Tag Archives: DuongQuaDiemCoDinh

Đáp án PTNK năm 2012

Bài 1. (Toán chung) Cho hình thang $ABC (AB||CD)$ nội tiếp đường tròn $(C)$ tâm $O$, bán kính $R$ và có $\angle DAB = 105^\circ, \angle ACD =30^\circ$.
a. Tính $\dfrac{DB}{DC}$ và tính $AB$ theo $R$.
b. Tiếp tuyến của $(C)$ tại $B$ cắt đường thẳng $DO$ và $DA$ lần lượt tại $M, N$. Tính $\dfrac{MN}{MD}$.
c. Gọi $E$ là trung điểm của $AB$, tía $DE$ cắt $MN$ tại $F$. Tính $\dfrac{BF}{BC}$.

Gợi ý

a.

  • Ta có $\angle DAB + \angle BCD = 180^\circ$, suy ra $\angle BCD = 75^\circ$ (1), suy ra $\angle ABC = 105^\circ$.
  • $\angle ABD = \angle ACD = 30^\circ$, suy ra $\angle DBC = \angle ABC – \angle ABD = 75^\circ$. (2)
  • Từ (1) và (2) ta có $\angle DBC = \angle DCB$, nên tam giác $DCB$ cân tại $D$, do đó $\dfrac{DB}{DC} = 1$.
  • Ta có $\angle ACB = 75^\circ – 30^\circ = 45^\circ$,suy ra $\angle AOB = 90^\circ$, tam giác $ABO$ vuông cân tại $O$ nên $AB = AO \sqrt{2} = R\sqrt{2}$.

b.

  • Ta có $\angle AOD = 2\angle ACD = 60^\circ$, suy ta tam giác $OAD$ đều. Suy ra $\angle ODA = 60^\circ$ hay $\angle NDM = 60^\circ$.
  • Tam giác $DBC$ cân, nên $DO$ cũng là trung trực của $BC$ và cũng là phân giác góc $\angle BDC$.
  • $\angle BOM = 180^\circ – \angle AOB – \angle AOD = 30^\circ$, suy ra $\angle OMB = 90^\circ – \angle BOM = 60^\circ$ (do $OB \bot BM$).
  • Do đó tam giác $DMN$ đều, suy ra $\dfrac{MN}{MD} = 1$.

c.

  • Gọi $E$ là trung điểm của $AB$, tam giác $AOB$ vuông cân tại $O$ nên $OE = AE, \angle AEO = 90^\circ$.
  • Ta có $\triangle ADE = \triangle ODE$ nên $\angle AED = \angle OED = 45^\circ$, $\angle ADE = \angle ODE = 30^\circ$, suy ra $DF$ là đường cao của tam giác $MDN$.
  • Gọi $I$ là trung điểm $BC$. Ta có $\angle FDB = 15^\circ = \angle IDB$.
  • Khi đó $\triangle BFD = \triangle BID$, suy ra $BF = BI$, suy ra $\dfrac{BF}{BC} = \dfrac{1}{2}$.

 

Bài 2. (Toán Chuyên) Cho hình vuông $ABCD$ cạnh $a$. $M$ và $N$ là hai điểm lần lượt nằm trên các cạnh $AB$ và $BC$ sao cho $\dfrac{AM}{AB} = \dfrac{CN}{CB} = x$ với $0 < x < 1$. Các đường thẳng qua $M , N$ song song với $BD$ lần lượt cắt $AD$ tại $Q$ và $CD$ tại $P$. Tính diện tích tứ giác $MNPQ$ theo $a$ và $x$ và tìm $x$ sao cho diện tích này lớn nhất.

 

Gợi ý
  • Chứng minh được $MNPQ$ là hình chữ nhật.
  • Ta có $\dfrac{MN}{AC} = \dfrac{MB}{BA} = \dfrac{AB-AM}{AB} = 1 – \dfrac{AM}{AB} = 1 – x$, suy ra $MN = (1-x)a\sqrt{2}$.
  • $\dfrac{MQ}{BD} = \dfrac{AM}{AB} = x$, suy ra $MQ = xa\sqrt{2}$.
  • Từ đó $S = MN.MQ = 2a^2x(1-x)$ Mà $x(1-x) \leq \dfrac{1}{4}(x+1-x)^2 = \dfrac{1}{4}$. Suy ra $S \leq \dfrac{a^2}{2}$. Đẳng thức xảy ra khi $x = \dfrac{1}{2}$.
  • Vậy diện tích đạt giá trị lớn nhất bằng $\dfrac{1}{2}a^2$ khi $M$ là trung điểm $AB$.

Bài 3 (Toán chuyên)  Cho tam giác $ABC$ vuông tại $A$. Trên đường thẳng vuông góc với $AB$ tại $B$ ta lấy điểm $D$ di động nằm cùng phía với $C$ đối với đường thẳng $AB$ .
a. Chứng minh rằng nếu $AC + BD < CD$ thì trên cạnh $AB$ tồn tại hai điểm $M$ và $N$ sao cho $\angle CMD =\angle CND = 90^\circ$
b. Giả sử điều kiện trên được thỏa mãn. Đường thẳng qua $A$ song song với $MD$ cắt đường thẳng qua $B$ song song với $MC$ tại $E$. Chứng minh rằng đường thẳng $DE$ luôn đi qua một điểm cố định . 

Gợi ý

a.

  • Xét đường tròn đường kính $CD$ có tâm $O$ là trung điểm $CD$. Gọi $I$ là trung điểm $AB$, khi đó $OI \bot AB$ và $OI$ là đường trung bình của hình thang $ACDB$ nên $OI = \dfrac{1}{2} (AC+BD) < \dfrac{CD}{2}$.
  • Do đó khoảng cách từ $O$ đến $AB$ nhỏ hơn bán kính đường tròn đường kính $CD$ nên $AB$ cắt đường tròn đường kính $AB$ tại hai điểm $M, N$. Suy ra $\angle CMD = \angle CND = 90^o$.
  • Hơn nữa $\angle OCA + \angle ODB = 180^o$ nên có một góc lớn hơn hoặc bằng $90^o$.
  • Giả sử là $\angle ACD \geq 90^o$. Suy ra $OA > OC$. Suy ra $A$ nằm ngoài đường tròn $(O)$. Do đó $M, N$ thuộc đoạn $AB$.

b.

  • Gọi $E’$ là giao điểm của đường thẳng qua $A$ song song với $MD$ với $CD$. Gọi $P$ là giao điểm của $MD$ với $AC$, $Q$ là giao điểm của $MC$ với $BD$.
  • Theo định lý Thalet ta có: $\dfrac{CE’}{CD} = \dfrac{CA}{CP}, \dfrac{CA}{CD} = \dfrac{BQ}{DQ}$. Suy ra $\dfrac{CE’}{CD} = \dfrac{BQ}{DQ}$.
  • Từ đó ta có $BE’ ||MC$. Suy ra $C, D, E$ thẳng hàng. Vậy đường thẳng $DE$ luôn qua điểm $C$ cố định.

Đường thẳng qua điểm cố định. VMO 2014.

Bài toán. (PoP1.12) (VMO 2014) Cho tam giác nhọn $ABC$ nội tiếp đường tròn $(O)$, trong đó $B, C$ cố định và $A$ thay đổi trên $(O)$. Trên các tia $AB$ và $AC$ lần lượt lấy các điểm $M$ và $N$ sao cho $MA = MC$ và $NA = NB$. Các đường tròn ngoại tiếp các tam giác $AMN$ và $ABC$ cắt nhau tại $P$ ($P \neq A$). Đường thẳng $MN$ cắt đường thẳng $BC$ tại $Q$.

  1. Chứng minh rằng ba điểm $A, P, Q$ thẳng hàng.
  2. Gọi $D$ là trung điểm của $BC$. Các đường tròn có tâm là $M, N$ và cùng đi qua $A$ cắt nhau tại $K$ ($K \neq A$). Đường thẳng qua $A$ vuông góc với $AK$ cắt $BC$ tại $E$. Đường tròn ngoại tiếp tam giác $ADE$ cắt $(O)$ tại $F (F \neq A)$. Chứng minh rằng đường thẳng $AF$ đi qua một điểm cố định.
Gợi ý

1.

  • Ta có $MA = MC$ và $NA = NB$ nên tam giác $MAC$ cân tại $M$ và tam giác $NAB$ cân tại $N$.
  • Do đó $\angle BMC = \angle BAC + \angle MAC = 2\angle BAC = \angle BOC$ hay tứ giác $BMOC$ nội tiếp.
  • Tương tự thì tứ giác $BONC$ nội tiếp nên $BMNC$ nội tiếp.
  • Khi đó $QM.QN = QB.QC$, lại có $APMN, APBC$ nội tiếp nên $A, P, Q$ thẳng hàng.

2.

  • Tam giác $AMN$ có $OM \bot AN, ON \bot AM$ nên $AO \bot MN$. Mặt khác $AK \bot MN$ nên $A, O, K$ thẳng hàng.
  • Ta có $\angle OAE = \angle ODE = 90^o$ nên $AODE$ nội tiếp, do đó $\angle OAE = \angle OFE = 90^o$. Hơn nữa $OA = OF$ nên $A, F$ đối xứng qua $OE$.
  • Giả sử $OE$ cắt $AF$ tại $H$ thì $EH.EO = EA^2= EB.EC$ nên $BHOC$ nội tiếp, lại có $\angle OHA = 90^o$ nên $AH$ đi qua $G$ là điểm chính giữa cung $BC$ không chứa $O$ của đường tròn ngoại tiếp tam giác $OBC$.
  • Vậy $AF$ luôn đi qua điểm $G$ cố định.