Tag Archives: HinhHoc9

Một vài tính chất của một bài toán hình học lớp 9: Tứ giác điều hòa (tứ giác đẹp)

Trong một bài kiểm tra lớp 9 mới đây, mình cho các em làm bài toán này. Với các em học sinh lớp 9, mình không thích cho quá nhiều bài toán của THPT áp xuống, việc dạy học của mình trong bao năm qua vẫn kiên trì với triết lý đó. Nhưng ngày càng thấy nhiều bài toán hồn cấp 3 mà cách giải cấp 2 được đưa xuống, tinh thần cũng lung lay, vì dạy chuyên cả hai cấp nên mình biết khá rõ bài toán nào của cấp nào, không phải mình không dạy được hoặc không ra được bài toán như thế, nhưng mình không thích những cách giải khi nhìn với con mắt hàng điểm điều hòa, cực đối cực…ra liền mà các em cấp hai lại mất thời gian để suy nghĩ chân phương.

Nhưng đó cũng là cách chế biến đề phổ biến cho những bài toán hình cấp 2 hiện nay, âu cũng là một xu hướng mới, tuy vậy trong lúc dạy thực sự mình ít ra bài tập dạng đó, đây là trường hợp hiếm mà mình ra bài tập kiểu này.

Bài toán. Cho đường tròn tâm $O$, dây cung $AB$ khác đường kính. Tiếp tuyến tại $A, B$ cắt nhau tại điểm $P$. Một đường thẳng qua $P$ cắt $(O)$ tại $C, D$ sao cho $PC > PD$, $OP$ cắt $AB$ tại $H$.

  1. Gọi $M$ là trung điểm $CD$. Chứng minh 5 điểm $O, A, B, P, M$ cùng thuộc một đường tròn.
  2. Chứng minh $PC \cdot PD = PA^2 = PH \cdot PO$. Suy ra tứ giác $OHDC$ nội tiếp.
  3. $CH$ cắt $(O)$ tại $R$ khác $C$. Chứng minh $ORPC$ nội tiếp.
  4. Chứng minh $HA, HP$ lần phân giác trong và phân giác ngoài của $\angle CHD$.
  5. Chứng minh $AD \cdot BC = BD \cdot AC$.
  6. Chứng minh $\angle HCB = \angle DCA$ và $AD \cdot BC = \dfrac{1}{2}AB \cdot CD$.
  7. Tiếp tuyến tại $C, D$ cắt nhau tại $Q$. Chứng minh $Q, A, B$ thẳng hàng.
  8. Đường thẳng qua $A$ song song với $PB$ cắt $BD, BC$ tại $K$ và $L$. Chứng minh $A$ là trung điểm của $K, L$.
  9. Gọi $I$ là điểm đối xứng của $O$ qua $H$. Chứng minh $I$ là trực tâm tam giác $APB$.
  10. Dựng các tiếp tuyến $AT, AV$ đến đường tròn đường kinh $PI$. Chứng minh $T, V, B$ thẳng hàng.
Giải

  1. $ \angle PAP = \angle PMO = \angle PBP = 90^\circ $, suy ra $ A,M,B,P,O $ cùng thuộc đường tròn đường kính $PO$.
  2. Ta có $ \triangle PBD \backsim \triangle PCB$ (g.g) suy ra $PD.PC = PB^2$. Mà $PB^2 = PH.PO$ (hệ thức lượng tam giác vuông $PBO$), nên $ PD.PC = PH.PO $, suy ra $ \triangle PDH \backsim \triangle POC $ (c.g.c), do đó $ \angle PHD = \angle PCO $, suy ra tứ giác $DHOC$ nội tiếp.
  3. Ta có $ \angle DCR = \frac{1}{2}\angle DOR $ (cùng chắn cung $DR$), và $ \angle DCR = \angle DHO $ (tứ giác $DHOC$ nội tiếp), suy ra $ \angle DOH = \angle ROH $, suy ra $ \angle PCR = \angle ROP $, nên tứ giác $PROC$ nội tiếp.
  4. $ \angle OHC = \angle ODC = \angle OCD = \angle PHD $, suy ra $HA$, $HD$ lần lượt là phân giác trong và phân giác ngoài $ \angle CHD $.
  5. Từ các cặp tam giác đồng dạng $PAD$ và $PCA$, $PBD$ và $PCB$ ta có
    \[ \frac{AD}{AC} = \frac{PD}{PA} \text{ và } \frac{BC}{BD} = \frac{PB}{PD}\] Nhân vế theo vế ta được $ AD.BC = AC.BD $.
  6. Từ $ \angle DOH = \angle ROH $ (cmt), suy ra $ \angle DOA = \angle ROB $, nên cung $AD$ bằng cung $BR$, suy ra $ \angle ACD = \angle HCB $, nhờ vậy $ \triangle ACD \backsim \triangle HCB $ (g.g), suy ra $ AD.BC = CD.BH = \frac{1}{2}AB.CD $.
  7. Trong đường tròn ngoại tiếp tứ giác $QDHC$, $Q$ là điểm chính giữa cung $DC$, nên $HQ$ là phân giác $\angle DHC$, suy ra ba điểm $H$, $A$, $Q$ thẳng hàng (cùng nằm trên phân giác trong $ \angle DHC $), do đó ba điểm $Q$, $A$, $B$ cũng thẳng hàng.
  8. Từ các cặp tam giác đồng dạng $ \triangle BAD \backsim \triangle BKA $ (g.g), $ \triangle BAL \backsim \triangle BCA $ (g.g), ta có
    \[ AK = \frac{AD.AB}{BD} \text{ và } KL = \frac{AC.AB}{BC} \] Như vậy, để chứng minh $AK = KL$, cần chứng minh $ AD/BD = AC/BC $, điều này được suy trực tiếp từ câu (5).
  9. Tứ giác $AOBI$ là hình thoi, suy ra $BI$ song song với $AO$ do đó vuông góc với $AP$, suy ra $I$ là trực tâm tam giác $ABP$.
  10. Gọi $S$ là tâm đường tròn đường kính $PI$, gọi $B’$ là giao điểm của $BI$ với $AP$. Do $BI \bot AP$ nên $B’ \in (S)$.
    Ta có $AH.AB = AB’.AP = AT^2$, suy ra $ \angle ABT = \angle ATH $.
    Tương tự, từ $AH.AB = AV^2$ ta có $ \angle ABV = \angle AVH $.
    Như vậy, để chứng minh $B,V,T$ thẳng hàng, chỉ cần chứng minh $ \angle ATH = \angle AVH $, điều này hiển nhiên do tứ giác $ATVH$ nội tiếp đường tròn đường kính $SA$.

Điểm thuộc đường cố định (Phần 1)

Đây là phần thuận của bài toán quỹ tích, một dạng toán khó và rất rộng. Trong bài viết nhỏ này tôi xin trình bày một số bước để giải bài toán và một số ví dụ minh họa.

Điểm thuộc đường cố định, thì có thể thuộc đường thẳng hoặc đường tròn, đôi khi giới hạn trong đoạn thẳng hoặc cung tròn. Do đó ta cần trang bị một số kiến thức cơ bản về quỹ tích một số đường hay gặp:

Quỹ tích là đường thẳng.

  1. Quỹ tích các đường thẳng cách đều hai điểm là đường trung trực.
  2. Quỹ tích cách đều hai cạnh của một góc là phân giác của góc đó.
  3. Quỹ tích các điểm cách một đường thẳng một khoảng cho trước là hai đường thẳng song song với đường thẳng đó và cách đường thẳng đó một khoảng đã cho.
  4. Điểm thuộc đường thẳng qua hai điểm cố định, qua một điểm cố định vuông góc hoặc song song với một đường cố định…

Trong một số trường hợp ta chỉ cần chứng minh điểm thuộc đường cố định nào đó, ta lại quy về việc chứng minh ba điểm thẳng hàng.

Ta biết được điểm thuộc đường thẳng hay đường tròn thường ta phải dự đoán bằng cách cho 3 trường hợp phân biệt, trong đó có các trường hợp đặc biệt. Nếu không vẽ thêm hình thì đòi hỏi người làm toán phải có trực giác và cảm nhận hình học tốt. Sau khi dự đoán được thì ta dùng các kiến thức đã biết để tìm lời giải.

Sau đây ta xem một vài ví dụ sau.

Ví dụ 1. Cho đường tròn tâm $O$ đường kính $AB = 2R$. $CD$ là đường kính thay đổi, $AC, AD$ cắt tiếp tuyến tại $B$ của $(O)$ tại các điểm $P, Q$. Chứng minh rằng $CDQP$ nội tiếp và tâm đường tròn ngoại tiếp của tứ giác thuộc một đường cố định.

Gợi ý

Bước dự đoán, ta có thể vẽ hình chính xác cho $CD$ thay đổi rồi dựng điểm $I$, khi vẽ hình chích xác ta xác định được các điểm $I$ sẽ cùng thuộc một đường thẳng.

Đến lúc này, ta hãy liên hệ đường thẳng mà ta phát hiện với các yếu tố có trên hình đó là $O$, đường tròn $(O)$, $AB$ và tiếp tuyến tại $B$.

Nếu phát hiện được đường thẳng đó song song với tiếp tuyến tại $B$ thì ta hãy liên hệ với các quỹ tích hay gặp để tìm ra tính chất.

  • Ta có $\angle ACD = \angle ABD  = \angle AQP$, suy ra $BPCQ$ nội tiếp.
  • Gọi $I$ là tâm đường tròn ngoại tiếp tứ giác. Ta có $IM \bot PQ, IO \bot CD$.
  • Mặt khác, ta có $AM \bot CD, AO \bot PQ$.
  • Khi đó $IM ||AO, IO ||AM$, suy ra $AOIM$ là hình bình hành. Suy ra $IM = AO$ không đổi.
  • Hơn nữa $IM \bot PQ$ và $I, A$ khác phía đối với $PQ$ do đó $I$ thuộc đường thẳng song song với $PQ$ và cách $PQ$ một khoảng bằng bán kính và khác phía $A$ đối với $PQ$.

Ví dụ 2. Cho đường tròn $(O)$ và điểm $A$ nằm ngoài đường tròn, một cát $d$ tuyến qua $A$ cắt $(O)$ tại hai điểm $C, D$. Tiếp tuyến tại $C, D$ cắt nhau tại $P$, chứng minh $P$ luôn thuộc một đường thẳng cố định khi $d$ thay đổi và luôn qua $A$.

Gợi ý

Chỉ cần vẽ hình chính xác ta có thể xác định ngay rằng $P$ thuộc một đường thẳng vuông góc với $AO$, như nhận xét trên, để chứng minh đường thẳng này cố định ta chỉ cần chứng minh nó đi qua một điểm cố định nào đó, việc này dễ dàng khi có thể chứng minh điểm đó thuộc $OA$. Từ đó có cách giải sau:

Gọi $H$ là hình chiếu của $P$ trên $AO$. Ta chứng minh $H$ cố đinh. Gọi $I$ là giao điểm của $OP$ và $CD$.

Ta có $OI.OP = OC^2$ không đổi.

$\triangle OPH \backsim OIA$, suy ra $OH.OA = OI.OP = OC^2$ không đổi. Mà $O, A$ cố định, suy ra $H$ có định.

Do đó $P$ thuộc đường thẳng vuông góc với $OA$ tại $H$ cố định.

Ví dụ 3. (PTNK 2004) Cho đường tròn tâm $O$ bán kính $R$ và điểm $A$ nằm ngoài đường tròn. Một đường thẳng thay đổi qua $A$ cắt $(O)$ tại $B, C$. Chứng minh rằng tâm đường tròn ngoại tiếp tam giác $OBC$ luôn thuộc một đường thẳng cố định.

Gợi ý

Đây là một bài toán khó, nhưng cách giải của nó cũng là kinh nghiệm cho những bài toán khác.

Nhận thấy rằng đường tròn ngoại tiếp tam giác $OBC$ đi qua một điểm cố định là $O$, khi đó để chứng minh tâm $I$ của đường tròn này thuộc một đường thẳng cố định, một cách suy nghĩ tự nhiên là cần chứng minh thêm nó đi qua một điểm cố định khác, khi đó sẽ nằm trên đường trung trực của đoạn thẳng nối $O$ và điểm kia.

Nếu vẽ hình chính xác, ta có thể dự đoán được đường thẳng đó vuông góc với đường $OA$ cố định, khi đó ta có thể nghĩ đến cách như ví dụ 2, vẽ $OH \bot OA$ và chứng minh $OH$ không đổi.

Nói chung tùy cách suy nghĩ ta có thể đi tìm lời giải.

  • Gọi $D$ là giao điểm của $AO$ và $(OBC)$.
  • Ta có $AD.AO = AB.AC = AH^2 = OA^2 – R^2$ không đổi, suy ra $D$ cố định.
  • Do đó tâm $I$ của $(OBC)$ thuộc đường trung trực của đoạn $OD$.

 

Ví dụ 4. Cho tam giác $ABC$, tâm ngoại tiếp là $(O)$. Một đường tròn thay đổi qua $A, O$ cắt các cạnh $AB, AC$ tại $D, E$.

a. Chứng minh rằng hình chiếu của $O$ trên $DE$ thuộc một đường thẳng cố định.

b. Chứng minh rằng trực tâm tam giác $ODE$ thuộc một đường thẳng cố định.

Gợi ý

Gọi $K$ là hình chiếu của $O$ trên $DE$. Ta thấy $ADOE$ nội tiếp và $K$ là hình chiếu $O$ trên $DE$, mô hình quen thuộc, gợi ý cho ta đến một định lý khá quen thuộc.

a.

  • Gọi $M, N$ là hình chiếu của $O$ trên $AB, AC$, ta có $M, N$ là trung điểm của $AB, AC$ nên cố định.
  • Theo định lý Simson thì $M, K, N$ thẳng hàng, hay $K$ thuộc đường thẳng $MN$ cố định.

b.

Nếu vẽ hình chính xác, ta có thể dựđoán được trực tâm $H$ của tam giác $ODE$ thuộc đường thẳng $BC$ cố định, do đó ta chỉ cần chứng minh $B, H, C$ thẳng hàng, ta lại quay về việc chứng minh 3 điểm thẳng hàng.

  • Ta có $\angle OHD = \angle OED = \angle OAD = \angle OBA$, suy ra $ODBH$ nội tiếp.
  • Tương tự ta có $OECH$ nội tiếp.
  • Khi đó $\angle OHB = \angle ODA = \angle OEC = 180^\circ – \angle OHC$. Suy ra $B, H, C$ thẳng hàng.
  • Vậy $H$ thuộc đường thẳng $BC$ cố định.

Bài tập rèn luyện.

  1. Cho đoạn thẳng $AB$ và điểm $M$ thỏa $MA^2 – MB^2 = k$ không đổi. Chứng minh rằng $M$ thuộc một đường thẳng cố định.
  2. Cho tam giác $ABC$, đường tròn thay đổi qua $B, C$ cắt các cạnh $AB, AC$ tại $D, E$. Chứng minh rằng tâm đường tròn ngoại tiếp tam giác $ADE$ luôn thuộc một đường thẳng cố định.
  3. Cho tam giác $ABC$ vuông tại $A$ với $B, C$ cố định. Đường cao $AH$, gọi $D, E$ là hình chiếu của $H$ trên $AB, AC$. Đường tròn đường kính $AH$ cắt đường tròn ngoại tiếp tam giác $ABC$ tại $P$. Gọi $Q$ là giao điểm của $AP$ và $DE$. Chứng minh $Q$ thuộc một đường cố định.
  4. Cho đường tròn $(O)$ cố định và điểm $A$ nằm trong đường tròn, đường thẳng thay đổi qua $A$ cắt $(O)$ tại $B$ và $C$. Gọi $D$ là giao điểm hai tiếp tuyến tại $B$ và $C$ của $(O)$. Chứng minh rằng $D$ thuộc một đường cố định.
  5. Cho tam giác $ABC$ cân tại $A$ nội tiếp đường tròn $(O)$. $D$ là một điểm thay đổi trên cạnh $BC$. Đường tròn $(I)$ qua $D$ và tiếp xúc với cạnh $AB$ tại $B$; đường tròn $(J)$ qua $D$ tiếp xúc với cạnh $AC$ tại $C$. Chứng minh rằng trung điểm của $IJ$ luôn thuộc một đường cố định.
  6. Cho hình chữ nhật $ABCD$. Gọi $H$ là hình chiếu vuông góc của $A$ trên $BD$. $M$ là điểm thay đổi trên đoạn $BH$. Đường tròn ngoại tiếp tam giác $ADM$ cắt $CD$ tại điểm $N$. Chứng minh rằng trung điểm của $MN$ luôn thuộc một đường thẳng cố định.

Đường đi qua điểm cố định

Những bài toán hình học liên qua đến yếu tố thay đổi thường gây rất nhiều khó khăn cho các em học sinh. Để giải các bài toán dạng này, các em cần phải có những kiến thức rộng và tư duy hình học tốt. Trong bài viết nhỏ này, tôi trình bày một vài kinh nghiệm giải các bài toán “Đường qua điểm cố định” thông qua lời giải của một vài bài toán quen thuộc.

Đầu tiên, đường ở đây chỉ có thể là đường thẳng hoặc đường tròn. Các bước thực hiện bài toán là:

  • Tìm được điểm cố định.
  • Chứng minh đường qua điểm cố định đó.

Vậy làm sao để tìm được điểm cố định? Đây là một việc khó, tất nhiên không phải ai cũng nhận ra được điểm cố định ngay, mà phải dự đoán, mà dự đoán bằng kinh nghiệm và thực hành.

  • Ta có thể sử dụng những kiến thức hình học đã biết, những định lý đã biết để dự đoán.
  • Vẽ nhiều hình. Ví dụ ta cần chứng minh đường $H$ qua điểm cố định, ta vẽ được hai hình $H_1$ và $H_2$ thì giao của $H_1, H_2$ là điểm cố định.
  • Đến lúc này, ta phải nhận biết được tính chất đặc biệt của điểm cố định đó, có thể bằng trực giác để thấy ngay, đôi khi nếu ta vẽ hình có lệch chút đỉnh, thì sử dụng cảm giác hình học để tìm ra tính chất đặc biệt. Mặt khác ta có thể nối điểm cố định mà ta phát hiện với các điểm cố định có trên hình để tìm tính chất.
  • Một số tính chất hay gặp: Điểm đặc biệt của tam giác như trực tâm, trọng tâm, tâm đường tròn ngoại tiếp, nội tiếp, chân đường cao; Trung điểm đoạn thẳng (thường gặp), điểm $M$ thuộc tia $Ax$ mà $AM$ có độ dài không đổi,….
  • Một chú ý là vai trò của các điểm cố định có trên hình, nếu vai trò $B, C$ như nhau, thì điểm cố định cũng có tính đối xứng đối với $BC$ như: trung điểm $BC$, tạo với $B, C$ tam giác đều, vuông cân…

Sau khi đã xác định chắc chắn điểm cố định, ta đi chứng minh đường đi qua điểm cố định đó. Việc chứng minh này tùy thuộc vào tính chất điểm cố định.

  • Nếu là đường thẳng qua điểm cố định ta quy về việc chứng minh thẳng hàng mà các chuyên đề chứng minh thẳng hàng đã trình bày.
  • Nếu chứng minh đường tròn qua điểm cố định, ta quy về việc chứng minh tứ giác nội tiếp mà chuyên đề tứ giác nội tiếp đã trình bày.
  • Cho đường thẳng hoặc đường tròn cắt một đường cố định chứa điểm đó, sau đó chứng minh tính chất của điểm cố định.

Ví dụ 1. (PTNK 2007) Cho tam giác $ABC$ nội tiếp đường tròn $(O)$. $P$ là điểm thay đổi trên cung $BC$ không chứa $A$. Gọi $H, K$ là hình chiếu của $A$ trên $PB, PC$. Chứng minh rằng $HK$ luôn đi qua một điểm cố định.

Hướng dẫn

Đầu tiên khi $P$ thay đổi thì đường thẳng $HK$ cũng thay đổi, tất nhiên ta chưa biết ngay rằng $HK$ đi qua điểm cố định nào. Vậy ta phải dự đoán được điểm cố định trước bằng cách cho $P$ ở một vị trí khác, ta sẽ được đường $H’K’$. Khi đó $HK$ và $H’K’$ sẽ cắt nhau tại một điểm $T$ nào đó, vậy $T$ là điểm gì? Trong hình, có các điểm $A, B, C$ cố định, ta tìm mối liên hệ của $T$ và $A, B, C$ trước. Đến đây bằng trực giác hình học, ta có thể dự đoán rằng $T$ thuộc $BC$ và $AT \bot BC$, việc dự đoán này là chủ quan dựa trên trực giác và cảm giác về mặt hình học. Nếu muốn chắc chắn, chỉ có thể là chứng minh một cách chính xác và cụ thể.

Vậy khi đã đoán được điểm cố định ta phải làm gì? Ta có nhiều cách để giải quyết bài toán: có thể gọi $T$ là giao điểm của $HK$ và $BC$, sau đó chứng minh $AT \bot BC$ hoặc dựng $AT \bot BC$, chứng minh $H, K, T$ thẳng hàng.

Trên đây là một ví dụ về cách suy nghĩ khi ta cần giải quyết một bài toán kiểu thế này, tất nhiên, nhiều bạn giỏi và nhanh nhẹn hơn có thể nhận ra $HK$ là đường thẳng Simson của $A$ đối với tam giác $PBC$, có thể giải quyết ngay bài toán.

Gọi $T$ là hình chiếu của $A$ trên $BC$. Ta chứng minh $H, K, T$ thẳng hàng.

  • Ta có các tứ giác $ATBH, ATKC, ABPC$ nội tiếp. Suy ra $\angle ATH = \angle ABH = \angle ACK = 180^\circ – \angle ATK$.
  • Suy ra $\angle ATH + \angle ATK = 180^\circ$.
  • Do đó $H, T, K$ thẳng hàng.
  • Vậy $KH$ qua điểm $T$ cố định.

Ví dụ 2. Cho đường tròn $(O;R)$ và đường thẳng $d$ nằm ngoài $O$. $A$ là một điểm thay đổi trên $d$. Từ $A$ vẽ các tiếp tuyến $AB, AC$ đến $(O)$. Chứng minh $BC$ luôn đi qua một điểm cố định. 

Hướng dẫn

Tương tự cách làm như ví dụ 1, ta cũng phát hiện được điểm cố định thuộc $BC$ là điểm $T$. Tuy vậy đối với bài toán này, điểm $T$ có vẻ hơi lưng chừng khó dự đó nó là điểm có đặc trưng gì.

Vì thế sau khi đã tìm được điểm $T$, ta thử nối $T$ với các yếu tố cố định có trên hình, và chắc chắn nó sẽ có quan hệ với $O$, đường thẳng $d$ và đường tròn $(O)$.

Sau khi nối lại ta sẽ thấy được, có vẻ $OT \bot d$, vậy $T$ thuộc một tia cố định. Việc còn lại chỉ cần chứng minh $OT$ có độ dài không đổi nữa là $T$ sẽ cố định.

  • Gọi $T$ là giao điểm của $BC$ và đường thẳng qua $O$ vuông góc $d$ và $E$ là giao điểm của $OA$ và $BC$.
  • Ta có $OH.OT = OE.OA = OB^2=R^2$ không đổi. Suy ra $OT = \dfrac{R^2}{OH}$.
  • $OH$ cố định, suy ra $T$ cố định. Vậy $BC$ đi qua điểm cố định.

Ví dụ 3. Cho đường tròn tâm $O$ và dây cung $BC$ cố định. $A$ thay đổi trên cung lớn $BC$. Gọi $D$ là điểm đối xứng của $C$ qua $AB$, $E$ là điểm đối xứng của $B$ qua $AC$. Đường tròn ngoại tiếp các tam giác $ADC$ và $ABE$ cắt nhau tại điểm thứ hai $P$. Chứng minh rằng $AP$ luôn đi qua một điểm cố định.

Gợi ý

Đây là một bài toán khá dễ toán điểm cố định, đó chính là tâm $O$. Ta chứng minh $A, O, P$ thẳng hàng.

  • Ta có $\angle ADB = \angle ACB$ (t\c đối xứng). Và $\angle ADP = \angle ACE = \angle ACB$. Suy ra $\angle ADB = \angle ADP$, do đó $D, B, P$ thẳng hàng.
  • Chứng minh tương tự ta có $P, C, E$ thẳng hàng.
  • Khi đó $\angle BPC = 180^\circ – \angle CAD = 180^\circ  – 2\angle A = 180^\circ – \angle BOC$. Suy ra $PBOC$ nội tiếp. Mà $OB = OC$ nên $PO$ là phân giác góc $\angle PBC$. (1)
  • Mặt khác $\angle BPA = \angle ACD = \angle ABE = \angle APC$. Suy ra $PA$ cũng là phân giác của $\angle BPC$. (2)
  • Từ (1) và (2) ta có $A, O, P$ thẳng hàng, hay $AP$ luôn đi qua điểm $O$ cố định.

Trên đây là một số bài toán chứng minh đường thẳng đi qua điểm cố định. Tiếp theo chúng ta xem xét một vài ví dụ chứng minh đường tròn đi qua điểm cố định.

Ví dụ 4. Cho tam giác $ABC$ nhọn, nội tiếp đường tròn $(O)$. Trên các cạnh $AB, AC$ lấy các điểm thay đổi $D, E$ sao cho $BD = CE$. Chứng minh rằng đường tròn ngoại tiếp tam giác $ADE$ đi qua một điểm cố định khác $A$.

Gợi ý

Đây là một bài toán khá nhẹ nhàng, nếu cho $D, E$ thay đổi ta có thể nhận thấy ngoài $A$ thì điểm đường tròn ngoại tiếp tam giác $ADE$ còn đi qua một điểm nữa, có vẻ gần gần điểm chính giữa cung $BC$. Một chú ý là vai trò $B, C$ như nhau nên điểm cố định đó đối với $B, C$ phải là như nhau. Từ đó ta có thể “mạnh dạn” khẳng định, điểm cố định đó chính là điểm chính giữa cung $BC$. Từ đó đi đến chứng minh.

  • Gọi $F$ là điểm chính giữa cung $BC$ chứa $A$.
  • Ta có $FB = FC$, $\angle DBF = \angle ECF$ và $BD = CE$, suy ra $\triangle DBF = \angle ECF$ (c.g.c).
  • Do đó $\angle BDF = \angle CEF$, suy ra $\angle ADF = \angle AEF$, suy ra tứ giác $ADEF$ nội tiếp hay $(ADE)$ qua điểm $F$ cố định.

Chú ý: $(ADE)$ là đường tròn ngoại tiếp tam giác $ADE$.

Ví dụ 5. Cho tam giác $ABC$ nhọn. Các điểm $M, N$ lần lượt thay đổi trên $AB, AC$ sao cho độ dài hình chiếu của $MN$ trên đường thẳng $BC$ bằng nửa độ dài cạnh $BC$. Chứng minh rằng đường tròn ngoại tiếp tam giác $AMN$ luôn đi qua một điểm cố định khác $A$.

Hướng dẫn

Khi vẽ hình ta sẽ thấy điểm cố định nằm trong tam giác $ABC$, do $B, C$ là vai trò như nhau, ta có thể đoán điểm này là điểm đặc biệt trong tam giác: trực tâm, trọng tâm, hay tâm đường tròn ngoại tiếp.

  • Gọi $F, G$ là trung điểm của $AB, AC$, D, E là hính chiếu của $M, N$ trên $BC$ và $O$ là tâm đường tròn ngoại tiếp tam giác $ABC$.
  • Đường thẳng qua $O$ song song $BC$ cắt $MD, NE$ tại $P, Q$.
  • Ta có $DE = PQ = FG = \dfrac{1}{2}BC$. Suy ra $FGQP$ là hình bình hành.
  • Các tứ giác $OMFP, OGNQ$ nội tiếp. Suy ra $\angle ONG = \angle OQG = 180^o – \angle OPF = \angle OMF$.
  • Do đó $AMOG$ nội tiếp. Vậy $(AMN)$ đi qua điểm $O$ cố định.

Trên đây là một số ví dụ về các bài toán chứng minh đường đi qua điểm cố định, hy vọng qua các bài toán này các bạn nắm được các bước giải và không ngại khó khi gặp những bài toán dạng này. Sau đây là một số bài tập rèn luyện thêm.

Bài tập

  1. Cho tam giác $ABC$ vuông tại $A$, trên các tia $BA, CA$ lấy các điểm $D, E$ thay đổi sao cho $BD = CE$. Chứng minh rằng đường trung trực $DE$ luôn đi qua một điểm cố định.
  2. Cho nửa đường tròn đường kính $AB$. $D$ thay đổi trên nửa đường tròn, trên tia $AD$ lấy điểm $D$ sao cho $AE = BD$. Chứng minh rằng đường trung trực của $DE$ đi qua một điểm cố định.
  3. Cho tam giác $ABC$, trong đó $BC$ cố định và $A$ thay đổi. Về phía ngoài tam giác dựng các tam giác vuông cân tại $A$ là $ABD$ và $ACE$. Chứng minh rằng đường thẳng qua $A$ vuông góc với $DE$ luôn đi qua một điểm cố định.
  4. Cho tam giác $ABC$ nhọn. Về phía ngoài tam giác dựng các hình chữ nhật thay đổi $ABDE$ và $ACFG$ sao cho chúng có diện tích bằng nhau.  Gọi $M$ là trung điểm của $EG$, chứng minh rằng đường thẳng $AM$ luôn đi qua một điểm cố định.
  5. Cho tam giác $ABC$ có $BC$ cố định và $A$ thay đổi. Đường tròn tâm $I$ nội tiếp tam giác $ABC$ tiếp xúc với $BC, AB, AC$ tại $D, E, F$. $DI$ cắt $EF$ tại $K$. Chứng minh rằng $AK$ luôn đi qua một điểm cố định.
  6. Cho tam giác $ABC$ cân tại $A$,  các điểm $D, E$ thay đổi trên các cạnh $AB, AC$ sao cho $AD = CE$. Chứng minh rằng đường tròn ngoại tiếp tam giác $ADE$ luôn đi qua một điểm cố định.
  7. Cho tam giác $ABC$ có $BC$ cố định $A$ thay đổi. Đường tròn tâm $I$ nội tiếp tam giác tiếp xúc với $BC, AC, AB$ tại $D, E, F$. $BI, CI$ cắt $EF$ lần lượt tại $M, N$. Chứng minh rằng đường tròn ngoại tiếp tam giác $DMN$ luôn đi qua một điểm cố định.
  8. Cho tam giác $ABC$. Các điểm $D, E$ thay đổi trên cạnh $BC$ sao cho $\angle BAD = \angle CAE$ ($D$ nằm giữa $B, E$). Gọi $K$ là hình chiếu của $B$ trên $AD$, $L$ là hình chiếu của $C$ trên $AE$. Gọi $M$ là trung điểm của $BC$. Chứng minh rằng đường tròn ngoại tiếp tam giác $MKL$ luôn đi qua một điểm cố định.

 

Ba điểm thẳng hàng – Phương pháp điểm trùng

Để chứng minh ba điểm thẳng hàng có nhiều cách chứng minh, trong bài viết này tôi giới thiệu “phương pháp điểm trùng”, thường được sử dụng để chứng minh các bài toán phát biểu ngược.

Nội dung phương pháp như sau: Để chứng minh ba điểm $A, B, C$ thẳng hàng, trong đó $C$ ta dựng điểm $C’$ sao cho $A, B, C’$ thẳng hàng. Sau đó chứng minh $C$ trùng $C’$.

Việc chứng minh $C$ trùng $C’$ thường xuất phát từ sự xác định duy nhất của điểm $C$ có thể là giao của hai đường, trung điểm đoạn thẳng,…Ta xét các ví dụ sau.

Ví dụ 1. Cho đường tròn tâm $O$ đường kính $AB$, $C$ thuộc đường tròn. Tiếp tuyến tại $C$ cắt tiếp tuyến tại $A, B$ của $(O)$ tại $D, E$. Gọi $H$ là hình chiếu của $C$ trên $AB$.

a. $DB$ cắt $CH$ tại $N$. Chứng minh $A, N, E$ thẳng hàng.

b.Đường thẳng qua $A$ song song $HE$ và đường thẳng qua $B$ song song với $HD$ cắt nhau tại $M$. Chứng minh $D, M, E$ thẳng hàng.

Gợi ý

a. $BC$ cắt $AD$ tại $F$, ta chứng minh được $D$ là trung điểm của $AF$.

Khi đó $\dfrac{CN}{DF} = \dfrac{PN}{PD} = \dfrac{HN}{AD}$.

Mà $AD = DF$, suy ra $CN = HN$ hay $N$ là trung điểm của $CH$.

Gọi $N’$ là giao điểm của $AE$ và $CH$, chứng minh tương tự ta cũng có $N’$ là trung điểm của $CH$. Do đó $N \equiv N’$ hay $A, N, E$ thẳng hàng.

b. Phân tích: vẽ hình chính xác và trực giác ta dự đoán được $M$ là trung điểm của $DE$, hơn nữa điểm $M$ là được xác định duy nhất do là giao điểm của 2 đường, do đó ta có thể gọi $M’$ là trung điểm và chứng minh $M’ \equiv M$ bằng cách chứng minh $AM’||HD$ và $BM’||HC$. Thực ra do vai trò như nhau nên chỉ cần chứng minh $AM’||HD$ là đủ.

  • Ta có $\dfrac{HA}{HB} = \dfrac{CD}{CE} = \dfrac{AD}{BE}$. Suy ra $\triangle AHD \backsim \triangle BHE$. Suy ra $\angle AHD = \angle BHE$.
  • Suy ra $\angle KHA = \angle BHE = \angle AHD$. Từ đó ta có tam giác $HDK$ cân tại $H$ và $A$ là trung điểm $AD$.
  • Tam giác $DHE$ có $M’A$ là đường trung bình nên $AM’||EK$ hay $AM’||HE$.
  • Chứng minh tương tự ta có $BM’||HD$.
  • Vậy $M’ \equiv M$. Hay $D, M, E$ thẳng hàng.

Ví dụ 2. Cho tam giác $ABC$ nhọn nội tiếp đường tròn $(O)$, có $H$ là trực tâm tam giác $ABC$ và $AD$ là đường kính của $(O)$. Trên các cạnh $AB, AC$ lấy $E, F$ sao cho $AE = AF$ và $E, H, F$ thẳng hàng. Đường tròn ngoại tiếp tam giác $AEF$ cắt phân giác góc $\angle BAC$ tại $P$. Chứng minh $H, P, D$ thẳng hàng.

Gợi ý

 

Gọi $P’$ là giao điểm phân giác góc $\angle BAC$ và $HD$. Ta chứng minh $P’ \equiv P$, hay cần chứng minh $AEPF$ nội tiếp.

Ta có tính chất quen thuộc $\angle HAB = \angle DAC$, nên $AP’$ cũng là phân giác $\angle HAD$.

Ta có $\angle AEF = \angle ABH + \angle EHB$, $\angle AFE = \angle ACH + \angle FHC$.

Mà $\angle ABH = \angle ACH$ và $\angle AEF = \angle AFE$ nên $\angle EHB = \angle FHC = \angle EHL$.

Do đó $HE$ là phân giác $\angle LHB$, suy ra $\dfrac{LE}{EB} = \dfrac{HL}{HB}$. (1)

Tam giác $AHL $ và tam giác $ADC$ đồng dạng, suy ra $\dfrac{HL}{CD} = \dfrac{AH}{AD}$.

Mà $CD = BH, \dfrac{AH}{AD} = \dfrac{HP’}{P’D}$, suy ra $\dfrac{HL}{HB} = \dfrac{HP’}{P’D}$. (2)

Từ (1) và (2) ta có $\dfrac{LE}{EB} = \dfrac{HP’}{P’D}$, suy ra $P’E ||HL||BD$, suy ra $P’E \bot AB$.

Chứng minh tương tự ta có $P’F \bot AC$.

Do đó $AEP’F$ nội tiếp, suy ra $P’ \equiv P$. Hay $D, P, H$ thẳng hàng.

Bài tập.

Bài 1. Cho tam giác $ABC$, đường tròn $w$ đường kính $BC$ cắt $AB, AC$ tại $D, E$. Tiếp tuyến tại $D, E$ của $w$ cắt nhau tại $M$, chứng minh $AM$ đi qua trực tâm của tam giác $ABC$.

Bài 2. Cho tam giác $ABC$ nhọn, các đường cao $AD, BE, CF$. Gọi $M,N$ là trung điểm $BE, CF$. Đường tròn $w$ qua $A, D$ tiếp xúc với đường tròn ngoại tiếp tam giác $DMN$ tại $D$, $w$ cắt $AB, AC$ tại $P$ và $Q$. Chứng minh $P, Q, M, N$ thẳng hàng.

Bài 3. Cho đường tròn $(O)$ và điểm $A$ nằm ngoài $(O)$. Từ $A$ vẽ các tiếp tuyến $AB, AC$ đến $(O)$, một cát tuyến qua $A$ cắt $(O)$ tại $D, E$ sao cho $D$ nằm giữa $A$ và $E$ và tia $AE$ nằm giữa hai tia $AB, AO$. Đường thẳng qua $D$ song song $BE$ cắt $BC$ tại $F$. Gọi $K$ là điểm đối xứng của $B$ qua $E$, chứng minh $A, P, K$ thẳng hàng.

Chứng minh ba điểm thẳng hàng – Phương pháp góc bù

Để chứng minh 3 điểm thẳng hàng có nhiều phương pháp chứng minh, trong bài viết này tôi trình bày phương pháp sử dụng góc bằng nhau hoặc góc bù.

Giả sử cần chứng minh $A, B, C$ theo thứ tự thẳng hàng.

  • Nếu có tia $Bx$ nằm giữa hai tia $BA, BC$ thì $A, B, C$ thẳng hàng khi và chỉ khi $$\angle ABx + \angle CBx = 180^\circ$$
  • Nếu có tia $Ax$ sao cho $AB, AC$ cùng phía đối với $Ax$ thì $A, B, C $ thẳng hàng khi và chỉ khi $$\angle xAB = xAC$$

Tùy theo trường hợp ta sử dụng phương pháp phù hợp để giải quyết bài toán. Mỗi phương pháp đều có thể mạnh riêng và những áp dụng riêng. Ta xét vài ví dụ để thấy rõ hơn nhé.

Ví dụ 1. (Định lý Simson)  Cho tam giác $ABC$ nội tiếp đường tròn $(O)$. $P$ là điểm thuộc $(O)$. Gọi $D, E, F$ lần lượt là hình chiếu của $P$ trên các đường thẳng $BC, AC, AB$. Chứng minh rằng $D, E, F$ thẳng hàng. 

Gợi ý

Ta xét trường hợp các điểm như hình vẽ, các trường hợp khác làm tương tự.

Ta có các tứ giác $ABPC, PDBF, PDEC$ nội tiếp.

Cách 1. Sử dụng góc bù, ta chứng minh $\angle FDP + \angle EDP = 180^\circ$.

  • Do $PDBF$ nội tiếp nên $\angle FDP = \angle FBP$. (1)
  • Do $ABPC$ nội tiếp nên $\angle FBP = \angle ACP$. (2)
  • Do $PDEC$ nội tiếp nên $\angle ACP  + \angle EDP = 180^\circ$. (2)
  • Từ (1), (2), (3) ta có $\angle FDP + \angle EDP =  180^\circ$ nên $D, E, F$ thẳng hàng.

Cách 2. Sử dụng tia trùng, ta chứng minh $\angle PFD = \angle PDE$.

  • Do tứ giác $PDBF$ nội tiếp nên $\angle PFD = \angle PBC$. (1)
  • Và tứ giác $AFPE$ nội tiếp nên $\angle PFE = \angle PAC$. (2)
  • Tứ giác $ABPC$ nội tiếp nên $\angle PBC = \angle PAC$. (3)
  • Từ (1), (2) và (3) ta có $\angle PFD = \angle PFE$. Suy ra $F, D, E$ thẳng hàng.

Hai cách trên là gần như tương đương nhau, tùy thuộc và hình vẽ để sử dụng cách nào cho thuận lợi và lời giải ngắn gọn hơn.

Ta xét tiếp định lý sau:

Ví dụ 2. (Đường thẳng Steiner) Cho tam giác $ABC$ nội tiếp đường tròn $(O)$, $P$ là một điểm thuộc đường tròn. Gọi $D, E$ là điểm đối xứng của $P$ qua $AB, AC$. Chứng minh rằng đường thẳng $DE$ qua trực tâm $H$ của tam giác $ABC$.

Gợi ý

Gọi $K, L$ là giao điểm của $BH, CH$ với $(ABC)$. Ta chứng minh được $K, L$ lần lượt là điểm đối xứng của $H$ qua $AC, AB$.

  • Xét phép đối xứng trục đường thẳng $AB$ thì  ta có $\angle AHD = \angle ALP$.
  • Xét phép đối xứng trục là đường thẳng $AC$ thì $\angle AHE = \angle AKP$.
  • Mà $\angle ALP + \angle AKP = 180^\circ$ nên $\angle AHD + \angle AHE = 180^\circ$.
  • Suy ra $D, H, E$ thẳng hàng.

Ví dụ 3. Cho tam giác $ABC$ có $O$ là tâm đường tròn ngoại tiếp. Đường tròn thay đổi qua $A, O$ cắt các cạnh $AB, AC$ lần lượt tại $D, E$.

  1. Chứng hình chiếu của $O$ trên $DE$ thuộc một đường thẳng cố định.
  2. Chứng minh rằng trực tâm của tam giác $ODE$ thuộc đường thẳng $BC$.
Gợi ý

Gọi  $H$ là hình chiếu của $O$ trên $DE$.

  1. Gọi $M, N$ là trung điểm của $AB, AC$. Ta có $OM \bot AD, ON \bot AC$. Theo ví dụ 1, ta có $H$ thuộc $MN$ cố định.
  2. Gọi $K$ là trực tâm của tam giác $ODE$.
  • Ta có $\angle OKD = \angle OED = \angle OAD = \angle OBD$. Suy ra $ODBK$ nội tiếp.
  • Tương tự thì $OECK$ nội tiếp.
  • Khi đó $\angle OKD = \angle ODA = \angle OEC$, và $\angle OEC + \angle OKC = 180^\circ$ nên $\angle OKD + \angle OKC = 180^\circ$, suy ra $B, K, C$ thẳng hàng.

Bài tập.

1.Cho tam giác $ABC$, đường tròn tâm $I$ nội tiếp tam giác tiếp xúc với các cạnh $AB, AC$ tại $D, E$. Gọi $H$ là hình chiếu vuông góc của $C$ trên $BI$. Chứng minh $D, E, H$ thẳng hàng.

Gợi ý
  • Tứ giác $EHCI$ nội tiếp nên $\angle {HEC}=\angle {HEC}$
    Mặt khác, $\angle {HIC}=\angle {IBC}+\angle {ICB}=\frac{1}{2}\cdot (\angle {ABC}+\angle {ACB})=\frac{180^\circ – \angle{BAC}}{2}(1)$
  • $\triangle{ADE}$ cân tại $A$ nên $\angle{AED}=\frac{180^\circ-\angle{BAC}}{2}(2)$
  • Từ $(1)$ và $(2)$ kết hợp với $A,E,C$ thẳng hàng, ta có $\angle{AED}=\angle{HEC}$ ở vị trí đối đỉnh nên $D,E,H$ thẳng hàng.

2. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$. Các đường cao $BD, CE$ cắt nhau tại $H$. Đường tròn đường kính $AH$ cắt $(O)$ tại $P$ khác $A$.

a. Gọi $M$ là trung điểm $BC$. Chứng minh $P, H, M$ thẳng hàng.

b. Cho $AP$ cắt $BC$ tại $Q$. Chứng minh $Q, D, E$ thẳng hàng.

Gợi ý
  • a) Dựng đường kính $AT$ của $(O)$
    Tứ giác $BHCT$ là hình bình hành nên $H,M,T$ thẳng hàng.
  • $\angle{APH}=90^\circ$ và $\angle{APT}=90^\circ$ nên $P,H,T$ thẳng hàng. Từ đó suy ra 4 điểm $P,H,M,T$ thẳng hàng.
    b)
  • $ADEP$ nội tiếp nên $\angle{QPE}=\angle{ADE}=\angle{ABC} \Rightarrow PQBE$ nội tiếp.$\Rightarrow \angle{QPB}=\angle{QEB}$
  • Mà $\angle{QPB}=\angle{ACB}=\angle{AED}$ nên $\angle{QEB}=\angle{AED}$, kết hợp với $A,E,B$ thẳng hàng, chúng ở vị trí đối đỉnh nên $Q,E,D$ thẳng hàng.

3.  Cho hình chữ nhật $ABCD$. Gọi $H$ là hình chiếu của $A$ trên $BD$, $M,N$ lần lượt là trung điểm $BH$ và $CD$.

a. Chứng minh $\angle AMN  = 90^\circ$.

b. Gọi $P,Q, R$ lần lượt là trung điểm của $DH, MN, BC$. Chứng minh $P, Q, R$ thẳng hàng.

Gợi ý

 

  • a) Dễ thấy $\triangle{AHB} \backsim \triangle{ADC}(g.g)$ và $M, N$ lần lượt là trung điểm của $HB,CD$ nên $\triangle{AHM}\backsim \triangle{ADN} \Rightarrow \angle{AND}=\angle{AMD}\Rightarrow$ Tứ giác $ADNM$ nội tiếp $\Rightarrow \angle{AMN}=90^\circ$
  • b) Ta có $PM=PH+HM=\dfrac{DH}{2}+\frac{BH}{2}=\dfrac{BD}{2}$
  • Kết hợp với $NR$ là đường trung bình của $\triangle{BCD}$ nên:
  • $\left\{ \begin{array}{l} N{\rm{R}}\parallel PM\\ NR = PM\left( { = \dfrac{{BD}}{2}} \right) \end{array} \right. \Rightarrow PNRM$ là hình bình hành.
  • Mà $Q$ là trung điểm của $MN$ nên $Q$ cũng là trung điểm của $PR$ hay $P,R,Q$ thẳng hàng.

4. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$. Gọi $D$ là điểm đối xứng của $B$ qua $AC$ và $E$ là điểm đối xứng của $C$ qua $AB$. Đường tròn ngoại tiếp tam giác $ABD$ và đường tròn ngoại tiếp tam giác $ACE$ cắt nhau tại điểm $F$ khác $A$.

a. Chứng minh $F, B, E$ thẳng hàng và $F, C, D$ thẳng hàng.

b. Chứng minh $AF$ đi qua tâm đường tròn ngoại tiếp tam giác $ABC$.

Gợi ý
  • a) Dễ thấy $\triangle{AHB} \backsim \triangle{ADC}(g.g)$ và $M, N$ lần lượt là trung điểm của $HB,CD$ nên $\triangle{AHM}\backsim \triangle{ADN} \Rightarrow \angle{AND}=\angle{AMD}\Rightarrow$ Tứ giác $ADNM$ nội tiếp $\Rightarrow \angle{AMN}=90^\circ$
  • b) Ta có $PM=PH+HM=\frac{DH}{2}+\frac{BH}{2}=\dfrac{BD}{2}$
  • Kết hợp với $NR$ là đường trung bình của $\triangle{BCD}$ nên:$\left\{ \begin{array}{l} N{\rm{R}}\parallel PM\\ NR = PM\left( { = \dfrac{{BD}}{2}} \right) \end{array} \right. \Rightarrow PNRM$ là hình bình hành.
  • Mà $Q$ là trung điểm của $MN$ nên $Q$ cũng là trung điểm của $PR$ hay $P,R,Q$ thẳng hàng.

5. Cho đường tròn $(O)$ và đường thẳng $d$ nằm ngoài đường tròn, gọi $H$ là hình chiếu vuông góc của $O$ trên $d$. $A, B$ là hai điểm thuộc $d$ đối xứng qua $H$. Từ $A$ vẽ tiếp tuyến $AD$ đến $(O)$ sao cho $D$ khác phía $H$ đối với $AO$; từ $B$ vẽ tiếp tuyến $BE$ đến $(O)$ sao cho $E$ cùng phía $H$ đối với $BO$. Chứng minh $D, E, H$ thẳng hàng.

Gợi ý

 

  • Ta có các tứ giác $BHEO, ODAH$ nội tiếp.
  • $\triangle{OAB}$ cân tại $O$, $\triangle{ODE}$ cân tại $O$.
    $\triangle{OEB}=\triangle{ODA}(ch-cgv) \Rightarrow \angle{OBE}=\angle{OAD}$
  • $\left\{ \begin{array}{l} \angle{OBE} = \angle{OHE} \\ \angle{OAD} = \angle{OHD} \\ \angle{OBE} = \angle{OAD} \end{array} \right. \Rightarrow \angle{OHE} = \angle{OHD} $
  • Nên hai tia $HE, HD$ trùng nhau hay $H,E,D$ thẳng hàng.

 

Bài tập cực trị

Đề bài. Cho tam giác nhọn $ABC$ nội tiếp $(O)$. Tia $AO$ cắt $(OBC)$ tại $D$, tia $BO$ cắt $(OCA)$ tại $E$, tia $CO$ cắt $(OAB)$ tại $F$. Chứng minh

\[ OD.OE.OF \ge 8R^3 \]

Gợi ý

Gọi $I,J,K$ lần lượt là giao điểm của $AO$, $BO$, $CO$ với các cạnh $BC$, $CA$, $AB$ của tam giác $ABC$. Sử dụng tam giác đồng dạng ta chứng minh được

\[ OD.OI = OE.OJ = OF.OK= R^2 \]

Do đó điều cần chứng minh tương đương với

\[ 8 OI.OJ.OK \le R^3 \]

Đặt $OI = x, OJ – y, OK = z$. Từ $O$ kẻ các đường vuông góc xuống 3 cạnh, đồng thời kẻ 3 đường cao của tam giác $ABC$. Kết hợp Thales cùng tỷ số diện tích ta có được

\[ \frac{x}{x + R} + \frac{y}{y + R} + \frac{z}{z + R} = 1 \]

Quy đồng mẫu và rút gọn ta có

\[ R(xy + yz + zx) + 2xyz = R^3 \]

Đặt $t = \sqrt[3]{xyz}$ và sử dụng bất đẳng thức AM-GM: $xy + yz + zx \ge 3t^2$, thay vào trong biểu thức trên ta được

\[ R^3 \le 3Rt^2 + 2t^3 \]

tương đương với

\[ (2t – R)(t+R)^2 <= 0 \]

Ta có được $t \le R/2$. Từ đó suy ra điều cần chứng minh.

Đẳng thức xảy ra khi tam giác $x=y=z$, tức khi tâm $O$ cách đều 3 cạnh, tam giác $ABC$ là tam giác đều.

Nhận xét

  • Trường hợp $ABC$ là tam giác tù, ta vẫn có $ OD.OI = OE.OJ = OF.OK= R^2 $. Tuy nhiên $OI$, $OJ$, $OK$ có thể lớn nhỏ tùy ý [geogebra], nên bất đẳng thức không còn đúng.

Tứ giác nội tiếp (Cơ bản)

Định nghĩa. Tứ giác có 4 đỉnh cùng thuộc một đường tròn được gọi là tứ giác nội tiếp.

Dấu hiệu nhận biết tứ giác nội tiếp. Một tứ giác là tứ giác nội tiếp khi và chỉ khi:

  1. Tổng hai góc đối bằng $180^o$.
  2. Góc ngoài bằng góc đối trong.
  3. Hai đỉnh kề cùng nhìn một cạnh dưới hai góc bằng nhau.

Ví dụ 1. Tính $x$ và $y$ trong các hình sau.

Gợi ý

a. Ta có tứ giác có tổng hai góc đối bằng $180^\circ$ nên

  • $x-21 + x + 15 = 180$
  • $x = 93$.

b. Tứ giác nội tiếp góc ngoài bằng góc đối trong nên

  • $x = 80$
  • $y = 120$.

Ví dụ 2.  Cho ngũ giác $ABCDE$ nội tiếp đường tròn đường kính $BD$ tâm $O$ với các số đo như hình vẽ, $AE||BD$, $EF$ là tia đối của $EA$.

  1. Tính $\angle BCD$.
  2. Chứng minh $CB = CD$.
  3. Tính $DEF$.
Gợi ý
  1. $\angle BCD$ góc nội tiếp nửa đường tròn nên $\angle BCD = 90^\circ$.
  2. $\angle BAC = \angle CDB  = 45^\circ$, suy ra $\angle CBD = 180^\circ – \angle BCD – \angle BDC = 45^\circ$. Suy ra $CBD$ cân tại $C$, hay $CB = CD$.
  3. Ta có $ABDE$ nội tiếp, suy ra $\angle DEF = \angle ABD$.

Mà $AE||BD$, suy ra $\angle ABD + \angle BAE = 180^\circ$, suy ra $\angle ABD = 180^\circ – \angle BAD = 65^\circ$.

Suy ra $\angle DEF = \angle ABD = 65^\circ$.

Bài tập.

  1. Tính các góc chưa biết trong các hình sau.

  1. Tính số đo các góc chưa biết.

  2. Chứng minh góc giữa tia tiếp tuyến và dây cung bằng góc nội tiếp cùng chắc cung đó theo 2 bước.

a. Vẽ đường kính $AX$. Chứng minh $\angle CAX +\angle CXA = 90^\circ$.

b. Chứng minh $\angle CAT = \angle CBA$.

  1. Tính $\alpha + \beta + \gamma$.

Các loại góc trong đường tròn.

Định nghĩa. Góc ở tâm là góc có đỉnh trùng với tâm đường tròn.

Cung nằm bên trong góc được gọi là cung bị chắn.

Định nghĩa. Số đo cung nhỏ bằng số đo góc ở tâm chắn cung đó. Số đo cung lớn bằng $360^\circ$ trừ số đo cung nhỏ.

Tính chất. 

  1. Số đo đường tròn bằng $360^\circ$. Số đo nửa cung tròn bằng $180^\circ$.
  2. Nếu $C$ là một điểm thuộc cung AB thì $\text{sđ} \text{cung} AB = \text{sđ} \text{cung} AC + \text{sđ} \text{cung} CB$.

Định nghĩa. So sánh hai cung.

  1. Hai cung được gọi là bằng nhau nếu có số đo bằng nhau.
  2. Trong hai cung, cung nào có số đo lớn hơn là cung lớn hơn.

Định nghĩa.  Góc nội tiếp là góc có đỉnh nằm trên đường tròn, hai cạnh chứa hai dây cung của đường tròn đó. Cung nằm bên trong góc được gọi là cung bị chắn.

Định nghĩa. Trong đường tròn (O) cho dây cung $AB$. Tiếp tuyến tại $A$ là $xy$. Khi đó góc $\angle xAB$ được gọi là góc tạo bởi tia tiếp tuyến $Ax$ và dây cung $AB$. Tương tự góc $\angle yAB$ là góc tạo bởi tia tiếp tuyến $Ay$ và dây cung $AB$.

Tính chất. Tính chất góc nội tiếp.

  1. Số đo góc nội tiếp bằng nửa số đo cung bị chắn.
  2. Số đo góc nội tiếp bằng nửa số đo góc ở tâm cùng chắn cung đó.
  3. Số đo hai góc nội tiếp cùng chắn một cung hoặc chắn hai cung bằng nhau thì bằng nhau.
  4. Góc nội tiếp chắn nửa đường tròn là góc vuông.
  5. Số đo góc tạo bởi tia tiếp tuyến và dây cung bằng nửa số đo cung bị chắn và bằng góc nội tiếp cùng chắn cung đó.

Ta có: $\angle AOB = 2\angle ACB$ và $\angle ADB = \angle ACB = \angle BAx$

Ví dụ 1. Tính $x$ trong các hình sau.

Gợi ý

a. Ta có $\angle AOB = 360^\circ – 250^\circ = 110^\circ$.

$\angle ACB$ là góc nội tiếp chắn cung $AB$ nên

  • $\angle ACB = \dfrac{1}{2} \angle AOB $
  • $x^\circ = 55^\circ$.

b. Do $AB||CD$ nên $\angle BAC = \angle ACD = 36^\circ$.

$\angle BDC$ và $BAC$ là hai góc nội tiếp chắn cung $BC$ nên $\angle BDC = \angle BAC = 36^\circ$.

Ví dụ 2. Tính $x$ trong hình vẽ.

Gợi ý

Ta có $\angle BAC$ là góc nội tiếp chắn cung $BC$ và $\angle BCT$ là góc giữa tia tiếp tuyến $CT$ và dây cung $BC$ nên $\angle BAC = \angle BCT = 40^\circ$.

Tam giác $ABC$ cân tại $A$, suy ra $x^\circ = \dfrac{180^\circ – \angle BAC}{2} = 70^\circ$.

Bài tập.

  1. Tính các góc có trong hình vẽ. 
  2. Tính các góc trong hình vẽ. 
  3. Chứng minh $\alpha + \beta = 90$ 

Vị trí tương đối hai đường tròn

Định lý. Cho đường tròn $(O;R)$ và đường tròn $(O’;R’)$. Đặt $d = OO’$. Khi đó ta có các trường hợp sau:

  • $d > R+R’$ thì ta nói hai đường tròn ngoài nhau. (Không có điểm chung)
  • $d = R + R’$ ta nói hai đường tròn tiếp xúc ngoài. (Có một điểm chung)
  • $|R-R’| < d < R + R’$ ta có hai đường tròn cắt nhau. (Có hai điểm chung)
  • $d = |R-R’|$ ta nói hai đường tròn tiếp xúc trong. (Có một điểm chung)
  • $d < |R-R’|$ ta nói hai đường tròn chứa nhau. (Không có điểm chung)

Ví dụ 1. Cho đường tròn $(O;R)$ và $(O’;R’)$ cắt nhau tại $A, B$. Chứng minh $OO’$ là trung trực của $AB$ và tính $AB$ theo $R, R’$ biết $\angle OAO’ = 90^\circ$.

Gợi ý
  • Ta có $OA = OB, O’A = O’B$ nên $OO’$ là đường trung trực của $AB$.
  • Gọi $H$ là giao điểm của $OO’$ và $AB$.
  • Ta có $AH \bot OO’$ và $H$ là trung điểm của $AB$.
  • Tam giác $OAO’$ vuông tại $AH$ nên: \[AH\cdot OO’ =OA\cdot O’A \Rightarrow AH =\dfrac{OA\cdot O’A}{OO’} = \dfrac{RR’}{\sqrt{R^2 + R’^2}}\]
  • Suy ra $AB = 2AH = \dfrac{2R.R’}{\sqrt{R^2+R’^2}}$.

Ví dụ 2. Cho đoạn thẳng $AB$ và điểm $C$ thuộc đoạn $AB$. $D, E$ là hai điểm thuộc đường đường tròn $(A;AC)$. $DC, EC$ cắt đường tròn $(B;BC)$ tại $F$ và $G$.

  1. Chứng minh $(A;AC)$ và $(B;BC)$ tiếp xúc nhau.
  2. Chứng minh $AD$ song song với $BF$.
  3. Chứng minh $DE$ song song với $FG$.
Gợi ý

1.Xét hai đường tròn $(A;AC)$ và $(B;BC)$ có $AC + BC = AB$ (do $C$ nằm giữa $A$ và $B$), suy ra hai đường tròn tiếp xúc ngoài.
2.

  • Tam giác $ACD$ cân tại $A$ suy ra $\angle ADC = \angle ACD$.
  • Tam giác $BDF$ cân tại $B$ suy ra $\angle BFC = \angle BCF$.
  • Mà $\angle ACD = \angle BCF$, suy ra $\angle ADC = \angle BFC$, suy ra $AD||BF$.

3.

  • Ta có $AD ||BC$, suy ra $\dfrac{CD}{CF} = \dfrac{AC}{BF}$.
  • Chứng minh tương tự ta có $\dfrac{CE}{CG} = \dfrac{AC}{BC}$.
  • Từ đó ta có $\dfrac{CD}{CF} = \dfrac{CE}{CG}$, suy ra $DE||FG$.

Ví dụ 3. Cho đường tròn tâm $A$ và đường tròn tâm $B$ cắt nhau tại $C$ và $D$. Một đường thẳng qua $C$ cắt $(A)$ tại $E$ và cắt $(B)$ tại $F$. Gọi $P, Q$ là điểm đối xứng của $C$ qua $A$ và $B$.

  1. Chứng minh $P, D, Q$ thẳng hàng.
  2. Gọi $M$ là trung điểm $PQ$. Chứng minh tam giác $MEF$ cân.
Gợi ý

1.

  • Ta có $CP$ là đường kính của $A$ nên $\angle CDP = 90^\circ$, $CQ$ là đường kính của $(B)$ nên $\angle CDQ = 90^\circ$.
  • Suy ra $\angle PDQ = \angle CDP + \angle CDQ = 180^\circ$ nên $P, D, Q$ thẳng hàng.

2.

  • Gọi $H$ là trung điểm của $EF$.
  • Ta có $\angle CEP = \angle CFQ = 90^\circ$, suy ra tứ giác $PEFQ$ là hình thang.
  • Hình thang $PEFQ $ có $MH$ là đường trung bình nên $MH||PE$ mà $PE \bot EF$ nên $MH \bot EF$.
  • Do đó $MH$ là trung trực của $EF$, suy ra $ME = MF$. Vậy tam giác $MEF$ cân tại $M$.

Bài tập.

[1] Cho đoạn thẳng $AB = 5cm$. Đường tròn tâm $A$ bán kính $3cm$ và đường tròn tâm $B$ bán kính $4cm$ cắt nhau tại $C$ và $D$.

a.Chứng minh $AC, AD$ là tiếp tuyến của đường tròn $(B)$.
b.Tính độ dài đoạn $CD$.
c.Đường thẳng $AB$ cắt $CD$ tại $H$ và cắt $(B)$ tại $M, N$. Chứng minh $AM.AN = AH.AB$.

[2] Cho điểm $A$ trên đường tròn $(O; R)$ và gọi $(I)$ là đường tròn có tâm $I$ và đường kính $AO$.

a.Giải thích rõ vị trí tương đối của 2 đường tròn $(O)$ và $(I)$.
b.$B$ là điểm bất kì trên $(O)$ ($B$ không nằm trên đường thẳng $AO$) $AB$ cắt $(I)$ tại $C$.Chứng tỏ $C$ là trung điểm của $AB$ và $IC ||OB$.
c. $CI$ cắt $(I)$ tại $D$, $AD$ cắt $(O)$ tại $E$. Chứng tỏ $B, O, E$ thẳng hàng.
d. Chứng tỏ 3 đường thẳng $AO, BD$ và $CE$ đồng qui tại một điểm. Điểm này là điểm đặc biệt gì của tam giác $ABE$.

[3]  Hai đường tròn $(O)$ và $(O’)$ có cùng bán kính $R$, cắt nhau tại $A$ và $B$, trong đó $\angle OAO’ = 90^\circ$. Vẽ cát tuyến chung $MAN$, $M$ thuộc $(O)$, $N$ thuộc $(O’)$. Tính $AM^2 + AN^2$ theo $R$.

Tính chất hai tiếp tuyến cắt nhau

Định lý. Nếu hai tiếp tuyến của một đường tròn cắt nhau tại một điểm thì:

  • Điểm đó cách đều hai tiếp điểm.
  • Tia kẻ từ điểm đố qua tâm đường tròn là tia phân giác của góc tạo bởi hai tiếp tuyến.
  • Tia kẻ từ tâm đi qua điểm đó là tia phân giác của góc tạo bởi hai bán kính đi qua các tiếp điểm.

Ví dụ 1. Cho đường tròn $O$ bán kính $R$ và điểm $A$ nằm ngoài đường tròn. Từ $A$ vẽ các tiếp tuyến $AB, AC$ đến $O$ với $B, C$ là các tiếp điểm. Gọi $H$ là giao điểm của $OA$ và $BC$. Chứng minh rằng :

  1. Bốn điểm $O, A, B, C$ cùng thuộc một đường tròn.
  2. $OA$ là đường trung trực của $BC$.
  3. $OH.OA = R^2$.
Gợi ý

1.Ta có $AB, AC$ là tiếp tuyến nên $OB \bot AB,OC \bot AC$. \\

  • Gọi $M$ là trung điểm của $OA$. Tam giác $OAB$ vuông tại $B$ có $BM$ là trung tuyến nên $BM = \dfrac{1}{2}OA = MA = MO$.
  • Tam giác $OCA$ vuông tại $C$ có $CM$ là trung tuyến nên $CM = \dfrac{1}{2}OA$.
  • Từ đó ta có $MA = MO = MB = MC$, do đó 4 điểm $O, A, B, C$ cùng thuộc một đường tròn tâm $M$ đường kính $OA$.

2. Ta có $AB, AC$ là hai tiếp tuyến của $(O)$ nên $AB = AC$, mặt khác $OB = OC = R$, suy ra $OA$ là đường trung trực của đoạn $BC$.

3. $OA$ là trung trực của $BC$ nên $OA \bot BC$ tại $H$.
Tam giác $OBA$ vuông tại $B$ có $BH$ là đường cao nên $OH\cdot OA = OB^2 = R^2$.

Ví dụ 2. Cho đường tròn tâm $O$ đường kính $AB=2R$. $d_1$ là tiếp tuyến tại $A$ và $d_2$ là tiếp tuyến tại $B$. $C$ là một điểm thuộc đường tròn $(O)$, tiếp tuyến tại $C$ cắt $d_1$ và $d_2$ lần lượt tại $D, E$.
1. Chứng minh $DE = AD + BE$.
2. Chứng minh $\angle DOE = 90^\circ$ và $CD\cdot CE = R^2$.

Gợi ý

1.

  • Ta có tiếp tuyến tại $C$ và $A$ cắt nhau tại $D$ nên $DC = DA$.
  • Tiếp tuyến tại $C$ và tiếp tuyến tại $B$ cắt nhau tại $E$ nên $CE = BE$.
    Suy ra $DE = CD + CE = AD + BD$.

2.

  • Ta có $OD$ là phân giác của $\angle CAO$, $OE$ là phân giác của của $\angle BOC$ (t/c hai tiếp tuyến cắt nhau).
  • Mà $\angle CAO$ và $\angle BOC$ là hai góc kề bù, suy ra $OD \bot OE$.
  • Ta có $OC \bot DE$ (t/c tiếp tuyến). Tam giác $DOE$ vuông tại $O$ có $OC$ là đường cao nên $CD.CE = OC^2 = R^2$.

Bài tập.

1.Cho đường tròn tâm $O$ bán kính $R$. Dây cung $AB = R\sqrt{3}$. Tiếp tuyến tại $A$ và $B$ cắt nhau tại $P$. $OP$ cắt $AB$ tại $K$.

a. Chứng minh $OK \bot AB$. Tính $OK$.
b.Tính $PA, PB$. Chứng minh tam giác $PAB$ đều.

2. Cho tam giác $ABC$ vuông tại $A$, đường cao $AH$. Gọi $D, E$ là hình chiếu vuông góc của $H$ trên $AB, AC$.

a.Chứng minh 4 điểm $A, D, H, E$ cùng thuộc đường tròn. Xác định tâm $I$ của đường tròn.
b.Chứng minh $BC$ là tiếp tuyến của $(I)$.
c.Gọi $M, N$ lần lượt là trung điểm $BH, CH$. Chứng minh rằng $DE$ là tiếp tuyến của đường tròn đường kính $MN$.

3. Cho nửa đường tròn tâm O đường kính $AB = 2R$. Trên tiếp tuyến tại $A$ của nửa đường tròn lấy điểm $D$ sao cho $\angle ABD = 30^\circ$, $BD$ cắt $(O)$ tại $C$. Từ $D$ vẽ tiếp tuyến $DE$ đến $(O)$.

a.Tính $BD, AC$.
b. Tính $DE$.
c.Gọi $F$ là trung điểm của $AD$. Chứng minh $CF$ là tiếp tuyến của $(O)$.
d.Gọi $M$ là giao điểm của $OD$ và $AE$, chứng minh $FM \bot OE$.

4. Cho nửa đường tròn tâm $O$ đường kính $AB$, $C$ là một điểm thuộc nửa đường tròn sao cho $AC = R$. Gọi $D$ là điểm đối xứng của $O$ qua $C$.

a. Chứng minh rằng $DA$ là tiếp tuyến của $(O)$.
b. Từ $D$ vẽ tiếp tuyến $DE$ đến $(O)$ ($E$ khác $A$). Tính $DE$ và chứng minh tam giác $ADE$ đều.
c. Tứ giác $OACE$ là hình gì? Tại sao?
d.$DB$ cắt $(O)$ tại $F$. Tính $DF$. Chứng minh $\angle DBE =\angle DEF$.

5. Cho đường tròn tâm $O$, điểm $E$ nằm ngoài đường tròn. Kẻ các tiếp tuyến $EM, EN$ với đường tròn ($M, N$ là các tiếp điểm).
a.Chứng minh $OE$ vuông góc với $MN$.
b.Vẽ đường kính $NB$ của đường tròn $(O)$. Biết $OE \bot MN$ tại $H$. Chứng minh tứ giác $OBMH$ là hình thang.
c. Biết $OM = 2, OE = 4$. Tính độ dài các cạnh của tam giác $EMN$.
d.Tính diện tích tam giác $EMN$.