Vậy ta có đpcm.

Bài 4. Cho tam giác $A B C$ có $A B<A C$. Gọi $d_{1}, d_{2}$ lần lượt là các đường phân giác trong và ngoài góc $\angle B A C$. Gọi $M, N$ lần là hình chiếu vuông góc của $B$ lên $d_{1}, d_{2}$. Gọi $P, Q$ lần lượt là hình chiếu vuông góc của $C$ lên $d_{1}, d_{2}$.

(a) Chứng minh rằng $M N$ và $P Q$ lần lượt đi qua trung điểm của $A B, A C$.

(b) Chứng minh rằng $M N$ và $P Q$ cắt nhau trên $B C$.

(c) Trên $d_{1}$ lấy các điểm $E$ và $F$ sao cho $\angle A B E=\angle B C A$ và $\angle A C F=$ $\angle C B A$. ( $E$ thuộc nữa mặt phẳng bờ $A B$ chứa $C ; F$ thuộc nữa mặt phẳng bờ $A C$ chứa $B)$. Chứng minh rằng $\frac{B E}{C F}=\frac{A B}{A C}$.

(d) Các đường thẳng $B N$ và $C Q$ lần lượt cắt $A C$ và $A B$ tại các điểm $K$ và $L$. Chứng minh rằng các đường thẳng $K E$ và $L F$ cắt nhau trên đường thẳng $B C$.

Lời giải.

(a) Tứ giác $A M B N$ có $\angle A=\angle M=\angle N=90^{\circ}$ nên tứ giác $A M B N$ là hình chữ nhật. Suy ra $M N$ đi qua trung điểm $A B$.

Tương tự, $A P C Q$ là hình chữ nhật nên $P Q$ đi qua trung điểm $A C$.

(b) Có: $\angle N M A=\angle B A M=\angle M A C$ nên $M N | A C$ mà theo ý a) $N D$ đi qua trung điểm $A B$ nên ta thu được $N M$ đi qua trung điểm $B C$.

Tương tự, $P Q$ đi qua trung điểm $B C$ nên $M N$ và $P Q$ cắt nhau trên $B C$.

(c) Gọi $T$ là giao điểm của $d_{1}$ và $B C$. Dễ dàng chứng minh được $\triangle A B E \sim$ $A C T(g-g)$ nên $\frac{A B}{A C}=\frac{B E}{C T}$.

Tương tự, $\triangle A B T \sim \triangle A C F(g-g)$ nên $\frac{A B}{A C}=\frac{B T}{C F}$.

Do đó, ta có:

$\left(\frac{A B}{A C}\right)^{2}=\frac{B E \cdot B T}{C T \cdot C F}$

mà $A T$ là phân giác góc $A$ nên

$\frac{B T}{C T}=\frac{A B}{A C}$

Ta thu được

$\frac{A B}{A C}=\frac{B E}{C F}$

(d) $\triangle B E T$ có:

$\angle B E T=\angle E B A+\angle E A B=\angle A C B+\angle C A T=\angle B T E$

nên $\triangle B E T$ cân tại $B$. Suy ra $M$ là trung điểm $E T$.

Có TM $|$ NB nên

$\frac{T M}{N B}=\frac{D M}{D N}=\frac{E M}{K N}$

suy ra $\triangle D M E \sim \triangle D N K(c-g-c)$.

Ta thu được $D, E, K$ thẳng hàng.

Tương tự, $L, D, F$ thẳng hàng ta có điều phải chứng minh.

 

Bài 5. Trong một buổi gặp gỡ giao lưu giữa các học sinh đến từ $n$ quốc gia, người ta nhận thấy rằng cứ 10 học sinh bất kỳ thì có ít nhất 3 học sinh đến từ cùng một quốc gia.

(a) Gọi $k$ là số các quốc gia có đúng 1 học sinh tham dự buổi gặp gỡ. Chứng minh rằng $n<\frac{k+10}{2}$.

(b) Biết rằng số các học sinh tham dự buổi gặp gỡ là 60. Chứng minh rằng có thể tìm được ít nhất là 15 học sinh đến cùng một quốc gia.

Lời giải.

(a) Giả sử ngược lại rằng $n \geq \frac{k+10}{2}$ thì $2 n-k \geq 10$. Gọi $A$ là tập hợp các quốc gia có đúng 1 học sinh tham gia và $B$ là tập hợp các quốc gia còn lại. Khi đó, mỗi quốc gia trong $B$ sẽ có ít nhất 2 học sinh.

Ta chọn tất cả học sinh trong $A$ và mỗi quốc gia trong $B$, chọn 2 học sinh thì có $k+2(n-k)=2 n-k$ học sinh.

Các học sinh này có đặc điểm là: không có 3 học sinh nào đến từ cùng quốc gia. Do $2 n-k \geq 10$ nên có thể chọn ra trong đó 10 học sinh nào đó không thỏa mãn đề bài.

(b) Theo câu a, ta có $2 n-k<10$ nên $2 n-k \leq 9 \Leftrightarrow n \leq \frac{k+9}{2}$.

Do số học sinh tổng cộng là 60 , để chỉ ra có 15 học sinh đến từ cùng quốc gia thì theo nguyên lý Dirichlet, ta chỉ cần chỉ ra rằng

$\frac{60-k}{n-k} \geq 15 \Leftrightarrow 15 n-14 k \leq 60$

Ta sẽ chứng minh đánh giá trên đúng với mọi $(n, k)$. Vì ta đã có $n \leq \frac{k+9}{2}$ nên ta sẽ đưa về chứng $\operatorname{minh} 15\left(\frac{k+9}{2}\right)-14 k \leq 60 \Leftrightarrow k \geq \frac{15}{13}$. Do đó, với $k \geq 2$ thì khẳng định đúng. Tiếp theo, ta xét hai trường hợp

  • Nếu $k=0$ thì theo $(*)$, ta phải có $n \leq 4$ nên $15 n-14 k=15 n \leq 60$, đúng.

  • Nếu $k=1$ thì theo $(*)$, khi đó loại trừ học sinh ở nước đó ra thì còn lại 59 học sinh, đến từ 4 quốc gia. Theo nguyên lý Dirichlet, tồn tại 15 học sinh đến từ cùng quốc gia.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Leave a Reply

Your email address will not be published. Required fields are marked *