Đề bài. Cho tam giác $OBA$ vuông tại $B$ đường cao $BH$. Gọi $C$, $D$ lần lượt là điểm đối xứng của $B$, $O$ qua $H$. Từ $B$ kẻ hai tiếp tuyến $BP$, $BQ$ đến đường tròn đường kính $AD$. Chứng minh ba điểm $C$, $P$, $Q$ thẳng hàng.
Tag Archives: PhuongTich
Đường thẳng qua điểm cố định. VMO 2014.
Bài toán. (PoP1.12) (VMO 2014) Cho tam giác nhọn $ABC$ nội tiếp đường tròn $(O)$, trong đó $B, C$ cố định và $A$ thay đổi trên $(O)$. Trên các tia $AB$ và $AC$ lần lượt lấy các điểm $M$ và $N$ sao cho $MA = MC$ và $NA = NB$. Các đường tròn ngoại tiếp các tam giác $AMN$ và $ABC$ cắt nhau tại $P$ ($P \neq A$). Đường thẳng $MN$ cắt đường thẳng $BC$ tại $Q$.
- Chứng minh rằng ba điểm $A, P, Q$ thẳng hàng.
- Gọi $D$ là trung điểm của $BC$. Các đường tròn có tâm là $M, N$ và cùng đi qua $A$ cắt nhau tại $K$ ($K \neq A$). Đường thẳng qua $A$ vuông góc với $AK$ cắt $BC$ tại $E$. Đường tròn ngoại tiếp tam giác $ADE$ cắt $(O)$ tại $F (F \neq A)$. Chứng minh rằng đường thẳng $AF$ đi qua một điểm cố định.
Ba đường thẳng đồng quy.
Bài toán. (PoP 1.11) Cho tam giác $ABC$ nhọn. Đường tròn đường kính $AB$ cắt đường cao $CD$ tại hai điểm $M$ và $N$, $M$ nằm ngoài tam giác; đường tròn đường kính $AC$ cắt đường cao $BE$ tại hai điểm $P$ và $Q$, $Q$ nằm ngoài tam giác.
- Chứng minh 4 điểm $M, N, P, Q$ cùng thuộc một đường tròn.
- Chứng minh $MP, NQ$ và $BC$ đồng quy.
Trực tâm thuộc một đường cố định.
Bài toán. (PoP 1.10). Cho tam giác $ABC$ và điểm $D$ thay đổi trên cạnh $BC$. Đường tròn ngoại tiếp tam giác $ABD$ cắt $AC$ tại $E$, đường tròn ngoại tiếp tam giác $ACD$ cắt $AB$ tại $F$. Gọi $H$ là trực tâm.
- Đường tròn ngoại tiếp tam giác $AEF$ và đường tròn đường kính $AH$ cắt nhau tại điểm thứ hai là $P$. Chứng minh $AP$ đi qua trung điểm của $BC$.
- Chứng minh trực tâm tam giác $PEF$ thuộc một đường thẳng cố định.
Trục ba đường tròn là đường thẳng Euler
Bài toán. (PoP 1.9) Cho tam giác $ABC$ là tam giác nhọn, không cân nội tiếp đường tròn tâm O. Gọi $AD, BE, CF$ là ba đường phân giác trong của tam giác $ABC$. Gọi $L, M,N$ lần lượt là trung điểm của $AD, BE, CF$. Gọi $(O_1), (O_2), (O_3)$ lần lượt là các đường tròn đi qua $L$, tiếp xúc với $OA$ tại $A$; đi qua $M$, tiếp xúc với $OB$ tại $B$; đi qua $N$ tiếp xúc với $OC$ tại $C$. Chứng minh rằng $(O_1), (O_2), (O_3)$ có đúng hai điểm chung và đường thẳng nối hai điểm đó đi qua trọng tâm tam giác $ABC$.
Đường thẳng qua tâm đường tròn ngoại tiếp. China 2010.
Bài toán. (PoP 1.7) (China 2010) Lấy $AB$ là dây cung của đường tròn tâm $O$, $M$ là điểm chính giữa cung $AB$ và $C$ là điểm nằm ngoài đường tròn $(O)$. Từ $C$ vẽ hai tiếp tuyến đến $(O)$ tại tiếp điểm $S, T$. Gọi $E$ là giao điểm của $MS$ và$ AB$, $F$ là giao điểm của $MT$ và $AB$. Từ $E, F$ vẽ các đường thẳng vuông góc với $AB$, cắt $OS$ và $OT$ lần lượt tại $X$ và $Y$. Một đường thẳng qua $C$ cắt $(O)$ tại $P$ và $Q$, $MP$ cắt $AB$ tại $R$. Chứng minh rằng $XY$ đi qua tâm đường tròn ngoại tiếp tam giác $PQR$.
Đường thẳng tiếp xúc đường tròn
Bài toán. (PoP1.6) Cho tam giác $ABC$ nội tiếp đường tròn $(O)$ với góc $A$ nhọn. Gọi $D$ là điểm chính giữa của cung nhỏ $BC$ và $E, F$ lần lượt là trung điểm của $AC, AB$. Giả sử $DE, DF$ cắt lại với $(O)$ tại điểm thứ hai tương ứng là $Y$, $Z$. Đường tròn $(AEY)$ cắt $(AFZ)$ tại điểm thứ hai $M$. Gọi $N$ là trung điểm của $BC$ và đường tròn $(DNM)$ giao với $BC$ tại điểm thứ hai $X$. Chứng minh rằng $AX$ là tiếp tuyến của $(O)$.
Ba điểm thẳng hàng.
Bài toán. (PoP 1.4) Cho tam giác $ABC$ nội tiếp đường tròn $(O)$, một đường thẳng qua $(O)$ song song với $BC$, cắt $AB$, $AC$ lần lượt tại $F, E$. Đường tròn ngoại tiếp các tam giác $(BFO)$ và $(CEO)$ cắt nhau tại điểm thứ 2 là $D$ và cắt $BC$ tại $L, K$. Gọi $M$ là giao của $BE$ và $CF$. Gọi $N$ là giao của $FL$ và $EK$. Chứng minh rằng $D, M, N$ thẳng hàng.
Tam giác cân
Bài toán. (PoP 1.3) Cho tam giác $ABC$ nhọn, $\angle B > \angle C$. Gọi $M$ là trung điểm đoạn $BC$ và $E, F$ lần lượt là chân đường cao từ $B$ và $C$. Gọi $K, L$ lần lượt là trung điểm của $ME$, $MF$. Gọi $T$ là giao điểm của $KL$ sao cho $TA||BC$. Chứng minh $TA = TM$.
3 điểm thẳng hàng
Bài toán. (PoP 1.2) Cho tam giác $ABC$ nhọn, kẻ đường cao $AD, BE, CF$ cắt nhau tại $H$. Cho $K$ là một điểm tùy ý trên cạnh $BC$ và khác $B,C$ kẻ đường kính $KM$ củaCho tam giác $ABC$ nhọn, kẻ đường cao $AD, BE, CF$ cắt nhau tại $H$. Cho $K$ là một điểm tùy ý trên cạnh $BC$ và khác $B,C$ kẻ đường kính $KM$ của đường tròn ngoại tiếp tam giác $BFK$ và đường kính $KN$ của đường tròn ngoại tiếp tam giác $CEK$. Chứng minh rằng ba điểm $M, H, N$ thẳng hàng.