Tag Archives: DoiTrung

Đường đẳng giác, đường đối trung

ĐƯỜNG ĐẲNG GIÁC, ĐƯỜNG ĐỐI TRUNG
Nguyễn Tăng Vũ

1. Đường đẳng giác
1.1 Định nghĩa
Định nghĩa 1. Cho góc $ \widehat{xOy} $. Ta nói hai đường thẳng $ d_1 $ và $ d_2 $ là các đường đẳng giác trong góc đã cho nếu chúng cùng đi qua đỉnh $ O $ và đối xứng với nhau qua phân giác của góc đó.
Ví dụ 1.
a) Một trường hợp tầm thường là: Đường phân giác là đẳng giác với chính nó.
b) Trong một tam giác vuông, đường cao và trung tuyến xuất phát từ đỉnh góc vuông là hai đường đẳng giác.
c) Tổng quát hơn, nếu tam giác $ ABC $ nội tiếp trong đường tròn $ (O) $ thì $ AO $ và đường cao hạ từ đỉnh $ A $ xuống cạnh $ BC $ là hai đường đẳng giác của góc $ \widehat{BAC} $.

Bạn đọc có thể kiểm tra một cách dễ dàng các ví dụ trên.
1.2 Các tính chất cơ bản
1.2.1 Tiêu chuẩn để hai đường thẳng là đẳng giác của một góc
Định lý 1 (Định lý Steiner). Cho tam giác $ ABC $ và hai điểm $ D, E $ trên cạnh $ BC $. Khi đó, $ AD $ và $ AE $ là hai đường đẳng giác của góc $ \widehat{BAC}$ khi và chỉ khi
$ \dfrac{\overline{BD}}{\overline{DC}} \cdot \dfrac{\overline{BE}}{\overline{EC}}=\dfrac{AB^2}{AC^2} $.(1)
Chứng minh.
a) Phần thuận. Giả sử $ AD $ và $ AE $ là hai đường đẳng giác của góc $ \widehat{BAC} $, ta sẽ chứng minh đẳng thức (1) cũng được thỏa mãn. Ta có\ $ \dfrac{\overline{BD}}{DC}=\dfrac{S_{BAD}}{S_{DAC}}=\dfrac{AD \cdot AB \cdot \sin \widehat{BAD}}{AD \cdot AC \cdot \sin \widehat{DAC}}=\dfrac{AB}{AC} \cdot \dfrac{\sin \widehat{BAD}}{\sin \widehat{DAC}} $.(2)
Tương tự, ta cũng có
$ \dfrac{\overline{BE}}{\overline{EC}}=\dfrac{AB}{AC} \cdot \dfrac{\sin \widehat{BAE}}{\sin \widehat{EAC}} $.(3)
Mặt khác, do $ AD, AE $ là hai đường đẳng giác của góc $ \widehat{BAC}$ nên
$ \widehat{BAD}=\widehat{EAC}, \widehat{DAC}=\widehat{BAE}. $ (4)
Từ đây kết hợp với (2) và (3), ta thu được ngay đẳng thức (1).
b) Phần đảo. Giả sử $ AD, AE $ thỏa (1), ta chứng minh $ AD $ và $ AE $ là hai đường đẳng giác ứng với góc $ A $. Vẽ $ AD’ $ là đường đẳng giác của $ AE (D’ \in BC) $. Khi đó ta có hệ thức
$ \dfrac{\overline{BD’}}{\overline{D’C} } \cdot \dfrac{\overline{BE}}{\overline{EC}}=\dfrac{AB^2}{AC^2} $.
Kết hợp với $ (1) $, ta có $ \dfrac{\overline{BD}}{\overline{DC} }=\dfrac{\overline{BD’}}{\overline{D’C} } $. Suy ra $ D \equiv D’ $, tức $ AD $ và $ AE $ là hai đường đẳng giác.
Định lý 2. Cho góc $ \widehat{xOy} $ và đường thẳng $ d_1 $ qua $ O, A $ là một điểm bất kỳ trên $ d_1 $. Gọi $ H, K $ lần lượt là hình chiếu của $ A $ trên $ Ox, Oy $. Khi đó, đường thẳng $ d_2 $ là đường đẳng giác của $ d_1 $ ứng với góc $ \widehat{xOy} $ khi và chỉ khi $ d_2 $ qua $ O $ và vuông góc với $ HK. $
Chứng minh. Chứng minh định lý này khá đơn giản, để thuận tiện ta sử dụng góc hình học.

a) Phần thuận. Giả sử $ d_2 $ là đường đẳng giác của $ d_1 $, ta sẽ chứng minh $ d_2 \bot HK. $ Ta có $ OHAK $ là tứ giác nội tiếp đường tròn đường kính $ OA $ nên
$ \widehat{AOH} = \widehat{AKH}.$
Mặt khác, ta lại có $ \widehat{KOB}= \widehat{AOH} $, nên từ trên suy ra $ \widehat{KOB}=\widehat{AKH} $.
Vì $ \widehat{AKH}+ \widehat{HKO}=90^0 $ nên ta có $ \widehat{AKH}+ \widehat{HKO}=90^0 $, từ đó suy ra $ OB \bot HK. $
b) Phần đảo. Giả sử $ d_2 $ đi qua $ O $ và vuông góc với $ KH $, ta sẽ chứng minh $ d_2 $ là đường đẳng giác của $ d_1 $. Gọi đường thẳng $ d’$ là đường đẳng giác của $ d1 $ ứng với góc $ \widehat{xOy} $. Theo phần thuận ta có $ d’ \bot HK $, suy ra $ d’ $ trùng $ d_2 $. Vậy $ d_2 $ là đường đẳng giác của $ d_1 $.
Hệ quả 1.Gọi $ A_1, A_2 $ lần lượt là điểm đối xứng của $ A $ qua $ Ox $ và $ Oy $. Khi đó, đường trung trực của đoạn $ A_1A_2 $ là đường đẳng giác của $ OA $.
1.2.2 Các tính chất cơ bản
Định lý 3. Cho góc $ \widehat{xOy}. A $ và $ B $ là hai điểm sao cho $ OA, OB $ là hai đường đẳng giác ứng với góc $ \widehat{xOy}. A_1, A_2 $ lần lượt là hình chiếu của $ A $ trên $ Ox $, $ Oy $ và $ B_1 $, $ B_2 $ lần lượt là hình chiếu của $ B $ trên $ Ox $, $ Oy $. Khi đó, ta có các điều sau:
a) Bốn điểm $ A_1, A_2, B_1, B_2 $ cùng nằm trên một đường tròn có tâm là trung điểm của $ AB $;
b) $ AA_1 ·BB_1 = AA_2 ·BB_2. $
Chứng minh.

a) Ta có
$ OA_1 = OA \cos\widehat{AOA_1}, OB_1 = OB \cos\widehat{BOB_1 }$\
và $ OA_2 = OA \cos \widehat{AOA_2}, OB_2 = OB \cos\widehat{BOB_2} $.\
Suy ra $ OA_1 \cdot OB_1 = OA_2 \cdot OB_2 $. Do đó, bốn điểm $ A_1, A_2, B_1 $ và $ B_2 $ cùng thuộc một đường tròn. Hơn nữa tâm của đường tròn này chính là trung điểm của $ AB. $
b) Kết quả này được suy ra trực tiếp từ định nghĩa đường đẳng giác.
Định lý 4. Cho tam giác $ ABC $. Các cặp đường thẳng $ d_a, d’_a $ là đường đẳng giác ứng với góc $ A $, định nghĩa tương tự với $ d_b, d’_b và d_c, d’_c $. Khi đó, $ d_a, d_b, d_c $ đồng quy tại $ P $ thì  $ d’_a, d’_b, d’_c $ đồng quy tại $ P’. $ hoặc đôi một song song.
Chứng minh.

Sử dụng định lý Ceva dạng lượng giác ta chứng minh định lý 4 như sau: Giả sử $ d_a,d_b,d_c $ đồng quy tại $ P, $ ta có
$ \dfrac{\sin(d_a,c)}{\sin(d_a,b)} \cdot \dfrac{\sin{d_b,a}}{\sin(d_b,c)} \cdot \dfrac{\sin(d_c,b)}{\sin(d_C,a)}=-1. $
Lại có $ (d_a, c) = −(d’_a, b) $ và $ (d_a, b) = −(d’_a, c) $ nên
$\dfrac{\sin(d_a,c)}{\sin(d_a,b)}=\dfrac{\sin(d’_a,b)}{\sin(d’_a,c)}. $
Tương tự ta cũng có:
$ \dfrac{\sin(d_b,a)}{\sin(d_b,c)}=\dfrac{\sin(d’_b,c)}{\sin(d’_b,a)}, $ $ \dfrac{\sin(d_c,b)}{\sin(d_c,a)}=\dfrac{\sin(d’_c,a)}{\sin(d’_c,b)}. $
Từ những kết quả này, ta suy ra
$\dfrac{\sin(d’_a,b)}{\sin(d’_a,c)}=\dfrac{\sin(d’_b,c)}{\sin(d’_b,a)}= \dfrac{\sin(d’_c,a)}{\sin(d’_c,b)}=-1.$
Do đó theo định lý Ceva thì $ d’_a, d’_b, d’_c $ đồng quy hoặc song song.

Chú ý: Nếu $P$ thuộc đường tròn ngoại tiếp tam giác $ABC$ thì $d’_a, d’_b, d’_c$ đôi một song song.
Định lý được chứng minh. Từ định lý 4, ta có định nghĩa sau:
Định nghĩa 2. Hai điểm được gọi là hai điểm đẳng giác nếu các cặp đường thẳng nối chúng với mỗi đỉnh là những cặp đường đẳng giác.
Ví dụ 2. Trong một tam giác thì tâm đường tròn ngoại tiếp và trực tâm là hai điểm đẳng giác.
Áp dụng định lý 3 ta có định lý sau:

Định lý 5. Cho $ P $ và $ p’ $ là hai điểm đẳng giác đối với tam giác $ ABC $. Gọi $ X, Y, Z $ lần lượt là các hình chiếu của $ P $ trên các cạnh $ BC, AC, AB $ và $ X’, Y’, Z’$ lần lượt là các hình chiếu của $ P’$ trên các cạnh $ BC, AC, AB $. Khi đó, sáu điểm $ X, Y, Z, X’, Y’, Z’ $ cùng nằm trên một đường tròn.
Một hệ quả của định lý 5 là định lý về đường tròn Euler:
Định lý 6. Trong một tam giác, chân các đường cao và trung điểm các cạnh thì cùng thuộc một đường tròn, tâm đường tròn Euler chính là trung điểm của đoạn thẳng nối trực tâm và tâm ngoại tiếp tam giác.
1.3 Một số bài toán áp dụng
Bài toán 1. Cho tam giác $ ABC $. Đường tròn thay đổi qua $ B $ và $ C $ cắt các đường thẳng $ AB $ và $ AC $ tại $ D $ và $ E $. Chứng minh rằng tâm $ I $ của đường tròn ngoại tiếp tam giác $ ADE $ di chuyển trên một đường thẳng cố định.

Chứng minh.

Ta có tam giác $ ADE $ và tam giác $ ACB $ đồng dạng, suy ra hai tam giác $ AID $ và $ AOC $ đồng dạng, do đó $\widehat{DAI}= \widehat{OAC} $.Kết quả này cho thấy $ AI $ và $ AO $ là hai đường đẳng giác đối với góc $ A $. Mà đường cao $ AH $ của tam giác $ ABC $ và $ AO $ cũng là hai đường đẳng giác. Từ đây suy ra $ I \in AH $ cố định.
Nhận xét. Đây là bài toán thi vào trường Phổ thông Năng khiếu năm 2011 và là một bài toán khá dễ. Ta không cần phải sử dụng tới khái niệm đẳng giác. Tuy nhiên, qua bài này ta có một dấu hiện để nhận biết được hai đường đẳng giác: Cho hai điểm $ D, E $ thuộc các đường thẳng $ AB $ và $ AC $ sao cho tam giác $ ADE $ đồng dạng với tam giác $ ACB $ . Khi đó các đường thẳng tương ứng của hai tam giác $ ADE $ và $ ABC $ qua $ A $ là hai đường đẳng giác của góc $ \widehat{BAC} $.
Cụ thể hơn: Cho tam giác $ ABC $. Nếu $ DE $ là đường đối song của $ BC $ thì trung tuyến (đường cao…) xuất phát từ $ A $ của tam giác $ ADE $ và tam giác ABC là hai đường đẳng giác.
Đây là một ý khá hay để ta giải được các bài toán. Ta xét ví dụ sau:

Bài toán 2. Chứng minh rằng trong một tam giác, các đường thẳng kẻ từ tâm của đường tròn bàng tiếp trong mỗi góc, vuông góc với cạnh đối diện, đồng quy tại một điểm.
Chứng minh.


Gọi $ I_a, I_b, I_c $ lần lượt là tâm đường tròn bàng tiếp ứng với đỉnh $ A, B, C $. Dễ dàng chứng minh $ I_aA, I_bB, I_cC $ là các đường cao của tam giác $ I_aI_bI_c $. Vì $ BC $ và $ I_aI_b $ là hai đường đối song nên theo tích chất trên ta có đường thẳng qua $ A $ vuông góc với $ BC $ và đường thẳng $ I_aA $ là hai đường đẳng giác ứng với góc $ I_bI_aI_c $. Áp dụng định lý 4, ta có điều cần chứng minh.\
Bài toán 3 (Nga, 2010). Đường tròn nội tiếp của tam giác nhọn $ ABC $ tiếp xúc với các cạnh $ AB, BC, AC $ lần lượt tại $ C_1, A_1, B_1 $. Các điểm $ A_2, B_2 $ lần lượt là trung điểm của các đoạn $ B_1C_1, A_1C_1 $. Gọi $ P $ là giao điểm của đường tròn nội tiếp và $ CO $, với $ O $ là tâm đường tròn ngoại tiếp tam giác $ ABC $. Gọi $ N, M $ là giao điểm thứ hai của $ PA_2, PB_2 $ với đường tròn nội tiếp. Chứng minh rằng giao điểm của $ AN $ và $ BM $ thuộc đường cao hạ từ $ C $ của tam giác $ ABC $.
Chứng minh.

Ta biết rằng đường cao hạ từ $ C $ và $ CO $ là hai đường đẳng giác. Các đường thẳng $ CO, BP, AP $ cắt nhau tại $ P $. Do vậy, ta chỉ cần chứng minh $ (AP, AN) $ và $ (AP, AM) $ là các cặp đường đẳng giác ứng với góc $ A $ và $ B $ của tam giác $ ABC $.
Từ đây, ta đi đến lời giải cho bài toán này như sau: Gọi $ I $ là tâm đường tròn nội tiếp tam giác $ ABC $, $ K $ là giao điểm của $ AN $ và $ BM $. Áp dụng phương tích của điểm $ P $ đối với đường tròn $ (I) $ và đường tròn ngoại tiếp tứ giác $ AC_1IB_1 $, ta có
$ \overline{A_2I} \cdot \overline{A_2A}= \overline{A_2C_1} \cdot \overline{A_2B_1}, \overline{A_2C_1} \cdot \overline{A_2B_1}= \overline{A_2N} \cdot \overline{A_2P.} $
Từ đó suy ra
$\overline{A_2N} \cdot \overline{A_2P}=\overline{A_2I} \cdot \overline{A_2A}. $
Đẳng thức này cho thấy $ ANIP $ là tứ giác nội tiếp. Hơn nữa $ IN = IP $ nên ta có $ AI $ là phân giác góc $ \widehat{NAP} $, do đó $ AN $ và $ AP $ là hai đường đẳng giác ứng với góc $ A $.

Chứng minh tương tự ta cũng có $ BM $ và $ BP $ là hai đường đẳng giác của góc $ B $. Mà $ AP, BP, CO $ đồng quy tại $ I $ và $ AN, BM $ cắt nhau tại $ K $, nên $ CK $ là đường đẳng giác của $ CO $. Suy ra $ K $ thuộc đường cao hạ từ $ C $ của tam giác $ ABC $.

2. Đường đối trung
2.1 Định nghĩa
Định nghĩa 3.Trong một tam giác, đường đẳng giác với trung tuyến xuất phát từ một đỉnh được gọi là đường đối trung của tam giác.
Ví dụ 3. Trong một tam giác vuông thì đường cao xuất phát từ đỉnh chính là đường đối trung.
2.2. Các tính chất cơ bản
Đường đối trung là đường đẳng giác với trung tuyến nên sẽ có các tính chất của cặp đường đẳng giác. Từ các định lý 1, 2, 3, 4 và 5, ta có các tính chất sau:
\begin{enumerate}
\item Cho tam giác ABC. Ta có AD (D ∈ BC) là đường đối trung khi và chỉ khi:\
a) $ \dfrac{DB}{DC}=\dfrac{AB^2}{AC^2}; $\
b) $ \dfrac{\sin \widehat{DAB}}{\sin \widehat{DAC}}=\dfrac{AB}{AC}; $\
c) $ \dfrac{DH}{DK}=\dfrac{AB}{AC} (H,K $ lần lượt là hình chiếu của $ D $ lên $ AB,AC $.
\item Các đường đối trung giao nhau tại một điểm gọi là điểm Lemoine. Chú ý rằng:
a) Điểm Lemoine và trọng tâm là hai điểm đẳng giác;
b) Điểm Lemoine có nhiều tính chất hay, ta sẽ xét các tính chất đó trong phần bài tập.

2.3 Cách dựng đường đối trung và áp dụng

Dựa vào các tính chất của đường đối trung, trong phần này ta sẽ xét xét các cách dựng đường đối trung. Qua đó, ta xem xét một vài ví dụ liên quan tới đường đối trung của tam giác.
Bài toán 4. Cho tam giác $ ABC $. Trên đường thẳng $ AB $ lấy một điểm $ D $ và trên đường thẳng $ AC $ lấy một điểm $ E $ sao cho $ DE $ là đường đối song của $ BC $. Chứng minh rằng trung tuyến của tam giác $ ADE $ là đường đối trung của tam giác $ ABC $.

Bài toán này có thể được chứng minh dựa vào nhận xét sau bài toán 1 (bạn đọc có thể tự chứng minh).
Bài toán 5. Cho tam giác $ ABC $. Tiếp tuyến tại $ B $ và $ C $ của đường tròn ngoại tiếp tam giác $ ABC $ cắt nhau tại $ P $. Chứng minh rằng $ AP $ là đường đối trung của tam giác $ ABC $.
Chứng minh.

a) Cách 1. Gọi $ D $ là giao điểm của $ AP $ và $ BC $, ta có\
$ \dfrac{BD}{DC}=\dfrac{S_{ABP}}{S_{ACP}}=\dfrac{AB \cdot BP \cdot \sin ABP}{AC \cdot CP \cdot \sin ACP}=\dfrac{AB}{AC} \cdot \dfrac{\sin ACB}{\sin ABC}=\dfrac{AB^2}{AC^2}$
Do đó $ AP $ là đường đối trung của tam giác $ ABC $.


b) Cách 2. Gọi $ D, E $ là giao điểm của $ AB, AC $ với đường tròn tâm $ M $ bán kính $ MB $ và $ O $ là tâm đường tròn ngoại tiếp tam giác $ ABC $. Ta cần chứng minh $ DE $ là đường kính của đường tròn. Thật vậy ta có
$\widehat{DBE}=\widehat{BAE}+\widehat{AEB}=\dfrac{\widehat{BOC}}{2}+\dfrac{\widehat{BPC}}{2}=90^0, $
nên $ DE $ là đường kính và $ P $ là trung điểm của $ DE $. Từ đây, dễ dàng suy ra $ AP $ là đường đối trung của tam giác $ ABC $.
Sau đây ta xét một vài ví dụ có liên quan đến đường đối trung.
Bài toán 6 (Đề chọn đội tuyển trường Phổ thông Năng khiếu, 2010). Cho tam giác $ ABC $ nội tiếp đường tròn $ (O) $ có $ A $ cố định và $ B, C $ thay đổi trên $ (O) $ sao cho $ BC $ luôn song song với một đường thẳng cố định. Các tiếp tuyến của $ (O) $ tại $ B $ và $ C $ cắt nhau tại $ K $. Gọi $ M $ là trung điểm của $ BC, N $ là giao điểm của $ AM $ với $ (O) $. Chứng minh đường thẳng $ KN $ luôn qua một điểm cố định.
Chứng minh.

Gọi $ D, P $ lần lượt là giao điểm của $ KN $, $ AP $ và $ (O) $. Vì $ BC $ có phương không đổi nên $ KM $ là đường thẳng cố định. Theo trên, ta thấy $ AK $ là đường đối trung, suy ra $ \widehat{BAP}= \widehat{NAC} $. Từ đó ta chứng minh được $ P, N $ đối xứng nhau qua đường thẳng $ KM $ cố định. Khi đó dễ dàng suy ra $ D $ đối xứng với $ A $ qua đường thẳng $ KM $ nên $ D $ cố định.
Bài toán 7. Cho tam giác $ ABC $. Một đường tròn thay đổi qua $ BC $ cắt các cạnh $ AB $ và $ AC $ tại $ D $ và $ E $. Tiếp tuyến tại $ D $ và $ E $ của đường tròn ngoại tiếp tam giác $ ADE $ cắt nhau tại $ P $. Chứng minh rằng $ P $ luôn thuộc một đường thẳng cố định.
Chứng minh. Nhận xét $ P $ thuộc đường đối trung của tam giác $ ADE $. Mà $ BC $ là đường đối song của $ DE $ nên trung tuyến $ AM $ của tam giác $ ABC $ là đường đối trung của tam giác $ ADE $. Do đó $ P $ thuộc $ AM $ cố định.
Bài toán 8. Cho tam giác $ ABC $ nhọn khác tam giác cân. $ M $ là trung điểm của $ BC $. $ D $ và $ E $ là các điểm thuộc $ AM $ sao cho $ AD = BD $ và $ AE = EC. DB $ cắt $ CE $ tại $ F $. Một đường tròn qua $ B $ và $ C $ cắt các cạnh $ AB, AC $ lần lượt tại $ H $ và $ K $. Chứng minh rằng $ AF $ đi qua trung điểm của $ HK $.
Chứng minh.

Ta thấy rằng $ HK $ là đường đối song của $ BC $ nên để chứng minh $ AF $ qua trung điểm của $ HK $ thì ta chỉ cần chứng minh $ AF $ là đường đối trung của tam giác $ ABC $. Áp dụng định lý sine cho tam giác $ ABF $ và tam giác $ ACF $, ta có
$ \dfrac{AB}{AF}=\dfrac{\sin \widehat{AFB}}{\sin \widehat{ABF}}= \dfrac{\sin \widehat{AFB}}{\sin \widehat{BAD}} $ (1)
và $ \dfrac{AC}{AF}=\dfrac{\sin \widehat{AFC}}{\sin \widehat{ACF}}= \dfrac{\sin \widehat{AFC}}{\sin \widehat{EAC}} $.(2)
Mà $ D, E $ thuộc trung tuyến $ AM $ nên ta có
$ \dfrac{\sin \widehat{DAB}}{\sin \widehat{EAC}}=\dfrac{AC}{AB} $.(3)
Từ (1), (2) và (3), ta suy ra $ \sin\widehat{AFB} = \sin\widehat{AFC}, $ tức
$ \widehat{AFB} = \widehat{AFC}.(4) $
Mặt khác ta lại có:
$ \widehat{BFC} = \widehat{FDE}+\widehat{FED}=2\widehat{BAD}+2\widehat{EAC} =2\widehat{BAC}=\widehat{BOC}.$
Kết hợp với trên, ta được
$ \widehat{AFB}=\widehat{AFC}=180^0-\widehat{BAC} $.
Như vậy, ta có
$ \widehat{FAC}+\widehat{FCA}=\widehat{BAC}=\widehat{BAD}+\widehat{CAD} $.
Mà $ \widehat{FCA}=\widehat{CAD} $ nên $ \dfrac{FAC}{BAD}. $ Vậy $ AF $ là đường đối trung của tam giác $ ABC. $
Từ đó suy ra điều cần chứng minh.
Nhận xét. Sau khi đã chỉ ra được $ \widehat{BFC}=\widehat{BOC} $ thì ngoài cách chứng minh như trên, ta còn có một cách khác để hoàn tất bài toán như sau: Từ $ \widehat{BFC}=\widehat{BOC} $, ta có tứ giác $ BFOC $ nội tiếp. Gọi $ P $ là giao điểm của $ AF $ và ($ BFOC) $. Từ (4) suy ra $ PB = PC. $ Điều này chứng tỏ $ OP $ là đường kính và $ PB \bot OB, PC \bot OC. $ Suy ra $ PB, PC $ là tiếp tuyến của $ (ABC) $ và như thế, $ AP $ là đường đối trung của tam giác $ ABC $. Từ đây ta có ngay điều phải chứng minh. Qua cách chứng minh này, ta thấy $ OF \bot AF $ và $ F $ thuộc đường tròn đường kính $ AO $. Đây chính là nội dung của bài toán thi Olympic Toán toàn nước Mỹ năm 2008: Cho tam giác $ ABC $ nhọn và không phải tam giác cân, đường trung trực của $ AB $ và $ AC $ cắt trung tuyến $ AM $ tại $ D $ và $ E. F $ là giao điểm của $ BD $ và $ CE $. Gọi $ N, P $ lần lượt là trung điểm $ AB, AC $ và $ O $ là tâm được tròn ngoại tiếp tam giác $ ABC $. Chứng minh rằng bốn điểm $ N, F, O, P $ cùng nằm trên một đường tròn.

3 Bài tập tự luyện
Bài tập 1. Cho tam giác $ ABC $ có $ O $ là tâm đường tròn ngoại tiếp. Gọi $ O_a, O_b, O_c $ lần lượt là tâm đường tròn ngoại tiếp các tam giác $ OBC $, $ OAC $ và $ OAB $. Chứng minh rằng $ AO_a, BO_b, CO_c $ đồng quy tại điểm $ K’ $và $ K’ $ là điểm đẳng giác của tâm đường tròn Euler của tam giác $ ABC $. ($ K’ $ được gọi là điểm Kosnita.)
Bài tập 2. Cho tam giác $ ABC $ nội tiếp đường tròn $ (O) $ và $ P $ là điểm sao cho $ PB, PC $ là các tiếp tuyến với đường tròn $ (O) $. Trên $ AB $ và $ AC $ ta lấy các điểm $ K $ và $ H $ sao cho $ PK \parallel AC $ và $ PH \parallel AB $. Chứng minh rằng các điểm $ H, K $ và trung điểm các cạnh $ AB, AC $ cùng nằm trên một đường tròn.
Bài tập 3 (APMO, 2010). Cho tam giác $ ABC $ nhọn thỏa điều kiện $ AB > BC, AC > BC $. Gọi $ H $ và $ O $ lần lượt là trực tâm và tâm đường tròn ngoại tiếp tam giác $ ABC $. Giả sử đường tròn ngoại tiếp tam giác AHC cắt đường thẳng $ AB $ tại điểm $ M $ khác $ A $, và đường tròn ngoại tiếp tam giác $ AHB $ cắt đường thẳng $ AC $ tại điểm $ N $ khác $ A $. Chứng minh rằng tâm đường tròn ngoại tiếp tam giác $ MNH $ thuộc đường thẳng $ OH $.
Bài tập 4. Cho tam giác $ ABC $ cân tại $ A $, và $ P $ là một điểm nằm trong tam giác sao cho $ \widehat{PBA}=\widehat{PCB} $. Gọi $ M $ là trung điểm của $ BC $, chứng minh rằng $ \widehat{APC}=\widehat{MPB}=180^0 $.
Bài tập 5. Cho đường tròn $ (O) $ và hai điểm $ A, B $ cố định trên đường tròn, $ M $ là trung điểm của $ AB $. Điểm $ C $ thay đổi trên cung lớn $ AB $. Đường trung trực của $ AC $ và $ BC $ cắt $ CM $ lần lượt tại $ D $ và $ E $. Gọi $ F $ là giao điểm của $ AD $ và $ BE $. Chứng minh rằng $ CF $ luôn đi qua một điểm cố định khi $ C $ thay đổi.
Bài tập 6 (Nga, 2010). Một điểm $ B $ thay đổi trên dây $ AC $ của đường tròn $ (\omega) $. Đường tròn đường kính $ AB $ và $ BC $ có tâm là $ O_1 $ và $ O_2 $ cắt $ (\omega) $ lần lượt tại $ D $ và $ E $. Tia $ O_1D $ và $ O_2E $ cắt nhau tại $ F $, tia $ AD $ và $ CE $ cắt nhau tại $ G $. Chứng minh rằng $ FG $ đi qua trung điểm của $ AC $.
Bài tập 7. Cho tam giác $ ABC $. Một đường thẳng $ (d) $ thay đổi luôn song song với $ BC $ cắt $ AB $ và $ AC $ lần lượt tại $ M, N $. Gọi $ I $ là giao điểm của $ BN $ và $ CM $. Đường tròn ngoại tiếp tam giác $ BIM $ và $ CIN $ cắt nhau tại $ P $ (khác $ I $). Chứng minh rằng $ P $ luôn thuộc một đường thẳng cố định khi $ (d) $ thay đổi.
4. Lời kết
Bài viết này không đi sâu nghiên cứu các tính chất của đường đẳng giác, điểm đẳng giác, mà chỉ nêu lên một khái niệm khá phổ biến trong hình học nhưng có thể còn lạ lẫm với nhiều học sinh, qua đó giúp cho các em có thêm một hướng nhìn khi giải các bài toán hình học. Bạn nào yêu thích có thể nghiên cứu thêm trong các tài liệu tham khảo.

Hình học tĩnh và động(Phần 1)

Tôi là một người may mắn vì từng là học trò và là đồng nghiệp của thầy Lê Bá Khánh Trình tại trường PTNK. Sau các năm học và giảng dạy tại trường, tôi học hỏi được ở thầy nhiều điều, đối với tôi thầy là thầy giáo giỏi và sống rất giản dị. Ở trường PTNK hiện nay, thầy là tổ trưởng tổ toán đồng thời phụ trách môn hình học của các lớp chuyên và đội tuyển. Thầy chưa xuất bản quyển sách nào cho riêng mình về hình học, chỉ có những bài giảng được trình bày trong các hội thảo hay trại hè. Tôi có được bản viết tay một bài báo hay của thầy, bài viết được trình bày trong hội thảo toán học sơ cấp và đăng trong kỷ yếu trại hè năm 2009. Tôi xin được đăng lại để các bạn yêu thích hình học tham khảo.

  1. Hình học tĩnh hay động

Trong bài này, tôi muốn trình bày một đôi điều riêng tư về môn hình học phổ thông (hay còn được gọi là hình học sơ cấp) dưới hai cách nhìn có phần nào khác biệt nhau. Trước hết, thông dụng hơn cả là cách nhìn của một người quan tâm đến việc giải các bài toán hình học. Cách nhìn này thường yêu cầu xem xét, phân loại các bài toán khác nhau, trình bày kinh nghiệm giải quyết chúng và tìm ra các mối liên quan giữa chúng với các bài toán đã biết. Cách nhìn này thường được quan tâm hàng đầu và thường là nội dung chính trong các bài viết, các tài liệu về toán phổ thông. Bên cạnh đó, tôi cũng muốn trình bày các vấn đề ở đây dưới một cách nhìn khác, cách nhìn của người muốn tìm tòi, phát hiện ra các bài toán mới, những bài toán không chỉ mới về nội dung mà còn có tác dụng tích cực trong việc rèn luyện tư duy và các kỹ năng cần thiết của người học, đặc biệt là đối với những học sinh giỏi. Đây là công việc đòi hỏi ở chúng ta nhiều công phu không kém gì công việc giải quyết các bài toán. Tuy nhiên, ở nước ta dường như công việc này còn chưa được quan tâm đúng mức. Đây đó, được ưa chuộng hơn cả vẫn là sử dụng các bài toán hay, mẫu mực đã có hoặc tận dụng các đề toán mới được công bố ở các nước khác. Cách làm này khá tiện lợi, hợp lý và hiệu quả nhưng thực tế có hai nguy cơ:

  • Một là, nếu sử dụng các bài toán đã được công bố trong các kỳ thi, việc đánh giá sẽ thiếu công bằng và chính xác;
  • Hai là, đáp án của nhiều bài toán do vô tình hay hữu ý, đã ít nhiều bị biến dạng. Điều này có thể làm cho cách trình bày trở nên ngắn gọn hơn nhưng đồng thời cũng đã làm mất đi những ý tưởng trong sáng và tự nhiên ban đầu khi những bài toán đó được xây dựng nên. Vì thế, nếu sử dụng lại các đáp án một cách máy móc, thiếu sự biên tập cần thiết thì rất có thể chúng sẽ có tác dụng tiêu cực đến việc rèn luyện tư duy của người học.

Với những suy nghĩ đó, tôi nghĩ chắc cũng đã đến lúc chúng ta cần tăng cường sự quan tâm và đầu tư nhiều công sức hơn nữa cho công việc “sáng tác” này. Một công việc không dễ dàng nhưng chắc chắn sẽ rất thú vị và bổ ích. Bây giờ, đã đến lúc đi thẳng vào chủ đề của bài này: Hình học tĩnh hay động? Nếu chỉ nhìn các bài toán mà chúng ta vẫn thường giải quyết hoặc tìm tòi thì hình học vừa tĩnh lại vừa động. Hình học tĩnh trong những bài toán mà ở đó, các yếu tố như điểm, đường thẳng, đường tròn,… đều không thay đổi và yêu cầu đặt ra ở đây thường là chứng minh các tính chất hình học hoặc tính toán các đại lượng nào đó trong hình vẽ đã cho. Còn hình học sẽ động trong những bài toán mà ở đó, bên cạnh các yếu tố cố định, không thay đổi có 1 vài yếu tố thay đổi và yêu cầu ở đây thường là tìm quĩ tích, tìm các điểm cố định hoặc tìm giá trị lớn nhất, nhỏ nhất của một đại lượng hình học. Tuy nhiên, đây chỉ là cái nhìn ban đầu. Trên quan điểm của những người mong muốn đi tìm lời giải cho các bài toán khó và cả trên quan điểm của những người mong muốn phát hiện ra những bài toán hình học mới, theo tôi, hình học luôn luôn cần vận động, vận động ngay cả trong những bài toán mà các yếu tố được cho đều cố định, không đổi. Bởi vì chính cách nhìn, cách tư duy trong các yếu tố của hình vẽ không ngừng biến động, tuơng tác, thậm chí toàn bộ cả hình vẽ đều không thay đổi sẽ giúp chúng ta tìm ra đúng những lời giải đẹp nhất và phản ánh trọn vẹn nhất bản chất hình học của một bài toán.

  2.   Động trong biến hình

Một trong những công cụ quan trọng hàng đầu để thực hiện việc biến đổi các yếu tố trong một hình chính là phép biến hình. Không phải ngẫu nhiên mà hiện nay, những lời giải hay nhất của nhiều bài toán hình học cũng như rất nhiều phát hiện hình học thú vị thường nhận được trên cơ sở vận động ý tưởng và kỹ thuật của các phép biến hình.

Thế nhưng để có thể vận dụng chúng một cách hiệu quả, trước hết phải có được một nền tảng tương đối vững chắc về biến hình mà cụ thể là phải nắm bắt được một vài mệnh đề quan trọng và làm quen được với một số tình huống tiêu biểu cho việc thực hiện các động tác biến hình hợp lý.

Vậy đó là những mệnh đề nào, những tình huống nào? Trong khuôn khổ bài này, tôi chỉ xin phép trình bày những gì liên quan đến phép quay, một loại phép biến hình tuy đơn giản nhưng lại có mức độ áp dụng cao và mang lại rất nhiều kết quả phong phú. Tương tự, không khác biệt với phép quay bao nhiêu là phép vị tự quay. Thông thường, phép vị tự quay đem lại các kết quả tổng quát hơn và nâng cao độ phức tạp của bài toán mà vẫn giữ nguyên ý tưởng ban đầu của phép quay.

Nhưng trước khi phát biểu ra đây các mệnh đề, tình huống cần thiết được nhắc ở trên, xin phép được nói qua một chút cái gọi là “cảm hứng” thúc đẩy tôi viết ra những dòng này. “Cảm hứng” đó nảy sinh từ việc xem xét giáo trình Hình học nâng cao lớp 11 vừa được đưa vào giảng dạy từ vài năm học vừa qua, trong đó điểm đáng lưu ý nhất là phần các phép biến hình được trình bày đầy đủ hơn và đặc biệt là đã được phân bố ngay vào đầu năm học (trước đây, phần này chỉ được giảng dạy vào cuối năm lớp 10). Rõ ràng, với sự thay đổi này, hội đồng biên soạn sách giáo khoa cho thấy ý định rất nghiêm túc của mình là tăng cường hơn nữa sự chú ý cho phần các phép biến hình và đây thực sự là điều rất nên làm.

Các phép biến hình chính là mảng kiến thức mà ở đó, học sinh có thể làm được với những ý tưởng và những kỹ năng thích hợp nhất cho việc tiếp thu các kiến thức của toán học hiện đại. Những ý tưởng và những kỹ năng đó là gì? Đó là ý tưởng ánh xạ rất rõ nét trong cách trình bày và hệ thống các phép biến hình. Đó là ý tưởng phân loại và mô tả đầy đủ các lớp phép biến hình (mà tiêu biểu nhất là các phép dời hình). Và tất nhiên, quan trọng hơn cả là qua việc vận dụng các phép biến hình để giải toán, tư duy hình học của học sinh sẽ được nâng lên ở một cấp độ mới. Thay vì chỉ biết tính toán và so sánh các đại lượng hình học (góc, độ dài, diện tích,… ) để từ đó đi đến một chứng minh như trước đây, nay với việc sử dụng các phép biến hình, các em sẽ được tập quan sát những vận động, những tương tác giữa các yếu tố, những cấu trúc tiềm ẩn trong một hình vẽ để rồi từ đó rút ra được những chứng minh, những kết luận sâu sắc, nêu bật toàn diện bản chất của hình vẽ đó.

Những ý định như vậy là rất đúng đắn và chắc cũng đã được hội đồng biên soạn sách giáo khoa đem ra cân nhắc kỹ lưỡng trước khi quyết định việc phân bố lại chương trình sách giáo khoa nâng cao về hình học. Chỉ tiếc một điều, theo nhận xét chủ quan của tôi, là nội dung trình bày trong sách giáo khoa lớp 11 có lẽ vẫn còn chưa đủ để học sinh rèn luyện, nắm bắt và vận dụng công cụ biến hình ở mức độ cần thiết, ít ra là chưa cho phép các em làm quen được với ba ý tưởng quan trọng và bổ ích được kể ra ở trên.
Vậy nên cần bổ sung những điều gì? Xin điểm qua một vài điều tôi cho là quan trọng nhất và nhân tiện, đây cũng chính là trả lời cho câu hỏi đặt ra ở đầu phần này. Đó là phát biểu các mệnh đề, các tình huống chính mà bất cứ ai khi học các phép toán biến hình (cụ thể là phép quay) đều phải biết để có thể vận dụng thực sự tốt công cụ này.

2.1. Sự tồn tại của phép quay. Trước hết, để giúp cho học sinh hiểu rõ và tự tin hơn khi sử dụng các phép biến hình, nên trang bị cho các em các mệnh đề về tồn tại duy nhất của một phép biến hình trong những tình huống đơn giản và thông dụng nhất. Đối với phép quay, mệnh đề sau đáp ứng đủ các yêu cầu đó.

1Mệnh đề 2.1. Cho hai đoạn thẳng AB và A’B’ sao cho AB = A’B’ và $latex \overrightarrow{AB} \neq \overrightarrow{A’B’}$. Khi đó, tồn tại duy nhất một phép quay R biết AB thành A’B’ tương ứng.

Mệnh đề này cho phép ta chỉ cần quan sát thấy có hai đoạn thẳng bằng nhau là có thể liên tưởng ngay đến một phép quay và sẵn sàng vận dụng nó nếu có thêm các điều kiện thích hợp chứ không phải chờ đến khi có được hai tam giác, hai hình bằng nhau mới bắt đầu nghĩ đến phép quay. Ngoài ra, mệnh đề này còn là cơ sở để mô tả đầy đủ các phép dời hình (sẽ đề cập ở dưới). Tuy nhiên, nó chỉ có ý nghĩa giúp ta làm quen với tình huống. Muốn mang lại hiệu quả thực sự phải bổ sung thêm một ít về việc xác định phép quay tồn tại nói trên.

Mệnh đề 2.2. (Mệnh đề 1 bổ sung) Phép quay R có góc quay là $latex \alpha = \widehat{(\overrightarrow{AB}, \overrightarrow{A’B’})} $ và tâm $latex O$ đồng thời nằm trên các trung trực của AA’ và BB’ cũng như các cung tròn (đơn) chứa các điểm nhìn đoạn $latex AA’, BB’$ dưới một góc có hướng bằng $latex \alpha$

Bổ sung này cho ta một cái nhìn khá toàn diện về tình huống đang xét (xem hình vẽ); nhưng để có được sự quan sát đầy đặn và sâu sắc hơn nữa, cần trang bị thêm:

Mệnh đề 2.3. Ta giữ các giả thiết như mệnh đề 2.1 và mệnh đề 2.2. (1) giả sử các đường thẳng AB và A’B’ cắt nhau tại P, khi đó các tứ giác $latex APOA’, BPOB’$ nội tiếp. (2) Giả sử các đường thẳng $latex AA’, BB’$ cắt nhau tại Q, khi đó các tứ giác $latex ABOQ, A’B’OQ$ nội tiếp.

Các mệnh đề này rõ ràng là chứng minh không khó (nên xin bỏ qua ở đây). Còn lợi ích mà chúng có thể mang lại thì lại khá phong phú. Xin bắt đầu bằng một bài tập khá quen thuộc trong đó việc vận dụng ý tưởng biến hình là rất tự nhiên và đơn giản.

Ví dụ 2.4. Cho tam giác ABC cân tại A . Trên cạnh AB và AC lần lượt lấy các điểm M,N sao cho AM = CN. Chứng minh đường tròn ngoại tiếp tam giác AMN luôn đi qua một điểm cố định khác A.

2Lời giải. Xét phép quay biết đoạn thẳng AM tương ứng thành đoạn thẳng CN. Tâm quay O theo mệnh đề 2.2 là giao điểm của đường trung trực và cung tròn quỹ tích những điểm K sao cho:

 $latex \widehat{(\overrightarrow{KA}, \overrightarrow{KC})} = \widehat{(\overrightarrow{AM}, \overrightarrow{CN} )}$,

nên tâm quay O cố định. Cuối cùng do AM và CN cắt nhau tại A, nên tứ giác AMON nội tiếp. Vậy đường tròn ngoại tiếp tam giác AMN đi qua điểm O cố định.

Bài tập này rất thích hợp cho việc làm quen với các ứng dụng của phép quay. Nó chỉ có một khiếm khuyết là nếu tam giác ABC cân thì điểm O cần tìm chính là tâm đường tròn ngoại tiếp tam giác ABC . Do đó, nhiều học sinh có thể mày mò, dự đoán và chứng minh kết quả trên mà không cần sử dụng phép quay. Thực ra, để khắc phục điều này, có thể xem tam giác ABC không cân và còn tổng quát hơn là bài tập sau mà cách giải không có gì thay đổi.

Ví dụ 2.5. Trên hai tia $latex Ox$ và $latex Oy$ của góc $latex xOy$, hai điểm A, B. M, N là hai điểm thay đổi trên $latex Ox, Oy $ sao cho $latex AM = BN$ (M khác phía O đối với A, còn N cùng phía O đối với B). Chứng minh rằng đường tròn ngoại tiếp tam giác OMN luôn đi qua điểm cố định khác O.

3

Nếu bổ sung vào bài tập này thêm một vài yếu tố với những mối quan hệ tương tự (Chẳng hạn lấy thêm các điểm P, Q trên $latex Ox, Oy$ cũng với tính chất AP = BQ để phép quay được xét cũng biến P thành Q) và thay đổi chút ít cách phát biểu cũng như vận dụng tính chất còn lại (tính chất 2) của mệnh đề 2. Ta nhận được:

Bài toán 1. Cho tứ giác ABCD có AB = CD và các điểm M, N trên AB, CD sao cho AM = DN. Giả sử MN cắt AD và BC lần lượt tại P, Q. Chứng minh rằng tồn tại một điểm O có cùng phương tích với tất cả bốn đường tròn ngoại tiếp các tam giác PSAM, PDM, QBM, QCN.

4

Lời giải. Gọi O là tâm của phép quay R biến AB tương ứng thành CD và M thành N. Theo mệnh đề 3 (tính chất 2) các tứ giác AMOP, ANOP, BMOQ, CNOQ đều nội tiếp. Khi đó O nằm trên 4 đường tròn ngoại tiếp các tam giác PAM, PAN, BMQ và CNQ nên có cùng phương tích đối với  các đường tròn này.

2.2. Tích của hai phép quay. Điều cần bổ sung thứ hai liên quan đến bản chất ánh xạ của các phép biến hình. Một khi đã định nghĩa chúng như các ánh xạ thì lẽ tự nhiên cũng cần phải đề cập đến tích của hai phép biến hình. Vậy tích của hai phép quay là gì?

Mệnh đề 2.6. Cho hai phép quay $latex R_1(O_1, \alpha_1), R_2(O_2, \alpha_2)$. Nếu $latex \alpha_1 + \alpha_2 \neq 2k\pi$ thì tích $latex R = R_2.R_1$ là một phép quay với  góc quay $latex \alpha = \alpha_1 + \alpha_2$. Tâm $latex O$ của phép quay được xác định dựa vào điều kiện sau:

$latex \widehat{(\overrightarrow{O_1O}; \overrightarrow{O_1O_2})} = \dfrac{\alpha_1}{2}, \widehat{(\overrightarrow{O_2O}; \overrightarrow{O_2O_1})} = \dfrac{\alpha_2}{2}$

5Chứng minh. Việc R là phép quay có thể suy ra ngay từ mệnh đề 1. Còn tâm O chính là điểm bất động duy nhất qua tích $latex R = R_2.R_1$. Nếu chọn điểm O như trên và lấy $latex O’$ đối xứng của $latex O$ qua $latex O_1O_2$ thì ta có $latex R_1(O) = O’, R_2(O’) = O$, suy ra $latex R(O) = O$. Vậy điểm O được xác định như trên chính là tâm quay.

Bài tập sau có thể xem là ứng dụng mẫu mực của việc vận dụng tích 2 phép quay:

Ví dụ 2.7. Bên ngoài tam giác ABC và trên các cạnh dựng các tam giác $latex BCA_1, CAB_1, ABC_1$ cân lần lượt tại $latex A_1, B_1, C_1$ với góc $latex \widehat{BA_1C} = 260^o$ và các góc  $latex \widehat{CB_1A} = \widehat{AC_1B} = 100^o$. Tính góc $latex \widehat{B_1A_1C_1}$

6Bài tập này được giải quyết hết sức nhanh gọn và sáng sủa từ mệnh đề trên. Trước hết, nhận xét rằng: $latex R(A_1; – 160^o) = R(B_1; 100^o)o R(C_1; 100^o)$

Theo tính chất tâm của tích hai phép quay thì: $latex \widehat{(\overrightarrow{C_1A_1}, \overrightarrow{C_1B_1})} = \widehat{(\overrightarrow{B_1C_1},\overrightarrow{B_1A_1})} = \dfrac{100^o}{2} = 50^o$

Vì vậy $latex \widehat{B_1A_1C_1} = 80^o$

Tất nhiên với đề bài như trên, một số học sinh vẫn có thể đi “tính được” góc $latex \widehat{B_1A_1C_1}$ với một khối lượng tính toán hết sức cồng kềnh và với kỹ thuật tính toán đáng nể. Nếu bây giờ biết tấu bài tập này đi một chút bằng cách cất đi điểm mấu chốt $latex A_1$ và gắn têm tính di động cho các điểm $latex B_1C_1$ thì có thể nhận được phương án sau:

Bài toán 2. Cho tam giác ABC nội tiếp đường tròn (O) có B, C cố định, còn A thay đổi trên (O). Bên ngoài tam giác, trên các cạnh AB, AC dựng các tam giác $latex ABC_1, ACB_1$ lần lượt cân tại $latex C_1, B_1$ với  $latex \widehat{AC_1B}=\widehat{AB_1C}=100^o$. Chứng minh rằng trung trực của $latex B_1C_1$ luôn đi qua một điểm cố định. $latex \angle$

Rõ ràng điểm cố định cần tìm chính là điểm A 1// trong bài tập trên nay đã được “giấu” đi. Và chính vị trí không dễ đoán của A 1// đã làm cho bài toán trở nên vô cùng khó khăn cho những ai chưa nắm được ý tưởng về tích của hai phép quay.

2.3. Về các phép dời hình khác. Để kết thúc phần này, xin nêu ra điều cần bổ sung cuối cùng để cho nội dung về phép biến hình được cân đối, hoàn chỉnh. Chúng ta biết rằng lớp các phép biến hình được trình bày đầy đủ nhất chính là lớp các phép dời hình. Chúng có thể được mô tả rất trọn vẹn thông qua các phép dời hình cơ sở là tịnh tiến, quay và đối xứng trục. Vậy nên chăng sau khi đã học xong các phép biến hình cụ thể này, chúng ta sẽ khái quát bằng khái niệm các phép dời hình và kết thúc bằng một mệnh đề mô tả đầy đủ lớp các phép dời hình để làm sáng tỏ bản chất khá đơn giản của chúng. Đây thường là sơ đồ mẫu mực khi trình bày về một lớp các phép biến đổi nào đó trong các lĩnh vực khác của toán học.
Mệnh đề mô tả các phép dời hình ở đây rất gọn, đơn giản và có thể suy ra trực tiếp từ Mệnh đề 1 ở trên. Nhưng trước khi phát biểu nó, theo tôi nên phân loại các phép dời hình thành các phép dời hình thuận (là các phép dời hình bảo toàn định hướng) và các phép dời hình ngược (thay đổi định hướng). Điều này cũng gần giống như việc phân biệt hai tam giác bằng nhau thuận và bằng nhau nghịch mà học sinh đã rất quen thuộc. Việc phân loại các phép dời hình như vậy sẽ không gây ra khó khăn nào mà trái lại, nó còn có thể giúp học sinh hiểu và cảm nhận rõ ràng hơn về định hướng (cụ thể là chiều “quay” của một tam giác) trong các phép biến hình.
Đối với các phép dời hình thuận (quan trọng nhất và được xem xét kỹ lưỡng nhất) ta có sự mô tả đầy đủ sau:

Mệnh đề 2.8. Một phép dời hình thuận chỉ có thể là một phép tịnh tiến hoặc một phép quay.

Đối với các phép dời hình nghịch thì khó khăn hơn một chút:

Mệnh đề 2.9. Một phép dời hình nghịch có thể được biểu diễn như là tích một phép tịnh tiến với một phép đối xứng trục.

Trong phần bài tập của bộ sách giáo khoa Hình học nâng cao lớp 11, dạng tích này cũng được xét đến và được gọi là phép “đối xứng trượt”. Theo tôi, Mệnh đề 2.9 có thể không nhất thiết phải trình bày hoặc chỉ cần nhắc qua và đưa ra như một bài tập. Nhưng Mệnh đề 2.8 thì nên phát biểu như một lời đúc kết của phần các phép dời hình để sao cho khi học xong phần này, học sinh có cảm giác nắm bắt trọn vẹn, rõ ràng, không còn chút gì mơ hồ về các phép dời hình.

(Còn nữa) [Phần 2]