Định lý 1. (Định lý Viete thuận) Cho phương trình bậc hai $a x^2+b x+c=0$ (a,b, c là các hệ số). Nếu phương trình có nghiệm $x_1, x_2$ thì
$$
S=x_1+x_2=\frac{-b}{a}, \text { và } P=x_1 x_2=\frac{c}{a}
$$
Định lý 2. (Định lý Viete đảo) Nếu có hai số $a, b$ thỏa $a+b=S, a b=P$ thì $a, b$ là nghiệm của phương trình
$$
x^2-S x+P=0
$$
Chú ý: Điều kiện để áp dụng định lý Viete là phương trình bậc hai phải có nghiệm, tức là $\Delta \geq 0$.
Ví dụ 1. Cho phương trình $x^2-2(m+1) x+m=0$
(a) Chứng minh rằng phương trình luôn có 2 nghiệm phân biệt $x_1, x_2$
(b) Tính giá trị các biểu thức sau theo $m$
$$
A=x_1^2+x_2^2+x_1+x_2
$$
(c) Tìm $m$ để $A=18$.
Lời giải. $a=1, b=-2(m+1), b^{\prime}=-(m+1), c=m$
a) Ta có $\Delta^{\prime}=b^{\prime 2}-a c=(-m-1)^2-1 \cdot m=m^2+m+1$.
$\Delta=m^2+m+1=m^2+2 \cdot m \cdot \frac{1}{2}+\frac{1}{4}+\frac{3}{4}=$ $\left(m+\frac{1}{2}\right)^2+\frac{3}{4}>0$ với mọi $m$. Vậy phương trình luôn có hai nghiệm phân biệt $x_1, x_2$.
b) Ta có $A=x_1^2+x_2^2+x_1+x_2$
$=\left(x_1+x_2\right)^2-2 x_1 x_2+x_1+x_2$
$=4(m+1)^2-2 m+2(m+1)$
$=4 m^2+8 m+6$.
c) $A=18 \Leftrightarrow 4 m^2+8 m-12=0 \Leftrightarrow m=$ $1, m=-3$.
Vậy $m$ cần tìm là 1 và -3 .
Ví dụ 2. Tìm $m$ để phương trình $x^2-2(m+1) x+m^2-3=0$ có hai nghiệm phân biệt $x_1, x_2$ thỏa $x_1^2+x_2^2+x_1 x_2=$ $m+7$
Lời giải. $a=1, b=-2 m-2, c=m^2-3$.
Ta có $\Delta^{\prime}=b^2-a c=(m+1)^2-\left(m^2-3\right)=2 m+4$. Phương trình có hai nghiệm phân biệt khi và chỉ khi $\Delta^{\prime}=2 m+4>0 \Leftrightarrow m>-2$.
Theo dịnh lý Viete ta có $x_1+x_2=2(m+1), x_1 x_2=$ $m^2-3$
$x_1^2+x_2^2+x_1 x_2=m+7 \Leftrightarrow\left(x_1+x_2\right)^2-x_1 x_2=m+7$ $\Leftrightarrow 4(m+1)^2-\left(m^2-3\right)=m+7 \Leftrightarrow 3 m^2+7 m=0 \Leftrightarrow$ $m=0(n), m=\frac{-7}{3}(l)$.
Vậy giá trị cần tìm của $m$ là $m=0$.
Ví dụ 3. Cho phương trình $x^2-4 m x+3 m^2+1=0$.
a) Tìm $m$ để phương trình có nghiệm.
b) Gọi $x_1, x_2$ là nghiệm của phương trình, tìm hệ thức độc lập $m$ liên hệ giữa $x_1$ và $x_2$.
Lời giải
a) Ta có $\Delta^{\prime}=4 m^2-\left(3 m^2+1\right)=m^2-1$. Phương trình có nghiệm khi và chỉ khi $\Delta^{\prime} \geq 0 \Leftrightarrow m^2-$ $1 \geq 0 \Leftrightarrow m \leq-1$ hoặc $m \geq 1$.
b) Với điều kiện của a) theo định lý Viete ta có $S=x_1+$ $x_2=4 m(1), P=x_1 x_2=3 m^2+1(2)$.
Từ (1), suy ra $m=\frac{1}{4} S$, thế vào (2) ta có $P=3 m^2+1=$ $\frac{3}{16} S^2+1$.
Hay $x_1 x_2=\frac{3}{16}\left(x_1+x_2\right)^2+1$ là hệ thực liên hệ giữa $x_1, x_2$ độc lập với $m$.
Ví dụ 4. Cho phương trình $x^2-2 m x-2 m-3=0$. Chứng minh rằng phương trình luôn có hai nghiệm phân biệt $x_1, x_2$ và tìm giá trị nhỏ nhất của biểu thức $A=x_1^2+x_2^2-$ $x_1 x_2$.
Lời giải
Ta có $\Delta^{\prime}=m^2+2 m+3$.
Vì $m^2+2 m+3=(m+1)^2+2>0 \forall m$ nên $\Delta^{\prime}>0 \forall m$. Vậy phương trình luôn có hai nghiệm phân biệt với mọi $m$.
Theo định lý Viete ta có $x_1+x_2=2 m, x_1 x_2=-2 m-3$. Khi đó $A=\left(x_1+x_2\right)^2-3 x_1 x_2=(2 m)^2-3(-2 m-3)=$ $4 m^2+6 m+9$.
$A=(2 m)^2+2.2 m \cdot \frac{3}{2}+\frac{9}{4}+\frac{27}{4}=\left(2 m+\frac{3}{2}\right)^2+\frac{27}{4} \geq \frac{27}{4}$. Đẳng thức xảy ra khi $m=\frac{-3}{4}$.
Vậy giá trị nhỏ nhất của $A$ là $\frac{27}{4}$ khi $m=\frac{-3}{4}$.
Bài tập rèn luyện
Bài 1. Cho phương trình $x^2-\sqrt{2} x-\sqrt{3}=0$.
(a) Không giải phương trình, chứng minh phương trình có hai nghiệm $x_1, x_2$.
(b) Tính giá trị của $A=x_1^2+x_2^2-3 x_1 x_2 .(A=2+5 \sqrt{3})$
(c) Tính giá trị của biểu thức $B=\frac{1}{x_1^3-4 x_1 x_2+x_2^3}$
Bài 2. Cho phương trình $x^2-2 m x-1=0$.
(a) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi $m$
(b) Gọi $x_1, x_2$ là nghiệm của phương trình. Tính $A=$ $x_1^2-3 x_1 x_2+x_2^2$ theo $m$. $\left(A=4 m^2+5\right)$
(c) Tìm $m$ để $A=9 .(m= \pm 1)$
Bài 3. Cho phương trình $x^2-2(m-3) x-2 m+5=0$.
(a) Chứng minh rằng phương trình luôn có nghiệm $x_1, x_2$.
(b) Tìm $m$ để $x_1^2+x_2^2-3 x_1 x_2+x_1+x_2=17$. $\left(m=\frac{3 \pm \sqrt{21}}{2}\right)$
Bài 4. Cho phương trình $x^2-3(m+1) x+9 m^2+2=0$. Tìm $m$ để phương trình có hai nghiệm phân biệt $x_1, x_2$ thỏa $x_1^2+x_2^2-3\left(x_1+x_2\right)+1=0$.
(Không có giá trị $m$ nào thỏa mãn)
Bài 5. Cho phương trình $x^2-3 x-4 m=0$
(a) Tìm $m$ để phương trình có hai nghiệm phân biệt. $\left(m>\frac{-9}{16}\right)$
(b) Tìm $m$ để phương trình có hai nghiệm phân biệt $x_1, x_2$ thỏa $x_1+x_2-x_1 x_2=13\left(m=\frac{5}{2}\right)$
(c) Tính giá trị biểu thức $A=x_1^2+x_2^2-4 x_1 x_2$ theo $\mathrm{m}$ và tìm $\mathrm{m}$ để $\mathrm{A}=14$. $\left(A=9+24 m, m=\frac{5}{24}\right)$
Bài 6. Cho phương trình $x^2-2(m-1) x-1=0$.
(a) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt $x_1, x_2$.
(b) Tìm $\mathrm{m}$ để $x_1^2+x_2^2=5\left(m=\frac{2 \pm \sqrt{3}}{2}\right)$
(c) Tìm giá trị nhỏ nhất của biểu thức $x_1^2+x_2^2+x_1 x_2$ (GTNN là 1 khi và chỉ khi $m=1$ )
Bài 7. Cho phương trình $x^2-2(m+1) x+m=0$
(a) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt $x_1, x_2$
(b) Tìm m để $x_1^2+x_2^2-3 x_1 x_2-x_1-x_2=7$
$$
\left(m=\frac{-5 \pm \sqrt{41}}{8}\right)
$$
(c) Tìm giá trị nhỏ nhất của biểu thức $B=x_1^2+x_2^2$ $\left(B_{\min }=\frac{7}{4}\right.$ khi và chỉ khi $\left.x=\frac{-3}{4}\right)$
Bài 8. Cho phương trình $x^2-2 m x-m-3=0$.
(a) Tìm $m$ dể phương trình có hai nghiệm $x_1, x_2$ thỏa
$$
\begin{aligned}
& \frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{2}=0 \
& \left(m=\frac{-3}{5}\right)
\end{aligned}
$$
(b) Tìm $m$ để phương trình có nghiệm thỏa $x_1^3-x_2^3=$ $10\left(x_1-x_2\right)$ $\left(m=\frac{-1 \pm \sqrt{113}}{8}\right)$
Bài 9. Cho phương trình $(m-1) x^2-2 x+1=0$.
(a) Tìm $m$ để phương trình có hai nghiệm phân biệt. $(m \neq 1, m>2)$
(b) Tìm $m$ để phương trình có hai nghiệm $x_1, x_2$ thỏa $x_1^2+x_2^2+x_1 x_2=3\left(m=\frac{-1}{3}\right)$
Bài 10. Cho phương trình $x^2+2(m+2) x+2 m=0$.
(a) Tìm $m$ để phương trình có hai nghiệm $x_1, x_2$ thỏa $x_1^2 x_2+x_2^2 x_1+x_1+x_2=4$
(không có giá trị $m$ thỏa mãn)
(b) Tìm giá trị lớn nhất của biểu thức $A=x_1 x_2-x_1^2-$ $x_2^2\left(A_{\max }=\frac{-63}{4}\right.$ khi và chỉ khi $\left.m=\frac{-1}{4}\right)$