ĐỀ THI VÀO LỚP 10 CHUYÊN TOÁN TRƯỜNG PHỔ THÔNG NĂNG KHIẾU 2014

Bài 1. Cho phương trình $\left(m^{2}+5\right) x^{2}-2 m x-6 m=0(1)$ với $m$ là tham số.

(a) Tìm $m$ sao cho phương trình (1) có hai nghiệm phân biệt. Chứng minh rằng khi đó tổng của hai nghiệm không thể là số nguyên.

(b) Tìm $m$ sao cho phương trình (1) có hai nghiệm $x_{1}, x_{2}$ thỏa mãn điều kiện

$\left(x_{1} x_{2}-\sqrt{x_{1}+x_{2}}\right)^{4}=16$

Bài 2. (a) Giải hệ phương trình $\left\{\begin{array}{l}2(1+x \sqrt{y})^{2}=9 y \sqrt{x} \\ 2(1+y \sqrt{x})^{2}=9 x \sqrt{y}\end{array}\right.$

(b) Cho tam giác $A B C$ vuông tại $A$ với các đường phân giác trong $B M, C N$.

Chứng minh bất đẳng thức $\frac{(M C+M A)(N B+N A)}{M A \cdot N A} \geq 3+2 \sqrt{2}$.

Bài 3. Cho các số nguyên dương $a, b$ thỏa $\frac{1}{a}+\frac{1}{b}=\frac{1}{c}$.

(a) Chứng minh rằng $a+b$ không thể là số nguyên tố.

(b) Chứng minh rằng nếu $c>1$ thì $a+c$ và $b+c$ không thể đồng thời là số nguyên tố.

Bài 4. Cho điểm $C$ thay đổi trên nửa đường tròn đường kính $A B=2 R(C \neq A, C \neq$ $B)$. Gọi $H$ là hình chiếu vuông góc của $C$ lên $A B ; I$ và $J$ lần lượt là tâm đường tròn nội tiếp các tam giác $A C H$ và $B C H$. Các đường thẳng $C I, C J$ cắt $A B$ tại $M, N$.

(a) Chứng minh $A N=A C, B M=B C$.

(b) Chứng minh 4 điểm $M, N, I, J$ cùng nằm trên một đường tròn và các đường thẳng $M J, N I$ và $C H$ đồng quy.

(c) Tìm giá trị lớn nhất của $\mathrm{MN}$ và giá trị lớn nhất của diện tích tam giác $\mathrm{CMN}$ theo $R$.

Bài 5. Cho 5 số tự nhiên phân biệt sao cho tổng của ba số bất kỳ trong chúng lớn hơn tổng của hai số còn lại.

(a) Chứng minh rằng tất cả 5 số đã cho đều không nhỏ hơn 5 .

(b) Tìm tất cả các bộ gồm 5 số thỏa mãn đề bài mà tổng của chúng nhỏ hơn $40 .$

LỜI GIẢI

 

Bài 1. Cho phương trình $\left(m^{2}+5\right) x^{2}-2 m x-6 m=0(1)$ với $m$ là tham số.

(a) Tìm $m$ sao cho phương trình (1) có hai nghiệm phân biệt. Chứng minh rằng khi đó tổng của hai nghiệm không thể là số nguyên.

(b) Tìm $m$ sao cho phương trình (1) có hai nghiệm $x_{1}, x_{2}$ thỏa mãn điều kiện

$\left(x_{1} x_{2}-\sqrt{x_{1}+x_{2}}\right)^{4}=16$

Lời giải.

a) Phương trình có hai nghiêm phân biệt khi và chỉ khi:

$\left\{\begin{array}{l}m^{2}+5 \neq 0 \\\Delta^{\prime}=m^{2}+6 m\left(m^{2}+5\right)>0\end{array}\right.$

$\Leftrightarrow m\left(6 m^{2}+m+30\right)>0$

$\Leftrightarrow m\left[5 m^{2}+\left(m+\frac{1}{2}\right)+\frac{119}{4}\right]>0$

$\Leftrightarrow m>0$

Khi đó theo định lý Viete ta có $x_{1}+x_{2}=\frac{2 m}{m^{2}+5}$.

Vi $m^{2}+5-2 m=(m-1)^{2}+4>0$, suy ra $m^{2}+5>2 m>0$.

Do đó $0<\frac{2 m}{m^{2}+5}<1$ nên tổng hai nghiệm của phương trình không thể là số nguyên.

b) Điều kiện để phương trình có hai nghiệm $\Delta^{\prime} \geq 0 \Leftrightarrow m \geq 0 .$ Khi đó $\left\{\begin{array}{l}x_{1}+x_{2}=\frac{2 m}{m^{2}+5} \\ x_{1} x_{2}=\frac{-6 m}{m^{2}+5}\end{array}\right.$

Ta có $\left(x_{1} x_{2}-\sqrt{x_{1}+x_{2}}\right)^{4}=16 \Leftrightarrow\left[\begin{array}{l}x_{1} x_{2}-\sqrt{x_{1}+x_{2}}=2 \\ x_{1} x_{2}-\sqrt{x_{1}+x_{2}}=-2\end{array}\right.$

Trường hợp 1: $x_{1} x_{2}-\sqrt{x_{1}+x_{2}}=2 \Leftrightarrow \frac{-6 m}{m^{2}+5}-\sqrt{\frac{2 m}{m^{2}+5}}=2$.

Đặt $t=\sqrt{\frac{2 m}{m^{2}+5}}$, ta có phương trình: $-3 t^{2}-t=2(V N)$

Trường hợp 2: $x_{1} x_{2}-\sqrt{x_{1}+x_{2}}=-2 \Leftrightarrow \frac{-6 m}{m^{2}+5}-\sqrt{\frac{2 m}{m^{2}+5}}=-2$.

Đặt $t=\sqrt{\frac{2 m}{m^{2}+5}}$ ta có phương trình: $-3 t^{2}-t=-2 \Leftrightarrow t=-1(l), t=\frac{3}{2}$.

Với $t=\frac{3}{2}$ ta có $\frac{2 m}{m^{2}+5}=\frac{3}{2}$. Giải ra được $m=2(n), m=\frac{5}{2}(n)$.

Bài 2. a) Giải hệ phương trình $\left\{\begin{array}{l}2(1+x \sqrt{y})^{2}=9 y \sqrt{x} \\ 2(1+y \sqrt{x})^{2}=9 x \sqrt{y}\end{array}\right.$

b) Cho tam giác $A B C$ vuông tại $A$ với các đường phân giác trong $B M, C N$. Chứng minh bât đẳng thức $\frac{(M C+M A)(N B+N A)}{M A \cdot N A} \geq 3+2 \sqrt{2}$.

Lời giải.

1) Đặt $a=x \sqrt{y}, b=y \sqrt{x}$. Điều kiện $a, b \geq 0$.

Ta có hệ: $\left\{\begin{array}{l}2(1+a)^{2}=9 b(1) \\ 2(1+b)^{2}=9 a(2)\end{array}\right.$

Lấy (1) trừ (2) ta có: $(a-b)(2 a+2 b+13)=0 \Leftrightarrow\left[\begin{array}{l}a=b(n) \\ 2 a+2 b=-13(l)\end{array}\right.$

Với $a=b$ thế vào $(1)$ ta có $2\left(1+a^{2}\right)=9 a \Leftrightarrow\left[\begin{array}{l}a=2, b=2 \\ a=\frac{1}{2}, b=\frac{1}{2}\end{array}\right.$

Khi $a=b=2$ ta có $x=y=\sqrt[3]{4}$

Khi $a=b=\frac{1}{2}$ ta có $x=y=\sqrt[3]{\frac{1}{2}}$.

2) Áp dụng tính chất đường phân giác ta có:

$\frac{M C}{M A}=\frac{B C}{A B}$,  suy ra  $\frac{M C+M A}{M A}=1+\frac{B C}{A B} $

$\frac{B B}{N A}=\frac{B N+N A}{A C}$,  suy ra  $\frac{B N+N A}{N A}=1+\frac{B C}{A C} $

Suy ra:

$\frac{(M C+M A)(N B+N A)}{M A \cdot N A}=\left(1+\frac{B C}{A B}\right)\left(1+\frac{B C}{A C}\right) $

$=1+\frac{B C^{2}}{A B \cdot A C}+\frac{B C}{A B}+\frac{B C}{A C} $

Ta có  $B C^{2}=A B^{2}+A C^{2} \geq 2 \cdot A B \cdot A C$, suy ra $\frac{B C C^{2}}{A B \cdot A C} \geq 2 $

Và  $\frac{B A}{A C}+\frac{B C}{A C} \geq \sqrt{\frac{B C \cdot B C}{A B \cdot A C}} \geq 2 \sqrt{2} . $

Do đó  $\frac{(M C+M A)(N B+N A)}{M A \cdot N A} \geq 3+2 \sqrt{2} .$

Bài 3. Cho các số nguyên dương $a, b$ thỏa $\frac{1}{a}+\frac{1}{b}=\frac{1}{c}$.

a) Chứng minh rằng $a+b$ không thể là số nguyên tố.

b) Chứng minh rằng nếu $c>1$ thì $a+c$ và $b+c$ không thể đồng thời là số nguyên tố.

Lời giải.

a) Từ đề bài ta có $c(a+b)=a b$, suy ra $a b$ chia hết cho $a+b$.

Giả sử $a+b$ nguyên tố. Ta có $a<a+b$, suy ra $a, a+b$ nguyên tố cùng nhau, suy ra $b$ chia hết cho $a+b$ vô lý vì $b<a+b$.

b) Giả sử $a+c, b+c$ đều là các số nguyên tố. Khi đó:

$c(a+b)=a b \Leftrightarrow c a=a b-b c \Leftrightarrow a(b+c)=b(2 a-c) . $

Và  $b(a+c)=a(2 b-c) .$

Dễ thấy $b+c$ nguyên tố và $b+c>b$ nên $b+c$ và $b$ là nguyên tố cùng nhau; tương tự $a+b$ và $a$ nguyên tố cùng nhau.

Mà $a(b+a)$ chia hết cho $b$, suy ra $a$ chia hết cho $b, b(a+c)$ chia hết cho $a$, suy ra $b$ chia hết cho $a$. Suy ra $a=b=2 c$, suy ra $a+c=b+c=3 c$ không phải là số nguyên tố do $c>1$.

Vậy khi $c>1$ thì $a+c, b+c$ không thể đồng thời là số nguyên tố.

Bài 4. Cho điểm $C$ thay đổi trên nửa đường tròn đường kính $A B=2 R(C \neq A, C \neq B)$. Gọi $H$ là hình chiếu vuông góc của $C$ lên $A B ; I$ và $J$ lần lượt là tâm đường tròn nội tiếp các tam giác $A C H$ và $B C H$. Các đường thẳng $C I, C J$ cắt $A B$ tại $M, N$.

a) Chứng minh $A N=A C, B M=B C$.

b) Chứng minh 4 điểm $M, N, I, J$ cùng nằm trên một đường tròn và các đường thẳng $M J, N I$ và $C H$ đồng quy.

c) Tìm giá trị lớn nhất của $\mathrm{MN}$ và giá trị lớn nhất của diện tích tam giác $\mathrm{CMN}$ theo $R$.

 

Lời giải.

a) Ta có $\angle H C B=\angle C A B$ (cùng phụ với $\angle A B C$ ) và $\angle H C A=\angle C B A$ (cùng phụ với $\angle B A C$ ).

Ta có $\angle C A N=\angle N A C+\angle A B C=\angle H A N+\angle A C B=\angle C A N$. Suy ra tam giác $C A N$ cân tại $A$ hay $A N=A C$. Chứng minh tương tự ta có $B M=B C$.

b) Tam giác $C A N$ cân tại $A$ có $A I$ là phân giác nên cũng là trung trực, suy ra $I C=$ $I N$, suy ra $\angle I N C=\angle I C N=\angle I C H+\angle N C H=\frac{1}{2} \angle A C H+\frac{1}{2} \angle B C H=45^{\circ} .$ Tương tự thì $\angle J M C=45^{\circ}$.

Tứ giác $M I J N$ có $\angle J M C=\angle I N C=45^{\circ}$ nên là tứ giác nội tiếp, hay $M, N, I, J$ cùng thuộc một đường tròn.

Tam giác $I N C$ cân có $\angle I C N=45^{\circ}$ nên $\angle C I N=90^{\circ}$, suy ra $C I \perp C M$.

Chứng minh tương tự $M J \perp C N$.

Tam giác $C M N$ có $C H, M J, N I$ là các đường cao nên đồng quy.

c) Đặt $A C=b, B C=a$. Ta có $a^{2}+b^{2}=B C^{2}=4 R^{2}$.

Ta có $A N=A C=b, B M=B C=a$.

$A M+B N=B C+M N$, suy ra $M N=a+b-B C=a+b-2 R$.

Ta có $(a+b)^{2} \leq 2\left(a^{2}+b^{2}\right)=8 R^{2}$. Suy ra $a+b \leq 2 \sqrt{2} R$, suy ra $a+b-2 R \leq$ $2 R(\sqrt{2}-1)$.

Đẳng thức xảy ra khi $a=b=R \sqrt{2}$.

Vậy giá trị lớn nhất của $M N$ bằng $2 R(\sqrt{2}-1)$ khi $C$ là điểm chính giữa đường tròn. Khi đó $S_{C M N}=\frac{1}{2} C H . M N \leq R^{2}(\sqrt{2}-1)$. Đẳng thức xảy ra khi $C$ là điểm chính giữa đường tròn.

Bài 5. Cho 5 số tự nhiên phân biệt sao cho tổng của ba số bất kỳ trong chúng lớn hơn tổng của hai số còn lại.

a) Chứng minh rằng tất cả 5 số đã cho đều không nhỏ hơn 5 .

b) Tìm tất cả các bộ gồm 5 số thỏa mãn đề bài mà tổng của chúng nhỏ hơn 40 .

Lời giải.

a) Gọi 5 số đó là $a, b, c, d, e$, do các số là phân biệt nên ta có thể giả sử $a<b<c<$ $d<e$.

Theo giả thiết ta có $a+b+c>d+e$, suy ra $a+b+c \geq d+e+1$. Suy ra $a \geq d+e+1-b-c$.

Mặt khác, do $b, c, d, e$ là số tự nhiên nên từ $d>c>b$ ta có $d \geq c+1 \geq b+2$, suy ra $d-b \geq 2$.

$e>d>c$, suy ra $e-c \geq 2$.

Do đó $a \geq(d-b)+(e-c)+1 \geq 5$. Suy ra $b, c, d, e>5$.

Vậy các số đều không nhỏ hơn 5 .

b) Nếu $a \geq 6$, suy ra $b \geq 7, c \geq 8, d \geq 9$, e $\geq 10$, suy ra $a+b+c+d+e \geq 40$ ( vô lý), suy ra $a<6$. Theo câu a ta có $a=5$. Khi đó $b+c+5 \geq d+e+1$, suy ra $b+c \geq d+e-4 .$

Mà $d-2 \geq b, e-2 \geq c$, suy ra $d+e-4 \geq b+c$. Do đó $b=d-2, c=e-2$. Khi đó $a+b+c+d+e=5+2 b+2 c+4<40$. Suy ra $b+c<\frac{31}{2}$. Suy ra $b \geq 7$.

Từ đó ta có $b=6, b=7$.

Nếu $b=6$ ta có $d=8, c=8, e=10$. Ta có bộ $(5,6,7,8,9)$

Nếu $b=7, d=9, c=8, e=10$. Ta có bộ $(5,7,8,9,10)$.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Leave a Reply

Your email address will not be published. Required fields are marked *