Tag Archives: Đại số

Định lý Viete và áp dụng

Định lý 1. (Định lý Viete thuận) Cho phương trình bậc hai $a x^2+b x+c=0$ (a,b, c là các hệ số). Nếu phương trình có nghiệm $x_1, x_2$ thì
$$
S=x_1+x_2=\frac{-b}{a}, \text { và } P=x_1 x_2=\frac{c}{a}
$$
Định lý 2. (Định lý Viete đảo) Nếu có hai số $a, b$ thỏa $a+b=S, a b=P$ thì $a, b$ là nghiệm của phương trình
$$
x^2-S x+P=0
$$

Chú ý: Điều kiện để áp dụng định lý Viete là phương trình bậc hai phải có nghiệm, tức là $\Delta \geq 0$.

Ví dụ 1. Cho phương trình $x^2-2(m+1) x+m=0$
(a) Chứng minh rằng phương trình luôn có 2 nghiệm phân biệt $x_1, x_2$
(b) Tính giá trị các biểu thức sau theo $m$
$$
A=x_1^2+x_2^2+x_1+x_2
$$
(c) Tìm $m$ để $A=18$.
Lời giải. $a=1, b=-2(m+1), b^{\prime}=-(m+1), c=m$
a) Ta có $\Delta^{\prime}=b^{\prime 2}-a c=(-m-1)^2-1 \cdot m=m^2+m+1$.

$\Delta=m^2+m+1=m^2+2 \cdot m \cdot \frac{1}{2}+\frac{1}{4}+\frac{3}{4}=$ $\left(m+\frac{1}{2}\right)^2+\frac{3}{4}>0$ với mọi $m$. Vậy phương trình luôn có hai nghiệm phân biệt $x_1, x_2$.
b) Ta có $A=x_1^2+x_2^2+x_1+x_2$
$=\left(x_1+x_2\right)^2-2 x_1 x_2+x_1+x_2$
$=4(m+1)^2-2 m+2(m+1)$
$=4 m^2+8 m+6$.

c) $A=18 \Leftrightarrow 4 m^2+8 m-12=0 \Leftrightarrow m=$ $1, m=-3$.
Vậy $m$ cần tìm là 1 và -3 .

Ví dụ 2. Tìm $m$ để phương trình $x^2-2(m+1) x+m^2-3=0$ có hai nghiệm phân biệt $x_1, x_2$ thỏa $x_1^2+x_2^2+x_1 x_2=$ $m+7$
Lời giải. $a=1, b=-2 m-2, c=m^2-3$.

Ta có $\Delta^{\prime}=b^2-a c=(m+1)^2-\left(m^2-3\right)=2 m+4$. Phương trình có hai nghiệm phân biệt khi và chỉ khi $\Delta^{\prime}=2 m+4>0 \Leftrightarrow m>-2$.

Theo dịnh lý Viete ta có $x_1+x_2=2(m+1), x_1 x_2=$ $m^2-3$

$x_1^2+x_2^2+x_1 x_2=m+7 \Leftrightarrow\left(x_1+x_2\right)^2-x_1 x_2=m+7$ $\Leftrightarrow 4(m+1)^2-\left(m^2-3\right)=m+7 \Leftrightarrow 3 m^2+7 m=0 \Leftrightarrow$ $m=0(n), m=\frac{-7}{3}(l)$.

Vậy giá trị cần tìm của $m$ là $m=0$.

Ví dụ 3. Cho phương trình $x^2-4 m x+3 m^2+1=0$.
a) Tìm $m$ để phương trình có nghiệm.
b) Gọi $x_1, x_2$ là nghiệm của phương trình, tìm hệ thức độc lập $m$ liên hệ giữa $x_1$ và $x_2$.
Lời giải
a) Ta có $\Delta^{\prime}=4 m^2-\left(3 m^2+1\right)=m^2-1$. Phương trình có nghiệm khi và chỉ khi $\Delta^{\prime} \geq 0 \Leftrightarrow m^2-$ $1 \geq 0 \Leftrightarrow m \leq-1$ hoặc $m \geq 1$.
b) Với điều kiện của a) theo định lý Viete ta có $S=x_1+$ $x_2=4 m(1), P=x_1 x_2=3 m^2+1(2)$.
Từ (1), suy ra $m=\frac{1}{4} S$, thế vào (2) ta có $P=3 m^2+1=$ $\frac{3}{16} S^2+1$.
Hay $x_1 x_2=\frac{3}{16}\left(x_1+x_2\right)^2+1$ là hệ thực liên hệ giữa $x_1, x_2$ độc lập với $m$.

Ví dụ 4. Cho phương trình $x^2-2 m x-2 m-3=0$. Chứng minh rằng phương trình luôn có hai nghiệm phân biệt $x_1, x_2$ và tìm giá trị nhỏ nhất của biểu thức $A=x_1^2+x_2^2-$ $x_1 x_2$.
Lời giải

Ta có $\Delta^{\prime}=m^2+2 m+3$.
Vì $m^2+2 m+3=(m+1)^2+2>0 \forall m$ nên $\Delta^{\prime}>0 \forall m$. Vậy phương trình luôn có hai nghiệm phân biệt với mọi $m$.

Theo định lý Viete ta có $x_1+x_2=2 m, x_1 x_2=-2 m-3$. Khi đó $A=\left(x_1+x_2\right)^2-3 x_1 x_2=(2 m)^2-3(-2 m-3)=$ $4 m^2+6 m+9$.

$A=(2 m)^2+2.2 m \cdot \frac{3}{2}+\frac{9}{4}+\frac{27}{4}=\left(2 m+\frac{3}{2}\right)^2+\frac{27}{4} \geq \frac{27}{4}$. Đẳng thức xảy ra khi $m=\frac{-3}{4}$.

Vậy giá trị nhỏ nhất của $A$ là $\frac{27}{4}$ khi $m=\frac{-3}{4}$.

Bài tập rèn luyện

Bài 1. Cho phương trình $x^2-\sqrt{2} x-\sqrt{3}=0$.
(a) Không giải phương trình, chứng minh phương trình có hai nghiệm $x_1, x_2$.
(b) Tính giá trị của $A=x_1^2+x_2^2-3 x_1 x_2 .(A=2+5 \sqrt{3})$
(c) Tính giá trị của biểu thức $B=\frac{1}{x_1^3-4 x_1 x_2+x_2^3}$
Bài 2. Cho phương trình $x^2-2 m x-1=0$.
(a) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi $m$
(b) Gọi $x_1, x_2$ là nghiệm của phương trình. Tính $A=$ $x_1^2-3 x_1 x_2+x_2^2$ theo $m$. $\left(A=4 m^2+5\right)$
(c) Tìm $m$ để $A=9 .(m= \pm 1)$
Bài 3. Cho phương trình $x^2-2(m-3) x-2 m+5=0$.
(a) Chứng minh rằng phương trình luôn có nghiệm $x_1, x_2$.
(b) Tìm $m$ để $x_1^2+x_2^2-3 x_1 x_2+x_1+x_2=17$. $\left(m=\frac{3 \pm \sqrt{21}}{2}\right)$

Bài 4. Cho phương trình $x^2-3(m+1) x+9 m^2+2=0$. Tìm $m$ để phương trình có hai nghiệm phân biệt $x_1, x_2$ thỏa $x_1^2+x_2^2-3\left(x_1+x_2\right)+1=0$.
(Không có giá trị $m$ nào thỏa mãn)
Bài 5. Cho phương trình $x^2-3 x-4 m=0$
(a) Tìm $m$ để phương trình có hai nghiệm phân biệt. $\left(m>\frac{-9}{16}\right)$
(b) Tìm $m$ để phương trình có hai nghiệm phân biệt $x_1, x_2$ thỏa $x_1+x_2-x_1 x_2=13\left(m=\frac{5}{2}\right)$
(c) Tính giá trị biểu thức $A=x_1^2+x_2^2-4 x_1 x_2$ theo $\mathrm{m}$ và tìm $\mathrm{m}$ để $\mathrm{A}=14$. $\left(A=9+24 m, m=\frac{5}{24}\right)$
Bài 6. Cho phương trình $x^2-2(m-1) x-1=0$.
(a) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt $x_1, x_2$.
(b) Tìm $\mathrm{m}$ để $x_1^2+x_2^2=5\left(m=\frac{2 \pm \sqrt{3}}{2}\right)$
(c) Tìm giá trị nhỏ nhất của biểu thức $x_1^2+x_2^2+x_1 x_2$ (GTNN là 1 khi và chỉ khi $m=1$ )

Bài 7. Cho phương trình $x^2-2(m+1) x+m=0$
(a) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt $x_1, x_2$
(b) Tìm m để $x_1^2+x_2^2-3 x_1 x_2-x_1-x_2=7$
$$
\left(m=\frac{-5 \pm \sqrt{41}}{8}\right)
$$
(c) Tìm giá trị nhỏ nhất của biểu thức $B=x_1^2+x_2^2$ $\left(B_{\min }=\frac{7}{4}\right.$ khi và chỉ khi $\left.x=\frac{-3}{4}\right)$
Bài 8. Cho phương trình $x^2-2 m x-m-3=0$.
(a) Tìm $m$ dể phương trình có hai nghiệm $x_1, x_2$ thỏa
$$
\begin{aligned}
& \frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{2}=0 \
& \left(m=\frac{-3}{5}\right)
\end{aligned}
$$

(b) Tìm $m$ để phương trình có nghiệm thỏa $x_1^3-x_2^3=$ $10\left(x_1-x_2\right)$ $\left(m=\frac{-1 \pm \sqrt{113}}{8}\right)$
Bài 9. Cho phương trình $(m-1) x^2-2 x+1=0$.
(a) Tìm $m$ để phương trình có hai nghiệm phân biệt. $(m \neq 1, m>2)$
(b) Tìm $m$ để phương trình có hai nghiệm $x_1, x_2$ thỏa $x_1^2+x_2^2+x_1 x_2=3\left(m=\frac{-1}{3}\right)$
Bài 10. Cho phương trình $x^2+2(m+2) x+2 m=0$.
(a) Tìm $m$ để phương trình có hai nghiệm $x_1, x_2$ thỏa $x_1^2 x_2+x_2^2 x_1+x_1+x_2=4$
(không có giá trị $m$ thỏa mãn)
(b) Tìm giá trị lớn nhất của biểu thức $A=x_1 x_2-x_1^2-$ $x_2^2\left(A_{\max }=\frac{-63}{4}\right.$ khi và chỉ khi $\left.m=\frac{-1}{4}\right)$

Ánh xạ

Ánh xạ là gì?

Định nghĩa 1. Cho hai tập hợp $A$ và $B$ khác rỗng. Một quy tắc cho tương ứng mỗi phần từ $x \in A$ với một và chỉ một phần tử $y \in B$ được gọi là một ánh xạ từ $A$ vào $B$.
Kí hiệu ánh xạ $f: A \rightarrow B, x \mapsto y=f(x)$.


Định nghĩa 2. Cho ánh xạ $f: A \rightarrow B$

  • $x \in A, y=f(x)$ thì $f(x)$ được gọi ảnh của $x$ qua ánh xạ $f$.
  • Với mọi $y \in B$, đặt $f^{-1}(y)={x \in A \mid f(x)=y}$ được gọi là tạo ảnh của $y$.
  • $f(A)={f(x) \mid x \in A}$ được gọi là tập ảnh của ánh xạ.
    Ví dụ 1.
  • 1. Qui tắc $f: A \rightarrow A$ thỏa $f(x)=x$, tức là cho tương ứng mỗi phần tử với chính nó là một ánh xạ, được gọi là ánh xạ đồng nhất, đôi khi kí hiệu là $I_d$.
  • 2. $f: \mathbb{Z} \rightarrow \{-1, 0, 1\}$ thỏa $f(x)=-1$ nếu $x<0$, $f(x)=1$ nếu $x>0$ và $f(x)=0$ nếu $x=0 $ là một ánh xạ.
  • 3. Cho tập $X, A$ là tập con khác rỗng của $X$. Xét $f: X \rightarrow{0,1}$ thỏa $f(x)=1$ nếu $x \in A, f(x)=0$ nếu $x \notin A$ là một ánh xạ
  • 4. $f: \mathbb{R} \rightarrow \mathbb{R} $ thỏa $x \mapsto y$ thỏa $y^2=x$ Không phải là ánh xạ.
  • 5. Cho đường thẳng $d$, với mọi điểm $M$ cho tương ứng với $M’$ thuộc $d$ sao cho $MM’ \perp d$ nếu $M$ không thuộc $d$ và $M’ \equiv M$ nếu $M$ thuộc $d$ là một ánh xạ, được gọi là phép chiếu vuông góc trên đường thẳng $d$.
  • 6. Cho $f: \mathbb{R} \rightarrow \mathbb{R}$ thỏa $f(x) = 3x + 1$ là ánh xạ.

Đơn ánh, toàn ánh, song ánh

Định nghĩa 3. Một ánh xạ được $f: A \rightarrow B$ được gọi là đơn ánh nếu và chỉ nếu $f(x) = f(y) \Rightarrow x = y$. Tức là với mọi $y$ thì $f^-1 (y)$ có không quá một phần tử.

Định nghĩa 4. Ánh xạ $f: A \rightarrow B$ là toàn ánh khi và chỉ khi mọi $y \in B$ thì tồn tại $x \in A$ sao cho $f(x)=y$. Với mọi $y \in B$ thì $f^{-1}(y)$ khác rỗng.
Định nghĩa 5. Một ánh xạ là song ánh nếu nó vừa đơn ánh vừa toàn ánh. Tập $f^{-1}(y)$ có đúng một phần tử.
Ví dụ 2. Trong các ánh xạ của ví dụ 1 thì 1,6 là song ánh, 2, 3, 5 là toàn ánh nhưng không phải song ánh.

Ánh xạ hợp – Ánh xạ ngược

Định nghĩa 6. Cho song ánh từ $f: A \rightarrow B$. Ta xây dựng một ánh xạ từ $B$ vào $A$ như sau: với mỗi phần tử $b \in B$ cho tương ứng với phần tử $a \in A$ thỏa $a=f^{-1}(b)$, ánh xạ đó được gọi là ánh xạ ngược của $f$, kí hiệu là $f^{-1}$.
Ta có
$$
f^{-1}: B \rightarrow A, f^{-1}(x)=y \Leftrightarrow f(y)=x
$$
Ví dụ 3

a) Ánh xạ ngược của ánh xạ đồng nhất là ánh xạ đồng nhất.
b) Cho $A={1,2,3}, B={a, b, c}$.Xét song ánh từ $A \rightarrow B$ là $f(1)=b, f(2)=$ $a, f(3)=c$. Khi đó ánh xạ ngược $f^{-1}$ từ $B \rightarrow A$ là $f^{-1}(a)=2, f^{-1}(b)=1, f^{-1}(c)=3$.

c) Ánh xạ ngược của $f: R \rightarrow R, f(x) = 3x + 1$ là $f: R\rightarrow f(x) = \dfrac{1}{3} (x-1)$.

Định nghĩa 7. Cho $f: A \rightarrow B, g: B \rightarrow C$ khi đó ánh xạ $g \circ f: A \rightarrow C$ thỏa
$$
g \circ f(a)=g(f(a))
$$
được gọi là ánh xạ hợp.

Ví dụ 4. Cho $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=2 x+1, g: \mathbb{R} \rightarrow \mathbb{R}, g(x)=x^2$.
(a) Tìm $g \circ g, f \circ f$;
(b) $g \circ f, f \circ g$.

Tính chất 1. Nếu $f: A \rightarrow B$ là song ánh thì $f \circ f^{-1} = I_d trên $B$, và $f^{-1} \circ f $ là ánh xạ đồng nhất trên $A$.

Ánh xạ và phép đếm


Định nghĩa 8. Cho tập $A$ số nguyên dương $n$ và $X={0,1,2, \cdots, n}$. Nếu tồn tại một song ánh từ $A$ vào $X$ thì khi đó ta nói $A$ có hữu hạn phần tử và số phần tử của $A$ là $n$. Kí hiệu $|A|=n$. Nếu $A$ không khác rỗng và không có hữu hạn phần tử, ta nói $A$ là tập vô hạn.

Tính chất 2. Cho $A, B$ là các tập hữu hạn.

  • Nếu tồn tại một đơn ánh từ $A$ vào $B$ thì $|A| \leq|B|$.
  • Nếu tồn tại một toàn ánh từ $A$ vào $B$ thì $|A| \leq|B|$.
  • Nếu tồn tại một song ánh từ $A$ vào $B$ thì $|A|=|B|$.

Toán đố – P2

Tiếp theo phần 1, phần này tôi xin đưa ra những ví dụ phức tạp hơn, đòi hỏi cao hơn trong việc đưa ra phương trình, hoặc việc giải phương trình hệ phương trình ở mức khó hơn.

Ví dụ 1. Tổng kết học kì 2, trường trung học cơ sở N có 60 học sinh không đạt học sinh giỏi, trong đó có 6 em từng đạt học sinh giỏi học kì 1, số học sinh giỏi của học kì 2 bằng $\dfrac{40}{37}$ số học sinh giỏi của học kì 1 và có $8 \% $ số học sinh của trường không đạt học sinh giỏi học kì 1 nhưng đạt học sinh giỏi học kì 2. Tìm số học sinh giỏi học kì 2 của trường biết rằng số học sinh của trường không thay đổi trong suốt năm học.

Lời  giải. 

Nhận xét: Bài toán có sự thay đổi về số học sinh giỏi của học kì 2 so với học kì 1, đó là số học sinh mới được và số học sinh bị rớt danh hiệu.

Ta có lời giải như sau:

Gọi $x$ $(x>0)$ là số học sinh giỏi học kì $2$ của trường.

Tổng số học sinh của trường là: $x+60$ (học sinh).

Số học sinh giỏi học kì $1$ là: $\dfrac{37}{40}x$ (học sinh).

$8\%$ số học sinh toàn trường không đạt giỏi học kì $1$ nhưng đạt giỏi học kì $2$: $(x+60).8\%=\dfrac{2x}{25}+\dfrac{24}{5}$ (học sinh).

Theo đề bài ta có phương trình $x = \dfrac{37}{40} x + \dfrac{2x}{25} + \dfrac{24}{5} – 6$.

Giải ra được $x = 240$.
Vậy số học sinh giỏi học kì $2$ của trường là $240$ học sinh.

Ví dụ 2. Bạn An dự định trong khoảng thời gian từ ngày 1/3 đến ngày 30/4 mỗi ngày sẽ giải 3 bài toán. Thực hiện đúng kế hoạch một thời gian, vào khoảng cuối tháng 3 (tháng 3 có 31 ngày) thì A bị bệnh, phải nghỉ giải toán nhiều ngày liên tiếp. Khi hồi phục, trong tuần đầu An giải 16 bài toán; sau đó, A cố gắng giải 4 bài một ngày và đến 30/4 thì A cũng hoàn thành kế hoạch đã định. Hỏi bạn An đã nghỉ giải toán ít nhất bao nhiêu ngày?

Lời giải. 

Gọi $x$  là số ngày làm được 3 bài giai đoạn 1 ($x \leq 31)$ và $y$ là số ngày nghỉ.

Khi đó tổng số bài làm theo thực tế là: $3x + 16 + 4(61-x-y-7) = 232 -x-4y$.

Số bài thực tế bằng số bài dự định bằng $61 \times 3 = 183$.

Ta có phương trình $232-4y-x = 183 \Leftrightarrow 4y + x = 49 \Rightarrow y \geq \dfrac{18}{4} $.

Mà $y \in \mathbb{N}$ nên $y \geq 5$, giá trị nhỏ nhất của $y$ là 5, khi $x = 29$.

Ví dụ 3. Lớp $9A$ có 28 học sinh đăng ký dự thi vào các lớp chuyên Toán, Lý, Hóa của trường Phổ thông Năng khiếu. Trong đó: không có học sinh nào chỉ chọn thi vào lớp Lý hoặc chỉ chọn thi vào lớp Hóa; có ít nhất 3 học sinh chọn thi vào cả ba lớp Toán, Lý và Hóa; số học sinh chọn thi vào lớp Toán và Lý bằng số học sinh chỉ chọn thi vào lớp Toán; có 6 học sinh chọn thi vào lớp Toán và Hóa; số học sinh chọn thi vào lớp Lý và Hóa gấp 5 lần số học sinh chọn thi vào cả ba lớp Toán, Lý và Hóa. Hỏi số học sinh chọn thi vào từng lớp là bao nhiêu?

Lời giải.

Gọi $x$  là số ngày làm được 3 bài giai đoạn 1 ($x \leq 31)$ và $y$ là số ngày nghỉ.

Khi đó tổng số bài làm theo thực tế là: $3x + 16 + 4(61-x-y-7) = 232 -x-4y$.

Số bài thực tế bằng số bài dự định bằng $61 \times 3 = 183$.

Ta có phương trình $232-4y-x = 183 \Leftrightarrow 4y + x = 49 \Rightarrow y \geq \dfrac{18}{4} $.

Mà $y \in \mathbb{N}$ nên $y \geq 5$, giá trị nhỏ nhất của $y$ là 5, khi $x = 29$.

Bài tập rèn luyện.

Bài 1. Một khu đất hình chữ nhật $ABCD$ ($AB<AD$) có chu vi 240 mét được chia thành hai phần gồm khu đất hình chữ nhật $ABNM$ làm chuồng trại và phần còn lại làm vườn thả để nuôi gà ($M$, $N$ lần lượt thuộc các cạnh $AD$, $BC$). Theo quy hoạch trang trại nuôi được 2400 con gà, bình quân mỗi con gà cần một mét vuông của diện tích vườn thả và diện tích vườn thả gấp ba lần diện tích chuồng trại. Tính chu vi của khu đất làm vườn thả.

Bài 2. Nam kể với Bình rằng ông của Nam có một mảnh đất hình vuông $ABCD$ được chia thành bốn phần; hai phần (gồm các hình vuông $AMIQ$ và $INCP$ với $M$, $N$, $P$, $Q$ lần lượt thuộc $AB$, $BC$, $CD$, $DA$) để trồng các loại rau sạch, các phần còn lại trồng hoa. Diện tích phần trồng rau sạch là $1200 \; m^2$ và phần để trồng hoa là $1300 \; m^2$. Bình nói: “Chắc chắn bạn bị nhầm rồi!”. Nam: “Bạn nhanh thật! Mình đã nói nhầm phần diện tích. Chính xác là phần trồng rau sạch có diện tích $1300 \; m^2$, còn lại $1200 \; m^2 $ trồng hoa”. Hãy tính cạnh hình vuông $AMIQ$ (biết $AM < MB$) và giải thích vì sao Bình lại biết Nam bị nhầm ?

Bài 3. Một hồ nước được cung cấp nước bỏi ba vòi nước. Biết rằng nếu từng vòi nước cung cấp nước cho hồ thì vòi nước thứ nhất sẽ làm đầy hồ nhanh hơn vòi nước thứ hai $5$ giờ, vòi nước thứ ba lại làm đầy hồ nhanh hơn vòi nước thứ nhất $4$ giờ; còn nếu vòi nước thứ nhất và thứ hai cùng cung cấp nước cho hồ thì chúng làm đầy hồ bằng với thời gian vòi nước thứ ba làm đầy hồ. Hỏi nếu cả ba vòi nước cùng cung cấp nước cho hồ thì chúng sẽ làm đầy hồ trong bao lâu?

Bài 4. Hai thị trấn $A$ và $B$ cùng nằm trên một dòng sông, cách nhau $D$ $km$. Thị trấn $B$ có địa thế cao hơn nên dòng nước luôn chảy từ $B$ đến $A$ với vận tốc $d$ $(km/h)$ không đổi. Nếu nước không chảy, tàu \textit{Hi vọng} có vận tốc $x$ $(km/h)$ không đổi, tàu \textit{Tương lai} có vận tốc $y$ $(km/h)$ không đổi. Vào lúc 8 giờ sáng, tàu \textit{Hi vọng} xuất phát từ $A$ đi về hướng $B$ và tàu \textit{Tương lai} xuất phát từ $B$ đi về hướng $A$. Vào lúc 12 giờ trưa hai tàu gặp nhau lần đầu tiên tại một điểm cách $A$ một khoảng cách là $\dfrac{1}{3}D$. Khi đến $A$ tàu \textit{Tương lai} nghỉ nửa giờ rồi quay về $B$; tương tự khi đến $B$ tàu \textit{Hi vọng} cũng nghỉ nửa giờ rồi quay về $A$. Hai tàu gặp nhau lần thứ hai tại một điểm cách $B$ một khoảng cách là $\dfrac{5}{27}D$. Hãy tìm vận tốc của các tàu \textit{Hi vọng} và \textit{Tương lai} biết rằng nếu ngay từ đầu, mỗi tàu tăng vận tốc thêm $7,5km/h$ thì hai tàu sẽ gặp nhau lần đầu vào lúc 11 giờ trưa.

Toán đố – P1

Dạo này các bài toán thực tế xuất hiện nhiều trong trong đề thi và được nhiều học sinh quan tâm, tuy vậy đây không phải là các bài toán trong đời sống bắt các em phải giải mà chỉ là những bài toán đốnhiều chữ, các em đọc hiểu và sử dụng kiến thức toán để giải, chứ chẳng có mấy về ý nghĩa thực tế, mà dạng toán này đã xuất hiện rất nhiều trong chương trình toán của mình, và trong các kì thi, đặc biệt là kì thi vào trường Phổ thông Năng khiếu.

Những bài toán này thường là những bài toán như mối liên quan giữa số lượng, thời gian, năng suất, …để giải các bài toán dạng này ta chú ý:

  • Đọc kĩ đề bài, gạch dưới những cụm từ quan trọng.
  • Tìm các mối liên hệ giữa các đối tượng có trong bài toán.
  • Đặt ẩn phù hợp và thiết lập được phương trình, hệ phương trình.
  • Giải các pt, hpt này cho ra kết quả.

 

Ví dụ 1. Lớp 9T có 30 bạn, mỗi bạn dự định đóng góp mỗi tháng 70000 đồng và sau 3 tháng sẽ đủ tiền mua tặng cho mỗi em ở “Mái ấm tình thương X” ba gói quà (giá tiền các món quà đều như nhau). Khi các bạn đóng đủ số tiền như dự trù thì “Mái ấm tình thương X” đã nhận chăm sóc thêm 9 em và có giá tiền của mỗi món thêm $5\%$ nên chỉ tặng mỗi em hai gói quà. Hỏi có bao nhiêu em của “Mái ấm tình thương X” được nhận quà ?

Lời giải.

  • Gọi $x$ $(x>0)$ là số em ban đầu ở “Mái ấm tình thương X” và $t$ $(t>0)$ là giá tiền mỗi món quà.
  • Số tiền lớp 9T đóng được sau $3$ tháng là: $6300000$.
  • Mỗi em nhận được $3$ món quà ta có: $3tx=6300000$ (1).
  • Sau khi mái ấm có thêm $9$ em và giá mỗi món quà tăng thêm $5\%$ ta có: $2\left( t+5\% t\right) \left( x+9\right) =6300000$ (2).
  • Từ (1) và (2) ta có: $3tx=2.1,05t.\left( x+9\right) $
    $\Leftrightarrow x=21$.
  • Vậy có $30$ em ở “Mái ấm tình thương X nhận được quà.

Ví dụ 2. Có hai vòi nước A, B cùng cung cấp cho một hồ cạn nước và vòi C (đặt sát đáy hồ) lấy nước từ hồ để cung cấp cho hệ thống tưới cây. Đúng 6 giờ, hai vòi A, B được mở; đến 7 giờ vòi C được mở; đến 9 giờ thì đóng vòi B và vòi C; đến 10 giờ 45 phút thì hồ đầy nước. Người ta thấy rằng nếu đóng vòi B ngay từ đầu thì đến 13 giờ hồ mới đầy. Biết lưu lượng vòi B là trung bình cộng lưu lượng vòi A và C, hỏi một mình vòi C tháo cạn hồ nước đầy trong bao lâu?

Lời giải. 

$10$ giờ $45$ phút $=\dfrac{43}{4}$ giờ.
Gọi $x$, $y$, $z$ $(x,\ y,\ z>0)$ lần lượt là thời gian vòi A, vòi B một mình làm đầy hồ và vòi C tháo hết nước trong hồ.
Từ $6$ giờ đến $10$ giờ $45$ phút vòi A chảy được $\dfrac{19}{4x}$ hồ.
Từ $6$ giờ đến $9$ giờ vòi B chảy được $\dfrac{3}{y}$ hồ.
Từ $7$ giờ đến $9$ giờ vòi C tháo được $\dfrac{2}{z}$ hồ.
Từ $6$ giờ đến $13$ giờ vòi A chảy được $\dfrac{7}{x}$ hồ.
Theo đề bài ta có hệ phương trình:

$\left\{ \begin{array}{l}
\dfrac{19}{4x}+\dfrac{3}{y}-\dfrac{2}{z}=1\ (1)\\\\
\dfrac{7}{x}-\dfrac{2}{z}=1\ (2)\\\\
\dfrac{1}{x}+\dfrac{1}{z}=\dfrac{2}{y}\ (3)
\end{array}\right. $.

Từ (2) ta có: $\dfrac{1}{x}=\dfrac{1}{7}+\dfrac{2}{7z}$.

Lấy (1) trừ (2) ta có: $-\dfrac{9}{4x}+\dfrac{3}{y}=0\Leftrightarrow \dfrac{1}{y}=\dfrac{3}{4x}=\dfrac{3}{28}+\dfrac{3}{14z}$.

Thay $\dfrac{1}{x}$, $\dfrac{1}{y}$ vào (3) ta có: $\dfrac{1}{7}+\dfrac{2}{7z}+\dfrac{1}{z}=\dfrac{3}{14}+\dfrac{3}{7z} \Leftrightarrow z=12$.

Vậy vòi C tháo cạn hồ nước đầy trong $12$ giờ.

Ví dụ 3. Một công ty may giao cho tổ $A$ may $16800$ sản phẩm, tổ $B$ may $16500$ sản phẩm và bắt đầu thực hiện công việc cùng lúc. Nếu sau $6$ ngày, tổ $A$ được hỗ trợ thêm $10$ công nhân may thì họ hoàn thành công việc cùng lúc với tổ $B$. Nếu tổ $A$ được hỗ trợ thêm $10$ công nhân may ngay từ đầu thì họ sẽ hoàn thành công việc sớm hơn tổ $B$ $1$ ngày. Hãy xác định số công nhân ban đầu của mỗi tổ. Biết rằng, mỗi công nhân may mỗi ngày được $20$ sản phẩm.

Lời giải.

Gọi số công nhân ban đầu của tổ $A$, $B$ lần lượt là $x$, $y$ (công nhân) ($x,y\in \mathbb{N}$).

Mỗi ngày tổ $A$ may được $20x$ sản phẩm, tổ $B$ may được $20y$ sản phẩm.

Sau $6$ ngày tổ $A$ may được $120x$ sản phẩm.

Số công nhân tổ $A$ sau khi được tăng $10$ công nhân là $x+10$ (công nhân).

Khi đó số sản phẩm tổ $A$ may được mỗi ngày là $20\left( x+10\right) $ (sản phẩm).

Thời gian tổ $A$ hoàn thành công việc là:
$6+\dfrac{16800-120x}{20\left( x+10\right) }$ (ngày).

Thời gian tổ $B$ hoàn thành công việc là: $\dfrac{16500}{20y}$ (ngày).

Tổ $A$, tổ $B$ hoàn thành công việc cùng lúc nên ta có phương trình:
$$6+\dfrac{16800-120x}{20\left( x+10\right) }=\dfrac{16500}{20y} \text { } (1).$$

Thời gian tổ $A$ hoàn thành công việc nếu được hỗ trợ thêm $10$ công nhân ngay từ đầu là: $$\dfrac{16800}{20\left( x+10\right) } \text{ (ngày)}.$$

Tổ $A$ hoàn thành công việc trước tổ $B$ $1$ ngày nên ta có phương trình:
$$\dfrac{16800}{20\left( x+10\right) }+1=\dfrac{16500}{20y} \text{ } (2).$$

Từ $(1)$ và $(2)$, ta có:

$6+\dfrac{16800-120x}{20\left( x+10\right) }=\dfrac{16800}{20\left( x+10\right) }+1$

$\Leftrightarrow \dfrac{6x}{x+10}=5$
$\Leftrightarrow x=50$.

Thay $x=50$ vào $(2)\Rightarrow y=55$.

Vậy số công nhân ban đầu của tổ $A$ là $50$ công nhân, số công nhân ban đầu của tổ $B$ là $55$ công nhân.

Bài tập rèn luyện.

Bài 1. Một tổ mua nguyên vật liệu để thuyết trình tại lớp hết 72.000 đồng, cho phí được chia đều cho mỗi thành viên của tổ. Nếu tổ giảm bớt 2 người thì mỗi người phải đóng thêm 3000 đồng. Hỏi số người của tổ?

Bài 2. Một nhóm học sinh định chia một số kẹo thành các phần quà cho các em nhỏ tại một đơn vị trẻ mồ côi. Nếu mỗi phần quà giảm đi 6 viên thì các em có thêm 5 phần quà, nếu giảm đi 10 viên thì các em có thêm 10 phần quà. Hỏi số kẹo mà nhóm học sinh này có.

Bài 3. Trong một cuộc đua môtô có ba xe khởi hành cùng lúc. Xe thứ nhì trong mỗi giờ chạy chậm hơn xe thứ nhất $10$km và nhanh hơn xe thứ ba $5$km, đến đích trễ hơn xe thứ nhất $10$ phút, sớm hơn xe thứ ba $6$ phút. Tính vận tốc mỗi xe, chiều dài quãng đường đua.

Bài 4. Tìm số gồm hai chữ số, biết rằng tổng của hai chữ số là $9$ và tổng lập phương của hai chữ số đó là $189$.

Bài 5. Một hồ nước được cung cấp nước bỏi ba vòi nước. Biết rằng nếu từng vòi nước cung cấp nước cho hồ thì vòi nước thứ nhất sẽ làm đầy hồ nhanh hơn vòi nước thứ hai $5$ giờ, vòi nước thứ ba lại làm đầy hồ nhanh hơn vòi nước thứ nhất $4$ giờ; còn nếu vòi nước thứ nhất và thứ hai cùng cung cấp nước cho hồ thì chúng làm đầy hồ bằng với thời gian vòi nước thứ ba làm đầy hồ. Hỏi nếu cả ba vòi nước cùng cung cấp nước cho hồ thì chúng sẽ làm đầy hồ trong bao lâu?

Định lý Viete với các biểu thức nghiệm không đối xứng

Tiếp theo các bài toán về tìm giá trị của tham số để nghiệm của phương trình thỏa một đẳng thức, trong bài này ta xét trường hợp mà biểu thức nghiệm không chỉ là bậc nhất, hoặc không thể tính theo tham số một cách dễ dàng.

Ta xét ví dụ sau:

Ví dụ 1. Cho phương trình $x^2-(m+2)x+m+1 = 0$. Tìm $m$ để phương trình có nghiệm $x_1, x_2$ thỏa $3x_1x_2 – 4x_1=2$.

Lời giải

  •  $\Delta = (m+2)^2 – 4(m+1) = m^2 \geq 0, \forall m$. Nên phương trình luôn có nghiệm,
    khi đó phương trình có nghiệm là $1$ và $m+1$.
  • $x_1 = 1, x_2 = m+1$ ta có $3x_1x_2 -4x_1 = 2 \Leftrightarrow 3(m+1) – 4 = 2 \Leftrightarrow m = 1$.
  • $x_1 = m+1, x_2 = 1$ ta có $3x_1x_2 – 4x_1 = 2 \Leftrightarrow 3(m+1) – 4(m+1) = 2 \Leftrightarrow m = -3$.
    Vậy có hai giá trị $m$ là $1$ và $-3$.

Ta thấy trong bài toán trên, $\Delta=m^2$ có dạng là $A^2$ trong đó $A$ là một số hay một biểu thức. Khi đó ta có thể tính nghiệm theo $m$ và xét trường hợp nghiệm nào là $x_1$, nghiệm nào là $x_2$ để thế vào biểu thức nghiệm.

Tiếp theo ta xem thêm một ví dụ khác.

Ví dụ 2. (PTNK 2014) Cho phương trình $\dfrac{mx^2 + (m-3)x +2m-1}{x+3}=0$ (1)
a) Giải phương trình (1) khi $m=-1$.
b) Tìm m để phương trình (1) có 2 nghiệm phân biệt $x_1$, $x_2$ sao cho $21x_1 + 7m \left( 2+ x_2 + x_2^2 \right) = 58 $

Lời giải

a) Khi m=-1 ta có phương trình:
$\dfrac{-x^2 -4x-3}{x+3}=0 \,\, (\text{đk: } x \ne 3) \\
\Leftrightarrow -x^2 -4x-3 =0 \Leftrightarrow \left[ \begin{array}{l}
x=-1 \,\,(n) \\\\
x=-3 \,\, (l)
\end{array} \right. $
Vậy $S=\left\{ -1 \right\} $

b)    $\dfrac{mx^2+(m-3)x+2m-1}{x+3}=0$ (1)

  • Điều kiện để phương trình có hai nghiệm phân biệt $x_1,x_2$ là phương trình $mx^2+(m-3)x+2m-1=0$ có hai nghiệm phân biệt khác $-3$
    $\left\{ \begin{array}{l}
    m \ne 0 \\\\
    \Delta = (m-3)^2 -4m(2m-1) >0 \\\\
    m(-3)^2+(m-3)(-3)+2m-1 \ne 0
    \end{array} \right. $ $\Leftrightarrow \left\{ \begin{array}{l}
    m \ne 0\\\\
    7m^2 +2m-9 <0 \\\\
    m \ne -1
    \end{array} \right. $ $\Leftrightarrow \left\{ \begin{array}{l}
    m\ne 0\\\\
    m \ne -1 \\\\
    -\dfrac{9}{7} < m < 1
    \end{array} \right. $
  • Ta có $mx_2^2 + (m-3) x_2 +2m-1 =0 \Leftrightarrow m \left( 2+x_2 + x_2^2 \right) =3x_2 +1$
  • Do đó $21x_1 + 7m \left( 2+ x_2 + x_2^2 \right) =58$
    $\Leftrightarrow 21x_1 + 7(3x_2 +1 ) =58$
    $\Leftrightarrow 21 \left( x_1 +x_2 \right) =51 \\ \Leftrightarrow x_1 + x_2 =\dfrac{17}{7} $
    $\Leftrightarrow \dfrac{3-m}{m} = \dfrac{17}{7}\\ \Leftrightarrow 21-7m =17m \Leftrightarrow m=\dfrac{7}{8} \,\, (n) $
    Vậy $m=\dfrac{7}{8}$

Ta thấy trong bài toán trên, ta phải sử dụng $x_2$ là nghiệm của phương trình nên thỏa phương trình và từ đó ta mới tính được biểu thức chứa $x_2$ trong giả thiết. Mục đích là ta đưa về những dạng dễ hơn mà ta đã biết làm.

Ví dụ 3. (PTNK 2016) Cho phương trình $\dfrac{(x+1)(x^2+mx+2m+14)}{\sqrt{x}} = 0 (1)$.
Tìm $m$ để phương trình (1) có 2 nghiệm phân biệt $x_1,x_2$ sao cho: $\sqrt{x_2^2+(m+1)x_2+2m+14} = 3 – \sqrt{x_1}$

Lời giải

  • Điều kiện $x > 0$.
  • Phương trình (1) tương đương $x^2+mx+2m+14 = 0$ (2).
    Để (1) có 2 nghiệm phân biệt thì (2) có hai nghiệm phân biệt dương, tương đương $\Delta = m^2-4(2m+14) > 0, S = -m > 0, P = 2m + 14 >0 $ (*)
  • Khi đó $x_1 + x_2 = -m, x_1x_2 = 2m+14$ và $x_2$ là nghiệm nên $x_2^2+mx_2+2m+14 = 0$, suy ra $x_2^2+(m+1)x_2 +2m+14 = x_2$.
  • Do đó $\sqrt{x_2^2+(m+1)x_2+2m+14} = 3 – \sqrt{x_1}\\ \Leftrightarrow \sqrt{x_1}+\sqrt{x_2}=3$
    • $\Leftrightarrow x_1 + x_2 +2\sqrt{x_1x_2}=9 \\\Leftrightarrow 2\sqrt{2m+14}=9+m $
    • $\Leftrightarrow 4(2m+14) = m^2+18m+81 \Leftrightarrow m^2 +10m+25 = 0 \Leftrightarrow m = -5 (n)$ vì thỏa (*).
      Kết luận $m = -5$.

Ví dụ 4: Tìm $a \geq 1$ để phương trình $ax^2 + (1-2a)x + 1-a=0$ có hai nghiệm phân biệt $x_1, x_2$ thỏa $x_2^2 – ax_1 = a^2-a-1$.

Giải

Điều kiện để phương trình có hai nghiệm phân biệt $\Delta = (1-2a)^2-4a(1-a) = 8a^2-8a+1 > 0$.

Theo định lý Viete ta có $x_1 + x_2 = \dfrac{2a-1}{a}$, suy ra $ax_1 + ax_2 = 2a – 1$. Suy ra $ax_1 = 2a-1-ax_2$.

Kết hợp giả thiết ta có $x_2^2+ax_2-2a+1=a^2-a-1 \Leftrightarrow x_2^2+ax_2-a^2-a+2=0 \Leftrightarrow ax_2^2+a^2x_2-a^3-a^2+2a=0$ $(1)$.

Mà $x_2$ là nghiệm của phương trình nên ta có $ax_2^2+(1-2a)x_2+1-a = 0 (2)$.

Lấy $(1) – (2)$ ta có $(a^2+2a-1)x_2 = a^3+a^2-3a+1$, mà $a \geq 1$ nên $a^2 + 2a – 1 \neq 0$, suy ra $x_2 = a-1$.

Thế vào phương trình $(1)$ ta có $(a-1)^2+a(a-1)-a^2-a+2 = 0 \Leftrightarrow a=1, a=3$.

Thử lại ta nhận hai giá trị $a = 1, a=3$.

Bài tập rèn luyện

Bài 1. Tìm $m$ để phương trình $(x-1+m)(x+2m-3) = 0$ có hai nghiệm phân biệt $x_1, x_2$ thỏa $x_1^2 – 4x_2 =1$.\ ($m=-3\pm \sqrt{21},m=1$)
Bài 2.  Cho phương trình $x^2-(m+2)x+m+1 = 0$. Tìm $m$ để phương trình có nghiệm $x_1, x_2$ thỏa $3x_1x_2 – 4x_1=2$.\($m=1,m=-3$)
Bài 3. Cho phương trình $x^2 – (2m-1)x + 4 = 0$. Tìm $m$ để phương trình có hai nghiệm $x_1, x_2$ thỏa $x_1^2+(2m-1)x_2 + 8-17m = 0$. ($m= 5$)
Bài 4. Cho phương trình $x^2 – (2m-1)x + m^2 = 0$. Tìm $m$ để phương trình có nghiệm $x_1, x_2$ thỏa $x_1^2 + (2m-1)x_2 = 8$.($m=-1$)
Bài 5. Cho phương trình ${x^2} – \left( {3m – 2} \right)x + 2{m^2} – 3m + 1 = 0$ (m là tham số)
a)Tìm m để phương trình có hai nghiệm phân biệt dương $x_1$, $x_2$ ($m>1$)
b) Tìm m để phương trình có hai nghiệm $x_1$, $x_2$ thỏa $x_1^2 + x_2 =5$ ($m=\dfrac{3+\sqrt{89}}{8},m=\sqrt{5}$)

Bài 6. Tìm $m$ để phương trình $\dfrac{x^2-mx +(2m-1)(1-m)}{x-2} = 0$ có hai nghiệm phân biệt $x_1, x_2$ thỏa $x_1^2 + 2x_2 = 13$. ($m=\dfrac{5}{2},m=-1 \pm \sqrt{5}$)
Bài 7.  Tìm $m$ để phương trình $\dfrac{x^2 – 2mx -2m-1}{\sqrt{x}} = 0$ có hai nghiệm phân biệt $x_1, x_2$ thỏa $\sqrt{x_1^2+2mx_2} + \sqrt{x_2^2+2mx_1} =2\sqrt{5}$. ($m=\dfrac{-1+\sqrt{7}}{4}$)
Bài 8.  Cho phương trình $\dfrac{x^2-(m+1)x +m^2 – 6)}{\sqrt{x}-2} = 0$ (1).
a) Giải phương trình khi $m = 1$. ($ x= 1+\sqrt{6}$)
b) Tìm $m$ để phương trình có hai nghiệm phân biệt $x_1, x_2$ thỏa [ \sqrt{x_2^2-mx_2+m^2-5}+\sqrt{x_1+1} = 2+\sqrt{2}] \ ($m=3$)

Định lý Viete và các đẳng thức về nghiệm.

Trong các bài toán liên quan  đến ứng dụng của định lý Viete, bài toán tìm giá trị tham số $m$ để các nghiệm thỏa mãn một đẳng thức là dạng toán thường gặp.

Nếu biểu thức mà vai trò hai nghiệm là như nhau, ta có thể biểu diễn theo tổng và tích. Trong bài này chúng ta xét các bài toán mà biểu thức không phải là các biểu thức đối xứng, đòi hỏi cách xử lí khó hơn một chút. Ta bắt đầu với ví dụ sau:

Ví dụ 1. Tìm $m$ để phương trình $x^2 + 4x – m = 0$ có hai nghiệm phân biệt $x_1, x_2$ thỏa $x_1 + 4x_2 =-19$

Lời giải

Điều kiện để phương trình có hai nghiệm phân biệt $\Delta’ = 4 + m > 0 \Leftrightarrow m > -4$ (1).

Khi đó, theo định lý Viete ta có: $x_1 + x_2 = -4, x_1x_2=-m$.

Từ $x_1+x_2=-4$ với giả thiết $x_1+4x_2 = -19$, giải ra được $x_2=-5$.

Thế $x_2=-5$ vào phương trình ta có:$(-5)^2+4(-5)-m = 0 \Leftrightarrow m = 5$ (thỏa (1)).

Kết luận: $m=5$.

Ta thấy rằng để làm dạng toán này, có các bước giải sau:

  • Tìm điều kiện để phương trình có nghiệm (hai nghiệm phân biệt,….)
  • Áp dụng định lý Viete và giả thiết để tính nghiệm (có thể theo tham số)
  • Thay nghiệm vào phương trình và giải. (So lại điều kiện để nhận loại phù hợp). (Hoặc tính $x_1$ và thế vào biểu thức Viete).

Ví dụ 2. Cho phương trình $x^2 -x +3m-11=0$ $(1)$
a) Với giá trị nào của $m$ thì phương trình $(1)$ có nghiệm kép? Tìm nghiệm đó.
b) Tìm $m$ để phương trình $(1)$ có hai nghiệm phân biệt $x_1$, $x_2$ sao cho:

$2017x_1 + 2018x_2 =2019$

Lời giải

a) Phương trình $(1)$ có nghiệm kép $\Leftrightarrow \left\{ \begin{array}{l}
1\ne 0 \text{ (hiển nhiên)} \\\\
\Delta = 0
\end{array} \right. \\\\ \Leftrightarrow 1-4(3m-11) =0 \Leftrightarrow 45-12m =0 \Leftrightarrow m=\dfrac{45}{12}$

Với $m=\dfrac{45}{12}$ thì phương trình $(1)$ trở thành:
$x^2-x+\dfrac{1}{4}=0 \Leftrightarrow x=\dfrac{1}{2}$

Vậy khi $m=\dfrac{45}{12}$ thì phương trình $(1)$ có nghiệm $x=\dfrac{1}{2}$.
b) Để phương trình $(1)$ có hai nghiệm phân biệt $x_1$, $x_2$ thì
$\Delta >0 \Leftrightarrow 45-12m >0 \Leftrightarrow m < \dfrac{45}{12}$

Theo định lý Viete, ta có: $\left\{ \begin{array}{l}
S=x_1+x_2 = 1 \\\\
P=x_1x_2=3m-11
\end{array} \right. $

$2017x_1+2018x_2=2019 \Leftrightarrow 2017 \left( x_1 + x_2 \right) +x_2 =2019
\Leftrightarrow 2017+x_2=2019 \Leftrightarrow x_2 = 2$

Mà $x_1+x_2 =1$ nên $x_1=-1$

Lại có $x_1x_2 = 3m-11 \Rightarrow 3m-11 = -2 \Rightarrow m=3$ (thỏa)

Vậy $m=3$ thì phương trình có hai nghiệm thỏa mãn đề bài.

Ví dụ 3. Tìm $m$ để phương trình $x^2 – 2(m+1)x +3m=0$ có hai nghiệm phân biệt $x_1, x_2$ thỏa $x_1 – 2x_2 = 1$.

Lời giải

Ta có $\Delta’ = (m+1)^2 – 3m = (m-1/2)^2 + 3/4 > 0$ với mọi $m$, nên pt luôn có hai nghiệm phân biệt.

Khi đó ta có $x_1+ x_2 = 2m+2, x_1x_2 = 3m=0$.

Kết hợp $x_1-2x_2 = 1$, suy ra $x_2 = \dfrac{2m+1}{3}$.

Thế $x_2 = \dfrac{2m+1}{3}$ vào pt ta có:

$\dfrac{(2m+1)^2}{9} – 2(m+1)\dfrac{2m+1}{3} + 3m = 0$, giải ra được $m = 1, m= \dfrac{5}{8}$.

Kết luận. $m = 1$ và $m = \dfrac{5}{8}$.

Ví dụ 4. Tìm $m$ để phương trình $\dfrac{x^2-2mx + 3m-2}{x-1} =0$ có hai nghiệm phân biệt $x_1, x_2$ thỏa $x_1 + 3x_2 = 8$.

Lời giải

Điều kiện $x \neq 1$. Phương trình tương đương với

$x^2-2mx + 3m-2 =0$. (2)

Pt (1) có hai nghiệm phân biệt khi và chỉ khi Pt (2) có hai nghiệm phân biệt khác 1,

$\Delta’ = m^2-3m+2 > 0, 1^2-2m(1)+3m -2 \neq 0$ (*).

Khi đó $x_1+x_2 = 2m, x_1x_2 = 3m-2$.

Từ $x_1+3x_2 = 8$ ta có $x_2 = 4-m$, thế vào (2) ta có:

$(4-m)^2 -2m(4-m) + 3m-2 = 0 \Leftrightarrow m = 2, m = \dfrac{7}{3}$.

So với (*), ta nhận $m = \dfrac{7}{3}$.

Kết luận: $m = \dfrac{7}{3}$.

Bài tập rèn luyện. 

Bài 1. Tìm $m$ để phương trình $x^2 – 2(m+1)x +3m=0$ có hai nghiệm phân biệt $x_1, x_2$ thỏa $x_1 – 2x_2 = 1$

Bài 2. Tìm $m$ để phương trình $x^2 – 3x + m-27=0$ có hai nghiệm phân biệt $x_1, x_2$ thỏa $x_1 – x_2 = 11m$.

Bài 3. Tìm $m$ để phương trình $x^2 + 2(m-1)x + m+1=0$ có hai nghiệm phân biệt $x_1, x_2$ thỏa $x_1^2x_2 = -m-1$.

Bài 4. Cho phương trình $x^2-(m+2)x+m+1 = 0$. \
Tìm $m$ để phương trình có nghiệm $x_1, x_2$ thỏa $3x_1x_2 – 4x_1=2$.

Bài 5.  Cho phương trình: $9x^2-3\left( m+2\right) x+m-7=0$. Tìm $m$ để phương trình có hai nghiệm $x_1$, $x_2$ phân biệt thỏa: $x_1+\dfrac{7}{5}x_2=2$.

Định lý Viete -Biện luận nghiệm

Cho phương trình bậc hai $ax^2+bx+c = 0$ ($a\neq 0$) (1)

Ta đã biết nếu phương trình (1) có nghiệm $x_1, x_2$ ($\Delta \geq 0$) thì:

$S = x_1 + x_2 = \dfrac{-b}{a}$ và $P = x_1x_2 = \dfrac{c}{a}$.

Đây chính là nội dung của định lý Viete trong chương trình đại số lớp 9.

Từ định lý trên ta có một số hệ quả sau:

Hệ quả 1. Phương trình (1) có hai nghiệm dương phân biệt $x_1 > x_2 > 0$ khi và chỉ khi

$\left\{ \begin{array}{cc} \Delta > 0 \\\\ S=x_1+x_2 = \dfrac{-b}{a} > 0 \\\\ P = x_1x_2 =\dfrac{c}{a} > 0 \end{array} \right.$

Hệ quả 2. Phương trình (1) có hai nghiệm âm phân biệt $x_1 < x_2 < 0$ khi và chỉ khi:

   $\left\{ \begin{array}{cc} \Delta > 0 \\\\ S=x_1+x_2 = \dfrac{-b}{a} < 0 \\\\ P = x_1x_2 =\dfrac{c}{a} > 0 \end{array} \right.$

Hệ quả 3. Phương trình có hai nghiệm trái dấu $x_1 < 0 < x_2$ khi và chỉ khi $ac < 0$.

Trên đây là những hệ quả cơ bản và quan trọng, sau đây ta xét một vài ví dụ áp dụng.

Ví dụ 1. Tìm $m$ để phương trình $x^2 – 2(m+1)x +m =0$ có hai nghiệm phân biệt dương.

Lời giải

$\Delta’ = (m+1)^2 – m = m^2 +m + 1 = (m + \dfrac{1}{2})^2 + \dfrac{3}{4} > 0  \forall m$.

Phương trình luôn có hai nghiệm phân biệt.

Khi đó phương trình có hai nghiệm dương khi và chỉ khi

$x_1 + x_2 = 2(m+1) >0$ và $x_1x_2 = m > 0$ $\Leftrightarrow $ $m > 0$.

Kết luận: $m > 0$.

Ví dụ 2. Tìm $m$ để phương trình $x^2 – 2(m-1)x + m^2 = 0$ có hai nghiệm phân biệt âm.

Lời giải

$\Delta’ = (m-1)^2 – m^2 = 1-2m$.

Phương trình có hai nghiệm phân biệt khi và chỉ khi $\Delta’ > 0 \Leftrightarrow 1-2m > 0 \Leftrightarrow m < \dfrac{1}{2}$.

Hai nghiệm âm khi và chỉ khi:

$x_1 + x_2 =2(m-1)< 0, x_1x_2 =m^2> 0 \Leftrightarrow  m< 1, m\neq 0$.

Kết hợp các điều kiện ta có: $m < \dfrac{1}{2}, m \neq 0$.

Ví dụ 3. Tìm $m$ để phương trình $x^2 – 3mx +2m-5 = 0$

a) Có hai nghiệm trái dấu.

b) Một nghiệm bằng 0 và một nghiệm dương.

Lời giải

a) Phương trình có hai nghiệm trái dấu khi và chỉ khi $1 \cdot (2m-5) <  0 \Leftrightarrow m < \dfrac{5}{2}$.

b) Phương trình có nghiệm bằng 0, suy ra $2m-5 = 0 \Leftrightarrow m = \dfrac{5}{2}$.

Khi đó nghiệm còn lại là $\dfrac{15}{2}$.

Kết luận: $m = \dfrac{5}{2}$.

Trên đây là các ví dụ cơ bản, tiếp theo ta làm một số phương trình bậc hai có điều kiện.

Ví dụ 4. Tìm $m$ để phương trình $\dfrac{x^2-2mx+m^2-6}{\sqrt{x}} = 0(1)$

có hai nghiệm phân biệt.

Lời giải

Điều kiện $x \geq 0$. Với điều kiện trên ta có (1) tương đương với phương trình:

$x^2-2mx +m^2-6 = 0$. (2)

Phương trình (1) có hai nghiệm phân biệt khi và chỉ khi phương trình (2) có hai nghiệm phân biệt dương.

$\Delta’ = m^2 – (m^2-6) = 6 > 0$, nên (2) luôn có 2 nghiệm.

Phương trình (2) có hai nghiệm dương khi và chỉ khi $S= 2m > 0, P = m^2-6 > 0$, giải ra được $m > \sqrt{6}$.

Kết luận. $m> \sqrt{6}$.

Phương trình (1) trong ví dụ 4 là kiểu phương trình bậc hai có điều kiện, việc biện luận nghiệm của phương trình dựa vào điều kiện của phương trình, khá đa dạng và rối rắm, tuy nhiên sử dụng suy luận ta có thể đưa về các dạng cơ bản, từ đó giải được bài toán. Để làm dạng toán này các em phải biết suy luận, tính toán cẩn thận.

Ta có thể làm tiếp các ví dụ sau:

Ví dụ 5. Cho phương trình $\dfrac{x^2 -2mx +m^2-3m+6}{x-3}=0$. Tìm $m$ để phương trình có:
a) Có 2 nghiệm phân biệt.

b) Có 1 nghiệm.

Lời giải

Điều kiện $x \neq 3$. Phương trình tương đương với: $x^2-2mx+m^2-3m+9=0$. (2)

a) Phương trình (1) có hai nghiệm phân biệt khi và chỉ khi (2) có hai nghiệm phân biệt khác 3.

$\Delta’ = m^2-(m^2-3m+9) > 0, 3^2 -2m(3) +m^2-3m+9 \neq 0$

Giải ra được $m>3, m \neq 6$.

b) (1) có một nghiệm khi và chỉ khi (2)

  • Có nghiệm kép khác 3.
  • Có hai nghiệm phân biệt, trong đó có một nghiệm bằng 3.

TH1: (2) có nghiệm kép khi và chỉ khi $m = 3$, khi đó nghiệm kép bằng 3. (loại)

TH2: (2) có nghiệm bằng 3, suy ra $m=3, m=6$. Thử lại nhận $m=6$.

Kết luận. $m=6$.

Bài tập rèn luyện.

Bài 1. Cho phương trình $x^2 – 6x -m = 0$.
Bài 2.  Tìm $m$ để phương trình có hai nghiệm trái dấu.
a) Tìm $m$ để phương trình có hai nghiệm phân biệt dương.
b) Tìm $m$ để phương trình $\dfrac{x^2-6x-m}{x-3}=0$ có 2 nghiệm phân biệt.
Bài 3. Cho phương trình $\dfrac{(3x^2-2x+m)}{\sqrt{x}}=0$.
a) Tìm $m$ để phương trình có hai nghiệm phân biệt.
b) Tìm $m$ để phương trình có đúng 1 nghiệm.
Bài 4. Cho phương trình $(x+1)(x^2-2x-m) = 0$. Tìm $m$ để phương trình có:
a) nghiệm phân biệt.
b) 2 nghiệm phân biệt.
c) 1 nghiệm.
Bài 5. Cho phương trình $(\sqrt{x}-2)(-x^2 – 3mx+m^2) = 0$.
a) Giải phương trình khi $m=1$.
b) Chứng minh phương trình không có thể có 3 nghiệm phân biệt.
Bài 6.  Cho phương trình $\sqrt{x}(x^2-2mx +m-1) = 0$. Tìm $m$ để phương trình:
a) Giải phương trình khi $m = 2$.
b) Có 3 nghiệm phân biệt.