Category Archives: Chuyên đề

Số nguyên tố – Hợp số

Một lớp học có 42 học sinh, muốn chia lớp thành các nhóm thuyết trình sao cho số học sinh ở mỗi nhóm bằng nhau và số tổ lớn hơn 1 và nhỏ hơn 10. Có thể chia được không nếu số học sinh trong lớp là 43?

Định nghĩa 1. Một số nguyên dương được gọi là số nguyên tố nếu số đó lớn hơn 1 và chỉ có hai ước dương là 1 và chính nó. Số nguyên dương lớn hơn 1 không phải là số nguyên tố được gọi là hợp số.

Chú ý: Hai số 0 và 1 không phải là số nguyên tố, cũng không phải là hợp số.

Ví dụ 1. Các số 2, 3, 5, 7, 11 là các số nguyên tố đầu tiên.

Các số 4, 6, 8, 9 là các hợp số

Tính chất 1. Với mỗi số tự nhiên $n \geq 2$ thì hoặc $n$ là số nguyên tố, hoặc $n$ là tích của các số nguyên tố.

Chứng minh

Ta chứng minh bằng quy nạp.

Với $n =2, 3$ ta có $n$ là một số nguyên tố.

Gỉa sử bài toán đúng với mọi $k$ với $k \leq n$. Ta chứng minh bài toán đúng với $n +1$.

Nếu $n+1$ là số nguyên tố, ta có điều cần chứng minh. Nếu $n+1$ không phải là số nguyên tố, khi đó $n+1$ có thể phân tích thành tích hai số $p$ và $q$ $ (2\leq p, q<n) $, tức là $n=p \cdot q$. Theo giả thiết quy nạp thì $p, q$ hoặc là nguyên tố hoặc là có thể phân tích thành tích các số nguyên tố. Từ đó ta có điều cần chứng minh.

Tính chất 2.
1) Hai số nguyên tố bất kì phân biệt là số nguyên tố cùng nhau.
2) Cho số nguyên tố $p$, nếu $a$ là một số nguyên thì hoặc $ p|a $ hoặc $(a,p)=1$.
3) Nếu $p$ là số nguyên tố và $p|ab$, khi đó $p|a$ hoặc $p|b$.

Chứng minh
1) Hiển nhiên theo định nghĩa số nguyên tố.
2) Đặt $d=(p,a)$. Ta có $d|a, d|p$. Vì $p$ nguyên tố nên $d=1$ hoặc $d=p$. Từ đó suy ra điều cần chứng minh.

3) Nếu $a$ không chia hết cho $p$, suy ra $(p,a)=1$, mà $p|ab$ nên ta có $p|b$.

Phân tích một số thành thừa số nguyên tố.

Định lý 18 cho ta thấy rằng mọi số nguyên dương lớn hơn hoặc bằng 2 có thể là số nguyên tố hoặc có thể phân tích thành tích các thừa số nguyên tố. Nhưng sự phân tích đó có duy nhất không? Để biết được điều đó, sau đây chúng tôi nêu ra một định lý quan trọng của số học và không chứng minh định lý này. Bạn đọc có thể tham khảo trong [1].

Định lý 2. (Định lý cơ bản của số học) Mọi số nguyên dương lớn hơn 1 đều có thể phân tích một cách duy nhất thành tích các số nguyên tố (không tính thứ tự sắp xếp các số thừa số nguyên tố)

Ví dụ 2. $ 12=2^2.3 ; 245=5.7^2 $

Hệ quả 1. Cho hai số nguyên $a$ và $b$. Giả sử $a,b$ được phân tích thành các thừa số nguyên tố $ a=p_1^{x_1}p_2^{x_2}…p_m^{x_m}.a’, b=p_1^{y_1}p_2^{y_2}…p_m^{y_m}.b’ $. Trong đó $(a’,b’)=1$, các thừa số $ p_i $ là các thừa số nguyên tố chung.

Đặt $ z_i=\min{x_1,y_1}; t_i=\max{x_1,y_1} $, khi đó $(a, b)=p_1^{z_1}p_2^{z_2}…p_m^{z_m} $ và $ [a,b]=p_1^{t_1}p_2^{t_2}…p_m^{t_m}.a’.b’ $

Ví dụ 3. Tìm ước chung nhỏ nhất và bội chung nhỏ nhất của hai số 252 và 220.
Lời giải. Ta có $ 252=2^2.3^2.7,220=2.3^3.5 $

Do đó ước chung nhỏ nhất của 252 và 220 là $ 2.3^3=18 $ và bội chung nhỏ nhất của 252 và 220 là $ 2.3^3.5.7 $.

Hệ quả 2. Cho số nguyên $a$ và số tự nhiên $n$. Giả sử $n$ được phân tích thành các thừa số nguyên tố $ n=p_1^{a_1}p_2^{a_2}…p_k^{a_k} $. Khi đó nếu $ a \vdots p_1^{a_1} \forall i=1,…,k $ thì $ a \vdots n $

Hệ quả 3. Mỗi số tự nguyên dương $n$ tồn tại duy nhất số không âm $m$ và $q$ trong đó $q$ lẻ và $n = q.2^m$.

Ví dụ 4. $48 = 3.2^4$, $15 = 15.2^0$.

Bài tập có lời giải.

Bài 1. Tìm các số nguyên tố $p$ để: $p+2$, $p+6$, $p+8$; $p+14$ cũng là các số nguyên tố.

Lời giải: Dễ thấy $p = 2, 3$ không thỏa đề bài, $p=5$ thỏa đề bài.

Xét $p>5$.

  • Nếu $p = 5k+1$ thì $p+4$ chia hết cho $5$ và $p+4 > 5$ nên không là số nguyên tố.
  • Nếu $p = 5k+2$ thì $p+8 = 5k+10$ chia hết cho 5, không là số nguyên tố.
  • Nếu $p = 5k+3$ thì $p+2 = 5(k+1)$ chia hết cho 5, không là số nguyên tố.
  • Nếu $p= 5k+4$ thì $p+6 = 5(k+2)$ chia hết cho 5, không là số nguyên tố.

Kết luận: $p=5$.
Bài 2. Tìm các số nguyên dương $n$ để $n^5+n+1$ là số nguyên tố.

Lời giải: Ta có $A(n) = n^5 + n+ 1 = n^5 – n^2 + n^2 + n +1 = n^2(n-1)(n^2+n+1) + (n^2+n+1) = (n^2+n+1)(n^3-n^2+1)$

Vì $n^2+n+1 >1$, nên $A(n)$ là số nguyên tố thì $n^3-n^2+1  = 1$, suy ra $n=1$

Thử lại $n=1$ thỏa đề bài.

Bài 3. Cho số tự nhiên $n$, chứng minh rằng nếu $ 2^n-1 $ là số nguyên tố thì n cũng là số nguyên tố.

Lời giải. Giả sử $n$ không là số nguyên tố.

  • Với $n=0$ thì $2^0 – 1 = 0$ không là số nguyên tố.
  • Với $n=1$ thì $2^1 – 1 = 0$ không là số nguyên tố.
  • Với $n > 1$, $n = q \cdot q$ trong đó $1 < p, q < n$. Khi đó $2^n – 1 = (2^p)^q = 1$ chia hết cho $2^p-1$, mà $1 < 2^p-1 < 2^n-1$ nên $2^n-1$ không là số nguyên tố. (mâu thuẫn.

Vậy $n$ là số nguyên tố.

Bài 4. Cho các số nguyên dương $a, b, c, d$ thỏa $ac = bd$. Chứng minh rằng $a^2+b^2+c^2+d^2$ là hợp số.
Lời giải.

Đặt $d = UCLN(a,b)$, và $a = du, b = dv$, suy ra $(u,v) = 1$.

Khi đó ta có $uc = vd$, mà $u \mid vd, (u,v) = 1$, suy ra $u \mid d$, đặt $d = um$, suy ra $c = vm$.

Vậy $a + b+ c+ d = du + dv + vm + um = (u+v)(m+d)$, các số $d, m, u, v \geq 1$ nên $a+b+c+d$ là hợp số.

Bài tập rèn luyện.

Bài 1.

a) Chứng minh rằng mọi số nguyên tố lớn hơn 3 đều có dạng $ 3k+1 $ hoặc $ 3k-1(k\geq 2) $
b) Chứng minh rằng mọi số nguyên tố lớn hơn 5 đều có dạng $ 6k+1 $ hoặc $ 6k-1 (k\geq 2) $.

Bài 2. Chứng minh rằng $ n^4-1$ là hợp số với mọi số nguyên n>1.
Bài 3. Tìm số nguyên tố $p$ sao cho $p+2, p+4$ cũng là số nguyên tố.
Bài 4. Cho $n$ không phải là số nguyên tố. Chứng minh rằng nếu $p$ là ước nguyên tố lớn nhất của n thì $ p^2\leq n $.
Bài 5. Cho số nguyên tố $p$. Khẳng định sau đúng hay sai: “Nếu $ a|p(p-1) $ thì a|p hoặc a|(p-1)”.
Bài 6. Tìm tất cả các số tự nhiên $n$ lẻ để $n, n+10, n+14$ là số nguyên tố.
Bài 7. Tìm tất cả các số nguyên tố $p$ sao cho $ 2p^2+1 $ là số nguyên tố.
Bài 8. Tìm tất cả các số nguyên dương sao cho $ a^4+4b^4 $ là số nguyên tố.

Bài 9. Tìm tất cả các số nguyên tố p sao cho $ 2p^2+1 $ là số nguyên tố.
Bài 10. Chứng minh rằng nếu số nguyên dương $ n\geq 2 $ là số nguyên tố nếu nó không có ước nguyên tố nào nhỏ hơn hoặc bằng $ \sqrt n $

Quy tắc cộng – Quy tắc nhân

Quy tắc cộng – Quy tắc nhân

 

Quy tắc cộng. Để thực hiện một công việc có thể sử một trong $k$ phương án $A_1, A_2, …, A_k$. Nếu phương án $A_1$ có $a_1$ cách thực hiện, $A_2$ có $a_2$ cách thực hiện…$A_k$ có $a_k$ cách thực hiện. Khi đó số cách thực hiện công việc là: $a_1 + a_2 + …+ a_k$.

Quy tắc cộng. (Dạng khác) Tập $A_1$ có $a_1$ phần tử, $A_2$ có $a_2$ phần tử, …, $A_k$ có $a_k$ phần tử, $A_i \cap A_j = \emptyset \forall i, j = 1, 2, …, k, i \neq j$. Khi đó số phần tử của tập ${A_1} \cup {A_2} \cup … \cup {A_k}$ là $a_1 + a_2 + …+ a_k$.

Nguyên lý bù trừ. Cho hai tập hợp A và B. Khi đó [|A \cup B| = |A| + |B| – |A \cap B| ]
Khi $A \subset X$ thì $|\overline{A}| = |X| – |A|$.

Quy tắc nhân. Để thực hiện một công việc, ta cần thực hiện lần lượt qua các giai đoạn $A_1, A_2, …, A_k$. Nếu $A_1$ có $a_1$ cách thực hiện, $A_2$ có $a_2$ cách thực hiện, …, $A_k$ có $a_k$ cách thực hiện. Khi đó số cách thực hiện công việc là $a_1 \times a_2 \times …\times a_k$.

Quy tắc nhân (Dạng khác) Cho tập $A_1$ có $a_1$ phần tử, $A_2$ có $a_2$ phần tử, …, $A_k$ có $a_k$ phần tử. Khi đó số phần tử của tích Decarters $A_1 \times A_2 \times … \times A_k = {(x_1, x_2, …x_k)| x_i \in A_i \forall i = 1, 2, …, k }$ là $a_1 \times a_2 \times a_3 \times … \times a_k$.

Các ví dụ

Ví dụ 1. Cho tập $A = {0, 1, 2, 3, 4, 5, 6}$. Từ tập $A$ có thể lập được bao nhiêu số tự nhiên

a) Có 5 chữ số khác nhau.
b) Không lớn hơn 4000.
c) Có bao nhiêu số lẻ có các chữ số khác nhau.
d) Có bao nhiêu số có 4 chữ số, mà các chữ số không nhất thiết phải khác nhau.
e) Có bao nhiêu số có 5 chữ số không có số 1 hoặc không có số 2.

Ví dụ 2.  Có thể tạo ra được bao nhiêu hình vuông từ bảng các điểm đã cho như hình sau ($8 \times 8$). Biết rằng:

a) Cạnh hình vuông song song với cạnh hình vuông lớn.
b) Bất kì.

Ví dụ 3.  Cho $n$ có phân tích thành thừa số nguyên tố như sau $$n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$$
Tính số ước nguyên dương của $n$.

Ví dụ 4. bao nhiêu số tự nhiên không lớn hơn 1000

a) Có ít nhất một chữ số 1. (\textbf{272})
b) Không chia hết cho 2 hoặc 3 hoặc 5.

Bài tập rèn luyện

Bài 1. Đội tình nguyện viên của trường PTNK gồm 6 bạn lớp 10, 3 bạn lớp 11 và 5 bạn lớp 12. Cần chọn ra 3 bạn làm ban chỉ huy trong đó có 1 đội trưởng, một đội phó và 1 ủy viên. Hỏi có bao nhiêu cách chọn thỏa:

a) Chọn tùy ý.
b) Bạn tổ trưởng lớp 11.

Bài 2. Thầy dạy toán có một số bài tập gồm: 6 bài toán khó, 5 bài toán trung bình và 7 bài toán dễ và 4 bài siêu dễ. Thầy muốn lập một đề thi gồm 1 câu hỏi khó, 1 câu hỏi trung bình, 1 câu hỏi dễ và 1 câu siêu dễ. Hỏi có bao nhiêu cách chọn bài.

Bài 3.
a) Có bao nhiêu dãy nhị phân có độ dài $n$.
b) Có bao nhiêu tập con của tập có $n$ phần tử.

Bài 4. Có bao nhiêu số nguyên dương có 5 chữ số:

a) Có các chữ số chẵn lẻ xen kẽ.
b) Có chữ số 1 và 2 nhưng không đứng cạnh nhau.
c) Có các chữ số khác nhau và có chữ số 1.
d) Có 4 chữ số không có chữ số 1 hoặc không có chữ số 0.
e) Số chẵn có 5 chữ số khác nhau và chữ số 3 và 0 không đồng thời có mặt.
f) Có 5 chữ số có chữ số 1 hoặc có chữ số 2.
Bài 5.  Cho $A = {1, 2, 3, 4, 5, 6, 7}$ và $B = {a, b, c}$. Có bao nhiêu ánh xạ $f$ từ $A$ vào $B$.

Bài 6. Có bao nhiêu cặp số $(a,b)$ mà bội chung nhỏ nhất của $a, b$ là $2017^3 2018^5 2019^4$

Bài 7. Lớp 10 Toán có 6 bạn nữ và 6 bạn nam được xếp ngồi trên hai dãy ghế đối diện nhau, mỗi dãy có 6 ghế. Có bao nhiêu cách xếp thỏa:

a) Xếp bất kì.
b) Mỗi bạn nam ngồi đối diện với một bạn nữ.

Bài 8. Có 5 bạn vào rạp xem phim, trong rạp chỉ còn một dãy ghế gồm 8 ghế. Hỏi có bao nhiêu cách để các bạn ngồi, biết rằng mỗi người đều được ngồi vị trí bất kì.

Bài 9. Cho tập $A = {1, 2, 3,4,5,6}$. Có bao nhiêu số mà các chữ số thuộc $A$ thỏa:

a) Số chẵn có 5 chữ số khác nhau.
b) Số có 3 chữ số khác nhau và chia hết cho 9. (Số chia hết cho 9 khi và chỉ khi tổng các số chia hết cho 9)
c) Số có 4 chữ số khác nhau và chia hết cho 25.
d) Số có 5 chữ số có dạng $\overline{abcba}$ ($a, b,c$ đôi một khác nhau).
e) Số có 6 chữ số có dạng$\overline{12abab}$ và chia hết cho 5.

Bài giảng quy tắc cộng – Quy tắc nhân.

 

Tập san Star Education – Số 3 năm 2019

Tập san Star Education là tập hợp các chuyên đề bài viết về toán do các giáo viên của Star Education biên soạn, ngoài ra còn có sự hợp tác của giáo viên học sinh khác nhằm đem đến cho bạn đọc một nguồn tài liệu mới tham khảo.

Tập san ra định kì mỗi năm hai số, tháng 11 và tháng 05.

tap san STAR 03-2019

Đường đẳng giác, đường đối trung

ĐƯỜNG ĐẲNG GIÁC, ĐƯỜNG ĐỐI TRUNG
Nguyễn Tăng Vũ

1. Đường đẳng giác
1.1 Định nghĩa
Định nghĩa 1. Cho góc $ \widehat{xOy} $. Ta nói hai đường thẳng $ d_1 $ và $ d_2 $ là các đường đẳng giác trong góc đã cho nếu chúng cùng đi qua đỉnh $ O $ và đối xứng với nhau qua phân giác của góc đó.
Ví dụ 1.
a) Một trường hợp tầm thường là: Đường phân giác là đẳng giác với chính nó.
b) Trong một tam giác vuông, đường cao và trung tuyến xuất phát từ đỉnh góc vuông là hai đường đẳng giác.
c) Tổng quát hơn, nếu tam giác $ ABC $ nội tiếp trong đường tròn $ (O) $ thì $ AO $ và đường cao hạ từ đỉnh $ A $ xuống cạnh $ BC $ là hai đường đẳng giác của góc $ \widehat{BAC} $.

Bạn đọc có thể kiểm tra một cách dễ dàng các ví dụ trên.
1.2 Các tính chất cơ bản
1.2.1 Tiêu chuẩn để hai đường thẳng là đẳng giác của một góc
Định lý 1 (Định lý Steiner). Cho tam giác $ ABC $ và hai điểm $ D, E $ trên cạnh $ BC $. Khi đó, $ AD $ và $ AE $ là hai đường đẳng giác của góc $ \widehat{BAC}$ khi và chỉ khi
$ \dfrac{\overline{BD}}{\overline{DC}} \cdot \dfrac{\overline{BE}}{\overline{EC}}=\dfrac{AB^2}{AC^2} $.(1)
Chứng minh.
a) Phần thuận. Giả sử $ AD $ và $ AE $ là hai đường đẳng giác của góc $ \widehat{BAC} $, ta sẽ chứng minh đẳng thức (1) cũng được thỏa mãn. Ta có\ $ \dfrac{\overline{BD}}{DC}=\dfrac{S_{BAD}}{S_{DAC}}=\dfrac{AD \cdot AB \cdot \sin \widehat{BAD}}{AD \cdot AC \cdot \sin \widehat{DAC}}=\dfrac{AB}{AC} \cdot \dfrac{\sin \widehat{BAD}}{\sin \widehat{DAC}} $.(2)
Tương tự, ta cũng có
$ \dfrac{\overline{BE}}{\overline{EC}}=\dfrac{AB}{AC} \cdot \dfrac{\sin \widehat{BAE}}{\sin \widehat{EAC}} $.(3)
Mặt khác, do $ AD, AE $ là hai đường đẳng giác của góc $ \widehat{BAC}$ nên
$ \widehat{BAD}=\widehat{EAC}, \widehat{DAC}=\widehat{BAE}. $ (4)
Từ đây kết hợp với (2) và (3), ta thu được ngay đẳng thức (1).
b) Phần đảo. Giả sử $ AD, AE $ thỏa (1), ta chứng minh $ AD $ và $ AE $ là hai đường đẳng giác ứng với góc $ A $. Vẽ $ AD’ $ là đường đẳng giác của $ AE (D’ \in BC) $. Khi đó ta có hệ thức
$ \dfrac{\overline{BD’}}{\overline{D’C} } \cdot \dfrac{\overline{BE}}{\overline{EC}}=\dfrac{AB^2}{AC^2} $.
Kết hợp với $ (1) $, ta có $ \dfrac{\overline{BD}}{\overline{DC} }=\dfrac{\overline{BD’}}{\overline{D’C} } $. Suy ra $ D \equiv D’ $, tức $ AD $ và $ AE $ là hai đường đẳng giác.
Định lý 2. Cho góc $ \widehat{xOy} $ và đường thẳng $ d_1 $ qua $ O, A $ là một điểm bất kỳ trên $ d_1 $. Gọi $ H, K $ lần lượt là hình chiếu của $ A $ trên $ Ox, Oy $. Khi đó, đường thẳng $ d_2 $ là đường đẳng giác của $ d_1 $ ứng với góc $ \widehat{xOy} $ khi và chỉ khi $ d_2 $ qua $ O $ và vuông góc với $ HK. $
Chứng minh. Chứng minh định lý này khá đơn giản, để thuận tiện ta sử dụng góc hình học.

a) Phần thuận. Giả sử $ d_2 $ là đường đẳng giác của $ d_1 $, ta sẽ chứng minh $ d_2 \bot HK. $ Ta có $ OHAK $ là tứ giác nội tiếp đường tròn đường kính $ OA $ nên
$ \widehat{AOH} = \widehat{AKH}.$
Mặt khác, ta lại có $ \widehat{KOB}= \widehat{AOH} $, nên từ trên suy ra $ \widehat{KOB}=\widehat{AKH} $.
Vì $ \widehat{AKH}+ \widehat{HKO}=90^0 $ nên ta có $ \widehat{AKH}+ \widehat{HKO}=90^0 $, từ đó suy ra $ OB \bot HK. $
b) Phần đảo. Giả sử $ d_2 $ đi qua $ O $ và vuông góc với $ KH $, ta sẽ chứng minh $ d_2 $ là đường đẳng giác của $ d_1 $. Gọi đường thẳng $ d’$ là đường đẳng giác của $ d1 $ ứng với góc $ \widehat{xOy} $. Theo phần thuận ta có $ d’ \bot HK $, suy ra $ d’ $ trùng $ d_2 $. Vậy $ d_2 $ là đường đẳng giác của $ d_1 $.
Hệ quả 1.Gọi $ A_1, A_2 $ lần lượt là điểm đối xứng của $ A $ qua $ Ox $ và $ Oy $. Khi đó, đường trung trực của đoạn $ A_1A_2 $ là đường đẳng giác của $ OA $.
1.2.2 Các tính chất cơ bản
Định lý 3. Cho góc $ \widehat{xOy}. A $ và $ B $ là hai điểm sao cho $ OA, OB $ là hai đường đẳng giác ứng với góc $ \widehat{xOy}. A_1, A_2 $ lần lượt là hình chiếu của $ A $ trên $ Ox $, $ Oy $ và $ B_1 $, $ B_2 $ lần lượt là hình chiếu của $ B $ trên $ Ox $, $ Oy $. Khi đó, ta có các điều sau:
a) Bốn điểm $ A_1, A_2, B_1, B_2 $ cùng nằm trên một đường tròn có tâm là trung điểm của $ AB $;
b) $ AA_1 ·BB_1 = AA_2 ·BB_2. $
Chứng minh.

a) Ta có
$ OA_1 = OA \cos\widehat{AOA_1}, OB_1 = OB \cos\widehat{BOB_1 }$\
và $ OA_2 = OA \cos \widehat{AOA_2}, OB_2 = OB \cos\widehat{BOB_2} $.\
Suy ra $ OA_1 \cdot OB_1 = OA_2 \cdot OB_2 $. Do đó, bốn điểm $ A_1, A_2, B_1 $ và $ B_2 $ cùng thuộc một đường tròn. Hơn nữa tâm của đường tròn này chính là trung điểm của $ AB. $
b) Kết quả này được suy ra trực tiếp từ định nghĩa đường đẳng giác.
Định lý 4. Cho tam giác $ ABC $. Các cặp đường thẳng $ d_a, d’_a $ là đường đẳng giác ứng với góc $ A $, định nghĩa tương tự với $ d_b, d’_b và d_c, d’_c $. Khi đó, $ d_a, d_b, d_c $ đồng quy tại $ P $ thì  $ d’_a, d’_b, d’_c $ đồng quy tại $ P’. $ hoặc đôi một song song.
Chứng minh.

Sử dụng định lý Ceva dạng lượng giác ta chứng minh định lý 4 như sau: Giả sử $ d_a,d_b,d_c $ đồng quy tại $ P, $ ta có
$ \dfrac{\sin(d_a,c)}{\sin(d_a,b)} \cdot \dfrac{\sin{d_b,a}}{\sin(d_b,c)} \cdot \dfrac{\sin(d_c,b)}{\sin(d_C,a)}=-1. $
Lại có $ (d_a, c) = −(d’_a, b) $ và $ (d_a, b) = −(d’_a, c) $ nên
$\dfrac{\sin(d_a,c)}{\sin(d_a,b)}=\dfrac{\sin(d’_a,b)}{\sin(d’_a,c)}. $
Tương tự ta cũng có:
$ \dfrac{\sin(d_b,a)}{\sin(d_b,c)}=\dfrac{\sin(d’_b,c)}{\sin(d’_b,a)}, $ $ \dfrac{\sin(d_c,b)}{\sin(d_c,a)}=\dfrac{\sin(d’_c,a)}{\sin(d’_c,b)}. $
Từ những kết quả này, ta suy ra
$\dfrac{\sin(d’_a,b)}{\sin(d’_a,c)}=\dfrac{\sin(d’_b,c)}{\sin(d’_b,a)}= \dfrac{\sin(d’_c,a)}{\sin(d’_c,b)}=-1.$
Do đó theo định lý Ceva thì $ d’_a, d’_b, d’_c $ đồng quy hoặc song song.

Chú ý: Nếu $P$ thuộc đường tròn ngoại tiếp tam giác $ABC$ thì $d’_a, d’_b, d’_c$ đôi một song song.
Định lý được chứng minh. Từ định lý 4, ta có định nghĩa sau:
Định nghĩa 2. Hai điểm được gọi là hai điểm đẳng giác nếu các cặp đường thẳng nối chúng với mỗi đỉnh là những cặp đường đẳng giác.
Ví dụ 2. Trong một tam giác thì tâm đường tròn ngoại tiếp và trực tâm là hai điểm đẳng giác.
Áp dụng định lý 3 ta có định lý sau:

Định lý 5. Cho $ P $ và $ p’ $ là hai điểm đẳng giác đối với tam giác $ ABC $. Gọi $ X, Y, Z $ lần lượt là các hình chiếu của $ P $ trên các cạnh $ BC, AC, AB $ và $ X’, Y’, Z’$ lần lượt là các hình chiếu của $ P’$ trên các cạnh $ BC, AC, AB $. Khi đó, sáu điểm $ X, Y, Z, X’, Y’, Z’ $ cùng nằm trên một đường tròn.
Một hệ quả của định lý 5 là định lý về đường tròn Euler:
Định lý 6. Trong một tam giác, chân các đường cao và trung điểm các cạnh thì cùng thuộc một đường tròn, tâm đường tròn Euler chính là trung điểm của đoạn thẳng nối trực tâm và tâm ngoại tiếp tam giác.
1.3 Một số bài toán áp dụng
Bài toán 1. Cho tam giác $ ABC $. Đường tròn thay đổi qua $ B $ và $ C $ cắt các đường thẳng $ AB $ và $ AC $ tại $ D $ và $ E $. Chứng minh rằng tâm $ I $ của đường tròn ngoại tiếp tam giác $ ADE $ di chuyển trên một đường thẳng cố định.

Chứng minh.

Ta có tam giác $ ADE $ và tam giác $ ACB $ đồng dạng, suy ra hai tam giác $ AID $ và $ AOC $ đồng dạng, do đó $\widehat{DAI}= \widehat{OAC} $.Kết quả này cho thấy $ AI $ và $ AO $ là hai đường đẳng giác đối với góc $ A $. Mà đường cao $ AH $ của tam giác $ ABC $ và $ AO $ cũng là hai đường đẳng giác. Từ đây suy ra $ I \in AH $ cố định.
Nhận xét. Đây là bài toán thi vào trường Phổ thông Năng khiếu năm 2011 và là một bài toán khá dễ. Ta không cần phải sử dụng tới khái niệm đẳng giác. Tuy nhiên, qua bài này ta có một dấu hiện để nhận biết được hai đường đẳng giác: Cho hai điểm $ D, E $ thuộc các đường thẳng $ AB $ và $ AC $ sao cho tam giác $ ADE $ đồng dạng với tam giác $ ACB $ . Khi đó các đường thẳng tương ứng của hai tam giác $ ADE $ và $ ABC $ qua $ A $ là hai đường đẳng giác của góc $ \widehat{BAC} $.
Cụ thể hơn: Cho tam giác $ ABC $. Nếu $ DE $ là đường đối song của $ BC $ thì trung tuyến (đường cao…) xuất phát từ $ A $ của tam giác $ ADE $ và tam giác ABC là hai đường đẳng giác.
Đây là một ý khá hay để ta giải được các bài toán. Ta xét ví dụ sau:

Bài toán 2. Chứng minh rằng trong một tam giác, các đường thẳng kẻ từ tâm của đường tròn bàng tiếp trong mỗi góc, vuông góc với cạnh đối diện, đồng quy tại một điểm.
Chứng minh.


Gọi $ I_a, I_b, I_c $ lần lượt là tâm đường tròn bàng tiếp ứng với đỉnh $ A, B, C $. Dễ dàng chứng minh $ I_aA, I_bB, I_cC $ là các đường cao của tam giác $ I_aI_bI_c $. Vì $ BC $ và $ I_aI_b $ là hai đường đối song nên theo tích chất trên ta có đường thẳng qua $ A $ vuông góc với $ BC $ và đường thẳng $ I_aA $ là hai đường đẳng giác ứng với góc $ I_bI_aI_c $. Áp dụng định lý 4, ta có điều cần chứng minh.\
Bài toán 3 (Nga, 2010). Đường tròn nội tiếp của tam giác nhọn $ ABC $ tiếp xúc với các cạnh $ AB, BC, AC $ lần lượt tại $ C_1, A_1, B_1 $. Các điểm $ A_2, B_2 $ lần lượt là trung điểm của các đoạn $ B_1C_1, A_1C_1 $. Gọi $ P $ là giao điểm của đường tròn nội tiếp và $ CO $, với $ O $ là tâm đường tròn ngoại tiếp tam giác $ ABC $. Gọi $ N, M $ là giao điểm thứ hai của $ PA_2, PB_2 $ với đường tròn nội tiếp. Chứng minh rằng giao điểm của $ AN $ và $ BM $ thuộc đường cao hạ từ $ C $ của tam giác $ ABC $.
Chứng minh.

Ta biết rằng đường cao hạ từ $ C $ và $ CO $ là hai đường đẳng giác. Các đường thẳng $ CO, BP, AP $ cắt nhau tại $ P $. Do vậy, ta chỉ cần chứng minh $ (AP, AN) $ và $ (AP, AM) $ là các cặp đường đẳng giác ứng với góc $ A $ và $ B $ của tam giác $ ABC $.
Từ đây, ta đi đến lời giải cho bài toán này như sau: Gọi $ I $ là tâm đường tròn nội tiếp tam giác $ ABC $, $ K $ là giao điểm của $ AN $ và $ BM $. Áp dụng phương tích của điểm $ P $ đối với đường tròn $ (I) $ và đường tròn ngoại tiếp tứ giác $ AC_1IB_1 $, ta có
$ \overline{A_2I} \cdot \overline{A_2A}= \overline{A_2C_1} \cdot \overline{A_2B_1}, \overline{A_2C_1} \cdot \overline{A_2B_1}= \overline{A_2N} \cdot \overline{A_2P.} $
Từ đó suy ra
$\overline{A_2N} \cdot \overline{A_2P}=\overline{A_2I} \cdot \overline{A_2A}. $
Đẳng thức này cho thấy $ ANIP $ là tứ giác nội tiếp. Hơn nữa $ IN = IP $ nên ta có $ AI $ là phân giác góc $ \widehat{NAP} $, do đó $ AN $ và $ AP $ là hai đường đẳng giác ứng với góc $ A $.

Chứng minh tương tự ta cũng có $ BM $ và $ BP $ là hai đường đẳng giác của góc $ B $. Mà $ AP, BP, CO $ đồng quy tại $ I $ và $ AN, BM $ cắt nhau tại $ K $, nên $ CK $ là đường đẳng giác của $ CO $. Suy ra $ K $ thuộc đường cao hạ từ $ C $ của tam giác $ ABC $.

2. Đường đối trung
2.1 Định nghĩa
Định nghĩa 3.Trong một tam giác, đường đẳng giác với trung tuyến xuất phát từ một đỉnh được gọi là đường đối trung của tam giác.
Ví dụ 3. Trong một tam giác vuông thì đường cao xuất phát từ đỉnh chính là đường đối trung.
2.2. Các tính chất cơ bản
Đường đối trung là đường đẳng giác với trung tuyến nên sẽ có các tính chất của cặp đường đẳng giác. Từ các định lý 1, 2, 3, 4 và 5, ta có các tính chất sau:
\begin{enumerate}
\item Cho tam giác ABC. Ta có AD (D ∈ BC) là đường đối trung khi và chỉ khi:\
a) $ \dfrac{DB}{DC}=\dfrac{AB^2}{AC^2}; $\
b) $ \dfrac{\sin \widehat{DAB}}{\sin \widehat{DAC}}=\dfrac{AB}{AC}; $\
c) $ \dfrac{DH}{DK}=\dfrac{AB}{AC} (H,K $ lần lượt là hình chiếu của $ D $ lên $ AB,AC $.
\item Các đường đối trung giao nhau tại một điểm gọi là điểm Lemoine. Chú ý rằng:
a) Điểm Lemoine và trọng tâm là hai điểm đẳng giác;
b) Điểm Lemoine có nhiều tính chất hay, ta sẽ xét các tính chất đó trong phần bài tập.

2.3 Cách dựng đường đối trung và áp dụng

Dựa vào các tính chất của đường đối trung, trong phần này ta sẽ xét xét các cách dựng đường đối trung. Qua đó, ta xem xét một vài ví dụ liên quan tới đường đối trung của tam giác.
Bài toán 4. Cho tam giác $ ABC $. Trên đường thẳng $ AB $ lấy một điểm $ D $ và trên đường thẳng $ AC $ lấy một điểm $ E $ sao cho $ DE $ là đường đối song của $ BC $. Chứng minh rằng trung tuyến của tam giác $ ADE $ là đường đối trung của tam giác $ ABC $.

Bài toán này có thể được chứng minh dựa vào nhận xét sau bài toán 1 (bạn đọc có thể tự chứng minh).
Bài toán 5. Cho tam giác $ ABC $. Tiếp tuyến tại $ B $ và $ C $ của đường tròn ngoại tiếp tam giác $ ABC $ cắt nhau tại $ P $. Chứng minh rằng $ AP $ là đường đối trung của tam giác $ ABC $.
Chứng minh.

a) Cách 1. Gọi $ D $ là giao điểm của $ AP $ và $ BC $, ta có\
$ \dfrac{BD}{DC}=\dfrac{S_{ABP}}{S_{ACP}}=\dfrac{AB \cdot BP \cdot \sin ABP}{AC \cdot CP \cdot \sin ACP}=\dfrac{AB}{AC} \cdot \dfrac{\sin ACB}{\sin ABC}=\dfrac{AB^2}{AC^2}$
Do đó $ AP $ là đường đối trung của tam giác $ ABC $.


b) Cách 2. Gọi $ D, E $ là giao điểm của $ AB, AC $ với đường tròn tâm $ M $ bán kính $ MB $ và $ O $ là tâm đường tròn ngoại tiếp tam giác $ ABC $. Ta cần chứng minh $ DE $ là đường kính của đường tròn. Thật vậy ta có
$\widehat{DBE}=\widehat{BAE}+\widehat{AEB}=\dfrac{\widehat{BOC}}{2}+\dfrac{\widehat{BPC}}{2}=90^0, $
nên $ DE $ là đường kính và $ P $ là trung điểm của $ DE $. Từ đây, dễ dàng suy ra $ AP $ là đường đối trung của tam giác $ ABC $.
Sau đây ta xét một vài ví dụ có liên quan đến đường đối trung.
Bài toán 6 (Đề chọn đội tuyển trường Phổ thông Năng khiếu, 2010). Cho tam giác $ ABC $ nội tiếp đường tròn $ (O) $ có $ A $ cố định và $ B, C $ thay đổi trên $ (O) $ sao cho $ BC $ luôn song song với một đường thẳng cố định. Các tiếp tuyến của $ (O) $ tại $ B $ và $ C $ cắt nhau tại $ K $. Gọi $ M $ là trung điểm của $ BC, N $ là giao điểm của $ AM $ với $ (O) $. Chứng minh đường thẳng $ KN $ luôn qua một điểm cố định.
Chứng minh.

Gọi $ D, P $ lần lượt là giao điểm của $ KN $, $ AP $ và $ (O) $. Vì $ BC $ có phương không đổi nên $ KM $ là đường thẳng cố định. Theo trên, ta thấy $ AK $ là đường đối trung, suy ra $ \widehat{BAP}= \widehat{NAC} $. Từ đó ta chứng minh được $ P, N $ đối xứng nhau qua đường thẳng $ KM $ cố định. Khi đó dễ dàng suy ra $ D $ đối xứng với $ A $ qua đường thẳng $ KM $ nên $ D $ cố định.
Bài toán 7. Cho tam giác $ ABC $. Một đường tròn thay đổi qua $ BC $ cắt các cạnh $ AB $ và $ AC $ tại $ D $ và $ E $. Tiếp tuyến tại $ D $ và $ E $ của đường tròn ngoại tiếp tam giác $ ADE $ cắt nhau tại $ P $. Chứng minh rằng $ P $ luôn thuộc một đường thẳng cố định.
Chứng minh. Nhận xét $ P $ thuộc đường đối trung của tam giác $ ADE $. Mà $ BC $ là đường đối song của $ DE $ nên trung tuyến $ AM $ của tam giác $ ABC $ là đường đối trung của tam giác $ ADE $. Do đó $ P $ thuộc $ AM $ cố định.
Bài toán 8. Cho tam giác $ ABC $ nhọn khác tam giác cân. $ M $ là trung điểm của $ BC $. $ D $ và $ E $ là các điểm thuộc $ AM $ sao cho $ AD = BD $ và $ AE = EC. DB $ cắt $ CE $ tại $ F $. Một đường tròn qua $ B $ và $ C $ cắt các cạnh $ AB, AC $ lần lượt tại $ H $ và $ K $. Chứng minh rằng $ AF $ đi qua trung điểm của $ HK $.
Chứng minh.

Ta thấy rằng $ HK $ là đường đối song của $ BC $ nên để chứng minh $ AF $ qua trung điểm của $ HK $ thì ta chỉ cần chứng minh $ AF $ là đường đối trung của tam giác $ ABC $. Áp dụng định lý sine cho tam giác $ ABF $ và tam giác $ ACF $, ta có
$ \dfrac{AB}{AF}=\dfrac{\sin \widehat{AFB}}{\sin \widehat{ABF}}= \dfrac{\sin \widehat{AFB}}{\sin \widehat{BAD}} $ (1)
và $ \dfrac{AC}{AF}=\dfrac{\sin \widehat{AFC}}{\sin \widehat{ACF}}= \dfrac{\sin \widehat{AFC}}{\sin \widehat{EAC}} $.(2)
Mà $ D, E $ thuộc trung tuyến $ AM $ nên ta có
$ \dfrac{\sin \widehat{DAB}}{\sin \widehat{EAC}}=\dfrac{AC}{AB} $.(3)
Từ (1), (2) và (3), ta suy ra $ \sin\widehat{AFB} = \sin\widehat{AFC}, $ tức
$ \widehat{AFB} = \widehat{AFC}.(4) $
Mặt khác ta lại có:
$ \widehat{BFC} = \widehat{FDE}+\widehat{FED}=2\widehat{BAD}+2\widehat{EAC} =2\widehat{BAC}=\widehat{BOC}.$
Kết hợp với trên, ta được
$ \widehat{AFB}=\widehat{AFC}=180^0-\widehat{BAC} $.
Như vậy, ta có
$ \widehat{FAC}+\widehat{FCA}=\widehat{BAC}=\widehat{BAD}+\widehat{CAD} $.
Mà $ \widehat{FCA}=\widehat{CAD} $ nên $ \dfrac{FAC}{BAD}. $ Vậy $ AF $ là đường đối trung của tam giác $ ABC. $
Từ đó suy ra điều cần chứng minh.
Nhận xét. Sau khi đã chỉ ra được $ \widehat{BFC}=\widehat{BOC} $ thì ngoài cách chứng minh như trên, ta còn có một cách khác để hoàn tất bài toán như sau: Từ $ \widehat{BFC}=\widehat{BOC} $, ta có tứ giác $ BFOC $ nội tiếp. Gọi $ P $ là giao điểm của $ AF $ và ($ BFOC) $. Từ (4) suy ra $ PB = PC. $ Điều này chứng tỏ $ OP $ là đường kính và $ PB \bot OB, PC \bot OC. $ Suy ra $ PB, PC $ là tiếp tuyến của $ (ABC) $ và như thế, $ AP $ là đường đối trung của tam giác $ ABC $. Từ đây ta có ngay điều phải chứng minh. Qua cách chứng minh này, ta thấy $ OF \bot AF $ và $ F $ thuộc đường tròn đường kính $ AO $. Đây chính là nội dung của bài toán thi Olympic Toán toàn nước Mỹ năm 2008: Cho tam giác $ ABC $ nhọn và không phải tam giác cân, đường trung trực của $ AB $ và $ AC $ cắt trung tuyến $ AM $ tại $ D $ và $ E. F $ là giao điểm của $ BD $ và $ CE $. Gọi $ N, P $ lần lượt là trung điểm $ AB, AC $ và $ O $ là tâm được tròn ngoại tiếp tam giác $ ABC $. Chứng minh rằng bốn điểm $ N, F, O, P $ cùng nằm trên một đường tròn.

3 Bài tập tự luyện
Bài tập 1. Cho tam giác $ ABC $ có $ O $ là tâm đường tròn ngoại tiếp. Gọi $ O_a, O_b, O_c $ lần lượt là tâm đường tròn ngoại tiếp các tam giác $ OBC $, $ OAC $ và $ OAB $. Chứng minh rằng $ AO_a, BO_b, CO_c $ đồng quy tại điểm $ K’ $và $ K’ $ là điểm đẳng giác của tâm đường tròn Euler của tam giác $ ABC $. ($ K’ $ được gọi là điểm Kosnita.)
Bài tập 2. Cho tam giác $ ABC $ nội tiếp đường tròn $ (O) $ và $ P $ là điểm sao cho $ PB, PC $ là các tiếp tuyến với đường tròn $ (O) $. Trên $ AB $ và $ AC $ ta lấy các điểm $ K $ và $ H $ sao cho $ PK \parallel AC $ và $ PH \parallel AB $. Chứng minh rằng các điểm $ H, K $ và trung điểm các cạnh $ AB, AC $ cùng nằm trên một đường tròn.
Bài tập 3 (APMO, 2010). Cho tam giác $ ABC $ nhọn thỏa điều kiện $ AB > BC, AC > BC $. Gọi $ H $ và $ O $ lần lượt là trực tâm và tâm đường tròn ngoại tiếp tam giác $ ABC $. Giả sử đường tròn ngoại tiếp tam giác AHC cắt đường thẳng $ AB $ tại điểm $ M $ khác $ A $, và đường tròn ngoại tiếp tam giác $ AHB $ cắt đường thẳng $ AC $ tại điểm $ N $ khác $ A $. Chứng minh rằng tâm đường tròn ngoại tiếp tam giác $ MNH $ thuộc đường thẳng $ OH $.
Bài tập 4. Cho tam giác $ ABC $ cân tại $ A $, và $ P $ là một điểm nằm trong tam giác sao cho $ \widehat{PBA}=\widehat{PCB} $. Gọi $ M $ là trung điểm của $ BC $, chứng minh rằng $ \widehat{APC}=\widehat{MPB}=180^0 $.
Bài tập 5. Cho đường tròn $ (O) $ và hai điểm $ A, B $ cố định trên đường tròn, $ M $ là trung điểm của $ AB $. Điểm $ C $ thay đổi trên cung lớn $ AB $. Đường trung trực của $ AC $ và $ BC $ cắt $ CM $ lần lượt tại $ D $ và $ E $. Gọi $ F $ là giao điểm của $ AD $ và $ BE $. Chứng minh rằng $ CF $ luôn đi qua một điểm cố định khi $ C $ thay đổi.
Bài tập 6 (Nga, 2010). Một điểm $ B $ thay đổi trên dây $ AC $ của đường tròn $ (\omega) $. Đường tròn đường kính $ AB $ và $ BC $ có tâm là $ O_1 $ và $ O_2 $ cắt $ (\omega) $ lần lượt tại $ D $ và $ E $. Tia $ O_1D $ và $ O_2E $ cắt nhau tại $ F $, tia $ AD $ và $ CE $ cắt nhau tại $ G $. Chứng minh rằng $ FG $ đi qua trung điểm của $ AC $.
Bài tập 7. Cho tam giác $ ABC $. Một đường thẳng $ (d) $ thay đổi luôn song song với $ BC $ cắt $ AB $ và $ AC $ lần lượt tại $ M, N $. Gọi $ I $ là giao điểm của $ BN $ và $ CM $. Đường tròn ngoại tiếp tam giác $ BIM $ và $ CIN $ cắt nhau tại $ P $ (khác $ I $). Chứng minh rằng $ P $ luôn thuộc một đường thẳng cố định khi $ (d) $ thay đổi.
4. Lời kết
Bài viết này không đi sâu nghiên cứu các tính chất của đường đẳng giác, điểm đẳng giác, mà chỉ nêu lên một khái niệm khá phổ biến trong hình học nhưng có thể còn lạ lẫm với nhiều học sinh, qua đó giúp cho các em có thêm một hướng nhìn khi giải các bài toán hình học. Bạn nào yêu thích có thể nghiên cứu thêm trong các tài liệu tham khảo.

Tổ hợp lặp – Bài toán chia kẹo Euler (Phần 1)

Trong các bài toán đếm ta gặp bài toán sau: Một người vào cửa hang mua dụng cụ học tập để làm thành một món quà gồm viết, sách và tập, người đó chỉ mua tổng cộng 5 món đồ. Biết rằng trong cửa hàng có 5 cây viết giống nhau, 6 sách giống nhau và 10 cuốn tập giống nhau, hỏi có bao nhiêu cách chọn viết, sách tập để làm quà?

Ta thấy rằng số lượng các viết sách và tập đều lớn hơn số cần mua, do đó bài toán chỉ quay lại việc đếm là có bao nhiêu bộ sách viết tập mà tổng số là 5 cái, trong đó mỗi cái có hoặc không có.

Có ba đối tượng là viết, sách và tập, tạ kí hiệu là $A = { V, S, T }$. Một món quà gồm 5 cái, do đó quà có thể là $X = { V, V, V, S, T }$, gồm 3 cây viết và 1 sách, 1 tập, hoặc là tập $Y = { V, V, S, T, T }$, ta thấy các đối tượng $V, T$ là lập lại. Khi đó ta nói tổ hợp $X, Y$ là tổ hợp lặp.

Để định nghĩa rõ hơn ta có định nghĩa sau:

Định nghĩa.  Cho tập $A = { a_1, a_2, \cdots, a_k }$. Một ánh xạ từ $p: A \mapsto \mathbb{N} $, khi đó $P$ được gọi là một multiset của A.

Ví dụ 1. Cho $A = { a, b, c }$. Ánh xạ $p: A \mapsto \mathbb{N}$ như sau: $p(a) = 2, p(b) = 1, p(c) = 1$. Khi đó ta có thể kí hiệu $p$ là $(aabc)$, hay $(baac)$,.., không tính đến thứ tự của các phần tử $a, b, c$.

Đặt $n = p(a_1) + p(a_2)+\cdots +p(a_k)$, bài toán đặt ra là có bao nhiêu ánh xạ $p: A \mapsto \mathbb{N}$ mà $n = p(a_1) + p(a_2)+\cdots +p(a_k)$.

Tiếp theo ví dụ trên, nếu $ p(a) + p(b) + p(c) = 2$ thì có các multiset sau: $(ab), (ac), (bc), (aa), (bb), (cc)$, 6 multiset.

Tính chất. Cho tập $A = { a_1, a_2, \cdots, a_k }$, số ánh xạ $p: A \mapsto \mathbb{N}$ thỏa $p(a_1) + \cdots + p(a_k) = n$ là $C^n_{n+k-1}$

Chứng minh

Mỗi ánh xạ $p$ ta cho tương ứng với một dãy nhị phân độ dài $n+k-1$, trong đó $p(a_1)$ chữ số đầu là 0, tiếp theo là số 1, rồi $p(a_2)$ chữ số $0$,…cuối cùng là $p(a_k)$ chữ số $0$. Ví dụ bộ $VVSTT$ ứng với dãy $0010100$.

Rõ ràng đây là tương ứng 1 – 1, do đó số ánh xạ $p$ bằng số dãy nhị phân, do đó ta chỉ cần đếm số dãy nhị phân.

Ta thấy dãy có $n+k-1$ chữ số trong đó có $k-1$ chữ số $1$, do đó số dãy nhị phân chỉ là số cách chọn vị trí cho $k-1$ chữ số $1$ nên số dãy nhị phân là $C^{k-1}_{n+k-1}$.

Do đó số ánh xạ $p$ là $C^{k-1}_{n+k-1} $

Trở lại bài toán trên, ta thấy số món quà có 5 cái là một tổ hợp lặp chập 5 của sách, viết, tập, do đó số món quà có thể là $C^{2}_{5+2-1} = C^2_6 = 15$.

(Chú ý trong bài toán trên, đảm bảo số mỗi loại sản phẩm có không ít hơn 5 cái).

Bài toán 1. (Chia kẹo Euler). Cho $n$ viên kẹo giống nhau đem chia cho $k$ người, hỏi có bao nhiều cách chia.

Giải

Ta gọi $k$ người là $a_1, a_2, \cdots a_k$, với mỗi cách chia kẹo là một multiset của $A$ mà $p(a_1) + p(a_2)+\cdots +p(a_k) = n$.

Do đó số cách chia kẹo là $C^n_{n+k-1}$.

Bài toán 2. Giải bài toán trên với cách chia sao cho mỗi người có ít nhất một viên.

Giải

Trước hết phát cho mỗi người một viên, thì còn $n-k$ viên kẹo, tiếp tục áp dụng bài toán trên với $n-k$. Khi đó số cách chia là

$C^{k-1}_{n-1}$

Ta có thể giải bài toán trên mà không cần sử dụng bài toán 1 bằng cách xây dựng dãy nhị phân thỏa: $a_1$ chữ số đầu là 0, tiếp theo là số 1, tiếp là $a_2$ chữ số 0, …., cuối cùng là $a_k$ chữ số 0. Dãy này có $k-1$ chữ số 1 đứng giữa $n$ chữ số 0 và không có hai chữ số $1$ nào đứng kề nhau. Khi đó số dãy nhị phân là: $C^{k-1}_{n-1}$.

Phần kế tiếp ta cùng tìm hiểu và giải một số bài toán có thể đưa về bài toán tổ hợp lặp hay bài toán chia kẹo Euler. Các bạn chờ nhé.

Bài toán 1 và 2 có thể phát biểu dưới dạng sau.

Bài toán 3. Cho phương trình $x_1 + x_2 + \cdots + x_k = n$ trong đó $k, n$ là các số nguyên dương.

a. Tìm số nghiệm tự nhiên của phương trình.

b. Tìm số nghiệm nguyên dương của phương trình.

Như bài toán trên ta đã biết, số nghiệm tự nhiên của phương trình là  $C^{k-1}_{n+k-1}$.

Số nghiệm nguyên dương của phương trình là $C^{k-1}_{n-1}$.

(Phần 2)

 

PHƯƠNG PHÁP ĐẾM BẰNG HAI CÁCH – Phần 1

PHƯƠNG PHÁP ĐẾM BẰNG HAI CÁCH

(Dành cho học sinh lớp 10 chuyên toán)

Lời nói đầu
Đếm bằng hai cách là một phương pháp hay gặp trong đời sống, ví dụ bài toán sau: Một công ty nhập vào 3 xe hàng $ A, B, C $ gồm hai loại hàng $ I $ và $ II $. Trong đó xe $ A $ có 3 loại $ I $ và 2 loại $ II $, xe $ B $ có 4 loại $ I $ và 6 loại $ II $, xe $ C $ có 4 loại $ I $ và 6 loại $ II $. Tính số lượng hàng mà công ty nhâp vào. Đây là bài toán khá đơn giản, để giải bài toán ta có thể lập bảng và khi đó ta có thể tính bằng 2 cách như sau: Tính tổng số hàng trên mỗi xe rồi cộng lại; hoặc ta có thể tính tổng số hàng loại $ I $ trên 3 xe,tổng số hàng loại 2 trên 3 xe, rồi sau đó cộng lại.


Trên đây là một ví dụ của tính bằng hai cách, ta có thể tính tổng theo dòng hoặc có thể tính tổng theo cột. Tổng quát hơn ta có công thức đại số sau: $\sum_{i \in I,j \in J}a_{ij}=\sum_{j \in J}(\sum_{j \in J}a_{ij})=\sum_{j \in J}(\sum_{i \in J}a_{ij})$

Trong một số tình huống đề bài yêu cầu đếm số phần tử của một tập hợp mà không quan tâm ta đếm bằng cách nào, khi đó đếm bằng hai cách cho ta cùng một đáp số giống nhau, khi đó ta sẽ thiết lập được một đẳng thức tổ hợp. Một ví dụ đơn giản như đếm số tập con của tập có $ n $ phần tử, ta có thể đếm số tập có $ k $ phần tử với $ k = 0,1,…,n $, lấy tổng ta được $ C^0_n +C^1_n +….+C^n_n $. Nhưng nếu ta đếm bằng cách khác như sau: xét một tập hợp $ A $ bất kì, khi đó phần tử $ i $ có thể thuộc $ A $ hoặc $ i $ không thuộc $ A $, mỗi phần tử có 2 trường hợp, mà có $ n $ phần tử nên số tập $ A $ là $ 2^n $. Từ đó ta có đẳng thức $ C^0_n + C^1_n + …. + C^n_n = 2^n $. Đếm bằng hai cách cho ta một phương pháp để chứng minh đẳng thức liên quan tới hệ số khai triển nhị phân hay các đẳng thức tổ hợp.

Ngoài ra đếm bằng hai cách có thể áp dụng trong các bài toán bất đẳng thức, cực trị tổ hợp hay một số bài toán chứng minh sự tồn tại.

Để sử dụng phương pháp đếm bằng hai cách, đòi hỏi học sinh phải biết và vận dụng tốt các phép đếm cơ bản. Bài viết này được sử dụng để giảng dạy cho học sinh lớp 10 chuyên Toán, các em mới bước đầu làm quen với các bài toán tổ hợp nói chung và các bài toán đếm nói riêng nên ví dụ được nêu ra có độ khó không cao giúp các em làm quen với phương pháp này. Vì thời gian quá gấp rút nên không tránh khỏi sai sót, bạn đọc có thắc mắc xin liên hệ địa chỉ nguyentangvu@gmail.com,cảm ơn.

1. Chứng minh các đẳng thức tổ hợp
Ví dụ 1. Cho các số nguyên dương $ n $ và $ k $ với $ 0 < k \leq n $. Chứng minh các đẳng thức tổ hợp sau:

a) $ C_n^k=C^k_{n-1}+C^{k-1}_{n-1} $

b) $ \sum_{k \geq 0}C^{2k}_n=2^{n-1} $

Giải

a) Dễ thấy vế trái của đẳng thức là số cách chọn $ k $ phần tử từ  $ n $  phần

tử. Để chọn $ k $ phần tử từ $ n $ phần tử ta có thể làm như sau: Xét phần tử

$ a $, nếu $ a $ được chọn thì ta cần chọn thêm $ k−1 $ phần tử từ $ n−1 $

phần tử còn lại ta có $ C^{k−1}_{ n−1} $ cách. Nếu $ a $ không được chọn,

ta chọn $ k $ phần tử từ $ n−1 $ phần tử còn lại, ta có $ C^k_ {n−1} $. Do

đó số cách chọn trong hai trường hợp là $C^k_{n-1}+C^{k-1}_{n-1} $. Từ

đó ta có điều cần chứng minh.

b) Ta xét bài toán “đếm số cách chọn một số chẵn phần tử từ $ n $ phần tử”.Ta có thể đếm theo cách sau:

Cách 1: Ta có số cách chọn $ 2k $ phần tử từ $ n $ phần tử là $ C^{2k}_n $ . Khi

đó $ \sum_{k \geq 0}C^{2k}_n $ lần tổng số cách chọn một số chẵn phần tử từ

$ n $ phần tử.

Cách 2: Xét một phần tử $ a $, thì có hai khả năng $ a $ được chọn hoặc $ a $

không được chọn, ta có 2 trường hợp. Khi đó với $ n−1 $ phần tử đầu tiên, thì

số trường hợp là $ 2^{n−1} $. Tới phần tử thứ $ n $, nếu ta đã chọn được một

số chẵn phần tử thì ta không chọn, còn nếu ta đã chọn được một số lẻ phần

tử thì phần tử này sẽ được chọn, do đó số cách chọn là $ 2^{n−1} $.

Ví dụ 2. Cho các số nguyên dương $ n $ và $ k $ với $ 0 \leq k \leq n $. Chứng minh rằng:

a) $ kC^k_n=nC^{k-1}_{n-1} $

b) $ \sum_{k=0}^{n}kC^k_n=n2^{n-1} $

Giải
a) Xét bài toán “Một đội văn nghệ có n thành viên, có bao nhiêu cách chọn

$k$ người thể hiện một tiết mục hát tốp ca trong đó có một bạn hát sô lô”.

Cách 1: Chọn đội văn nghệ gồm $ k $ người từ $ n $ ta có số cách là $ C^k_n $,

từ $ k $ người này ta chọn một người hát sô lô có $ k $ cách. Khi đó số cách

chọn là $ kC^k_n $.(1)

Cách 2: Chọn người hát sô lô trước, có $ n $ cách, sau đó chọn $ k−1 $ người từ

$ n−1 $ người còn lại có $ C^{k−1}_{n−1} $ cách.

Vậy số cách chọn là $ nC^{k−1}_{n−1} $. (2)

Từ (1) và (2) ta có đẳng thức $ kC^k_n = nC^{k−1}_{n−1}. $

b) Xét bài toán “Từ $ n $ thành viên của đội văn nghệ, có bao nhiêu cách lập một nhóm hát trong đó có một nhóm trưởng?”. Làm tương tự như câu trên ta sẽ có đẳng thức cần chứng minh.

Ví dụ 3. Cho các số nguyên dương $ n $ và $ k $ với $ 0 \leq k \leq n $. Chứng minh rằng:
a) $ \sum_{m=k}^{n}C^k_m=C^{k+1}_{n+1} $

b) $ \sum_{m=k}^{n-k}C^k_mC^k_{n-m}=C^{2k+1}_{n+1} $

với $ 0 \leq k \leq\dfrac{n}{2} $.

Giải

a) Xét tập $ X = {1,2,…,n + 1} $. Khi đó ta đếm số tập con có $ k + 1 $ phần tử của $ X $.

Cách 1: Rõ ràng số tập con là $ C^{k+1}_{ n+1} $.

Cách 2: Ta chọn tập con sao cho phần tử lớn nhất là $ m $. Khi đó số tập con

có phần tử lớn nhất $ m $ là $ C^k_m $. Vì $ k \leq m \leq n $ nên ta có số tập

con là $ C^k_k + C^k_{k+1} + … + C^k_n $. Từ đó suy ra đẳng thức cần chứng

minh.

b) Xét bài toán “Đếm số tập con có $ 2k+1 $ phần tử của $ X $”.

Cách 1: Số tập con là $ C^{2k+1}_n $.

Cách 2: Ta xét phần tử thứ $ k + 1 $, giả sử đó là $ m $, khi đó ta chọn $ k $

phần tử nhỏ hơn $ m $ và $ k $ phần tử lớn hơn $ m $, số cách chọn là

$ C^k_mC^k_{n−m} $, vì $ k \leq m \leq n−k $ nên ta có số cách chọn là

$ \sum_{m=k}^{n-k} C^k_mC^k_{n-m}$.

Từ đó ta có đẳng thức cần chứng minh.

Bài tập

Bài 1 Cho $ 0 \leq k \leq m \leq n. $ Chứng minh các đẳng thức sau:

a) $ C^k_mC^m_n=C^k_nC^{m-k}_{n-k} $

b) $ \sum_{k \geq 0}k(C^k_n)^2=nC^{n-1}_{2n-1} $

c) $ \sum_{k \geq 0}C^k_nC^{m-k}_{n-k}=2^mC^m_n $

Bài 2. Chứng minh các đẳng thức sau:

a) $\sum_{i=0}^{k} C^i_n C^{k-i}_{n-i} = 2^kC^k_n$

b) $ kC^k_m C^0_p+(k-1)C^{k-1}_m C^1_p+…+C^1_mC^{k-1}_p$

$=\dfrac{m}{m+p}.k.C^k_{m+p} $

Ví dụ 4. Trong một hội nghị, mỗi thành viên tham gia đúng 3 cuộc họp và mỗi cuộc họp thì có đúng 6 thành viên tham gia. Chứng minh rằng số cuộc họp thì bằng nửa số thành viên tham gia hội nghị.

Giải
Gọi số thành viên là $ n $, số cuộc hộp là $ m $. Khi đó mỗi cuộc họp có 6 thành viên tham gia, nên tổng số lượt thành viên tham gia $ m $ cuộc họp là $ 6m $ (có lặp lại). Tương tự mỗi thành viên tham gia 3 cuộc họp mà có $ n $ thành viên nên số lượt thành viên tham gia là $ 3n $. Do đó $ 3n = 6m $ hay $ n = 2m $.
Trong bài toán trên ta có thể làm như sau: giả sử có $ m $ cuộc họp là $ 1,2,…,m $ và $ n $ thành viên là $ 1,2,3,…,n $. Xét bảng vuông $ m \times n $ gồm $ m $ dòng và $ n $ cột trên đó ghi các số dòng thứ $ i $ cột $ j $ là $ aij $ thỏa $ aij = 1 $ nếu người $ j $ tham gia cuộc họp thứ $ i $ và $ a{ij} = 0 $ trong trường hợp ngược lại. Ta được bảng sau:


Dựa vào trên, ta thấy mỗi dòng có 6 số 1 và mỗi cột có 3 số 1. Khi đó ta có $ 6m = 3n $ hay $ n = 2m $.
Bảng trên được gọi là một ma trận nhị phân, dùng để biểu diễn các mối quan hệ hai ngôi như phần tử thuộc tập hợp, quen nhau, đồ thị… và là mô hình biểu diễn rất hữu dụng trong các bài toán tổ hợp. Trong mỗi bảng nhị phân trên, nếu gọi $ r_i $ là số số 1 ở dòng thứ $ i $ và $ c_j $ là số số 1 ở cột thứ $ j $, ta có :
$ \sum_{i=1}^{m}r_i=\sum_{j=1}^{n}cj $

Ví dụ 5 (HK 1994) Trong một trường học có $ m $ giáo viên và $ n $ học sinh thỏa điều kiện sau:
i) Mỗi giáo viên dạy đúng p học sinh.
ii) Với hai học sinh phân biệt thì có đúng $ q $ giáo viên dạy họ.
Chứng minh rằng $ \dfrac{m}{q}=\dfrac{n(n-1)}{p(p-1)} $

Giải
Lập bảng gồm $ m $ dòng và $ n $ cột trong đó $ aij = 1 $ nếu giáo viên $ i $ dạy học sinh $ j $, và bằng $ 0 $ nếu ngược lại. Khi đó từ (i) thì mỗi dòng có đúng $ p $ số $ 1 $. Ta đếm các cặp số $ (1;1) $ trên cùng một dòng. Nếu đếm theo dòng thì mỗi dòng có $ C^2_p $ cặp, có $ m $ dòng nên số cặp là $ mC^2_p $. (1)
Nếu đếm theo cột, do điều kiện (ii) nên với hai cột bất kì thì có đúng $ q $ cặp. Do đó số cặp là $ qC^2_n $ (2). Từ (1) và (2) ta có $ mC^2_p=qC^2_n $ hay $ \dfrac{m}{q} =\dfrac{n(n-1)}{p(p-1)}$.

Trên đây là một kĩ thuật đếm theo cặp $ (1;1) $ cùng một dòng hoặc cùng một cột. Ta có mệnh đề sau:

Định lý 1. Nếu trong một bảng nhị phân $ m \times n, $ mỗi dòng có $ k $ số 1, hai cột bất kỳ có đúng $ p $ cặp $ (1;1) $ cùng một dòng.

Khi đó ta có $ pC^2_n=kC^2_m. $

Bài tập
Bài 1. Cho tập $ X = {1,2,…,8} $ và các tập $ A1,A2,…,A6 $ là các tập con của $ X $ sao cho mỗi tập $ Ai $ có $ 4 $ phần tử và mỗi phần tử của $ S $ thuộc $ m $ tập $ Ai $. Tìm $ m $.

Bài 2. Trong một vòng thi toán chung kết tại trường PNTK, các thí sinh phải giải 9 bài toán. Biết rằng mỗi thí sinh giải được đúng 6 bài, và với hai thí sinh bất kì thì giải đúng chung 3 bài. Tìm số thí sinh dự thi.
Bài 3. Gọi $ p(n,k) $ là số hoán vị của $ {1,2,…,n} $ có $ k $ điểm bất động. Chứng minh rằng:
$ \sum_{k=1}^{n}kp(n,k)=n! $

2. Chứng minh các bài toán bất đẳng thức và cực trị tổ hợp

Ví dụ 6. (Iran 2011) Cho $ n $ điểm trên mặt phẳng sao cho không có 3 điểm nào thẳng hàng. Chứng minh rằng số tam giác có diện tích bằng 1 có các đỉnh thuộc $ n $ điểm trên không vượt quá $ \dfrac{2}{3}(n^2-n) $.

Giải
Bài toán này ta đi tính số cặp (cạnh;tam giác). Với đoạn thẳng $ AB $, khi đó nếu điểm $ C $ thỏa $ S_{ABC} = 1 $ thì khoảng cách từ $ C $ đến $ AB $ bằng $ \dfrac{2}{AB} $ , vì không có 3 điểm nào thẳng hàng nên chỉ có nhiều nhất 4 điểm thỏa. Vậy với 1 đoạn ta sẽ có nhiều nhất 4 tam giác có diện tích 1 nhận đoạn thẳng đó làm đỉnh. Suy ra tổng số cặp nhiều nhất là $ 4C^2_n $.
Mặt khác nếu gọi số tam giác là $ m $ thì tổng số cặp là $ 3m $.
Từ đó ta có: $ 3m \leq 4C^2_n $ hay $ m \leq \dfrac{2}{3}(n^2-n) $.

Ví dụ 7.(USA TST 2005) Cho $ n > 1 $. Với số nguyên dương $ m $. Đặt $ X_m = {1,2,…,mn} $. Xét họ $ T $ gồm $ 2n $ tập hợp thỏa các điều kiện sau:
i) Mỗi phần tử của $ T$ là một tập con có $ m $ phần tử của $ X_m. $
ii) Mỗi cặp thuộc $ T $ có nhiều nhất một phần tử chung.
iii) Mỗi phần tử thuộc $ X_m $ thuộc đúng hai tập của $ T. $
Tìm giá trị lớn nhất của $ m $ theo $ n. $

Giải

Xét bảng vuông sao cho gồm $ 2n $ dòng và $ mn $ cột sao cho $ a_{ij} =1$ nếu số $ j $ thuộc $ a_i $ và bằng $ 0 $ trong trường hợp ngược lại.
Ta xét bài toán đếm số cặp $ (1;1) $ cùng một cột. Do (i) nên ta có số cặp nhiều nhất là $ C^2_{2n} $.
Do (ii) nên ta có số cặp là $ mn $.
Do đó $ mn \geq C^2_ {2n} $, suy ra $ m \geq 2n−1 $. Nếu $ m = 2n−1 $, ta xét mô hình sau. Cho $ 2n $ đường thẳng không có 3 đường nào đồng quy và không có hai đường nào song song. Khi Xm là tập các giao điểm và $ T $ là họ gồm các điểm thuộc một đường thẳng. Rõ ràng đây là mô hình thỏa đề bài. Bảng sau cho ví dụ $ n=2, m=3 $.

Ví dụ 8. (IMO 1998, P2) Trong một cuộc thi có $ a $ thí sinh và $ b $ giám khảo, với $ b $ là số lẻ lớn hơn 3. Mội giám khảo có thể đánh giá thí sinh rớt hay đậu.Giả sử với hai giám khảo bất kì thì quyết định giống nhau nhiều nhất là $ k $ thí sinh. Chứng minh rằng $ \dfrac{k}{a} \geq \dfrac{b-1}{2b} $
Giải
Cũng như ví dụ trên, ta thấy việc biểu diễn các mối quan hệ bằng bảng nhị phân rất thuận lợi trong việc trình bày lời giải. Trong bài này ta cũng có thể lập bảng $ b \times a $ theo quy tắc sau: dòng i cột j bằng 1 nếu giám khảo i cho thí sinh j đậu. Ta sẽ đếm số cặp $ (0;0) $ và $ (1;1) $ cùng một cột bằng hai cách.
Cách 1 ta đếm theo dòng: Vì với hai vị giáo bất kì có nhiều nhất $ k $ kết luận giống nhau nên với hai dòng bất kì có $ k $ cặp, do đó số cặp nhiều nhất là $ kC^2_b $.
Cách 2 ta đếm theo cột: Trong mỗi cột số cặp là $ C^2_m+C^2_n $ cặp, trong đó $ m $ là số các số $ 0 $ và $ n $ là số các số $ 1, $ ta có $ m+n=b=2t+1, $ suy ra $ n=2t+1-m. $
Khi đó $ C^2_m+C^2_n=\dfrac{m(m-1)+(21-m)(2t-m-1)}{2}=\dfrac{(2t-m)^2+m^2}{2} \geq t^2=\dfrac{(b-1)^2}{4}. $
Từ đó ta có $ kC^2_b \geq \dfrac{a(b-1)^2}{4} $, suy ra $ \dfrac{k}{a} \geq \dfrac{b-1}{2b.} $

Ví dụ 9. Cho $ n $ điểm trong mặt phẳng. Chứng minh rằng số cặp điểm có

khoảng cách bằng 1 không quá $ \dfrac{n}{4}+\dfrac{\sqrt{2n^3}}{2}. $

Giải

Gọi $ d_i $ là số đoạn thẳng có độ dài 1 mà có đỉnh là $ A_i $. Đặt khi

đó số cặp điểm là $ k = \dfrac{1}{2} (d_1 + d_2 + … + d_n) $. Ta đếm số cặp

$ (A,B) $ mà khoảng cách từ $ A,B $ đến $ A_i $ bằng 1. Số cặp là $ C^2 _{di} $,

suy ra tổng số cặp là $ \sum_{i=1}^{n}C^2_{d_i} $. Ta biết rằng hai điểm $ C,D $

thì có chung nhiều nhất một cặp $ (A,B) $ nên số cặp không vượt quá

$ 2C^2_n $. Do đó: $ \sum_{i=1}^{n}C^2_{d_i} \leq n(n-1) $

hay $ \dfrac{2k(2k-n)}{2n} \leq n(n-1) \Leftrightarrow 2k^2-nk-n^2(n-1) \leq 0 $

Do đó $ k \leq \dfrac{n}{4}+\dfrac{\sqrt{2n^3}}{2} $

3 Các bài toán tồn tại
Ví dụ 10. Cho 133 số nguyên dương, có ít nhất 799 cặp số là nguyên tố cùng nhau. Chứng minh rằng tồn tại 4 số nguyên dương phân biệt $ a,b,c,d $ sao cho $ a $ và $ b; b $ và $ c, c $ và $ d; d $ và $ a $ nguyên tố cùng nhau.

Giải

Mỗi số được đại diện bởi một điểm, hai số nào nguyên tố cùng nhau thì hai điểm tương ứng được nối nhau bởi một đoạn. Ta cần chứng minh có 4 đoạn $ AB,BC,CD,DA $. Ta cần chứng minh rằng có hai điểm $ B $ và $ D $ cùng nối với hai điểm $ A $ và $ C $.
Gọi $ d_i $ là số cạnh có đỉnh là $ A_i $. Khi đó ta có

$ d_1 + d_2 + … + d_{133} = 2 \times 799 $. Nếu hai đỉnh $ Y, Z $ cùng nối với đỉnh $ X $ thì ta sẽ xem $ (Y;Z) $ là một cặp. Ta sẽ tính số cặp này. Rõ ràng, tổng số cặp là
$ \sum_{i=1}^{133} C^2_{d_i}$

$=\dfrac{1}{2}\left(\sum_{i=1}^{133}d^2_i-\sum_{i=1}^{133}d_i \right) $

Ta có

$ \sum_{i=1}^{133}d^2_i \geq \dfrac{1}{133} \left(\sum_{i=1}^{133}d_i \right)^2 $

Do đó

$ \sum_{i=1}^{133}C^2_{d_i} \geq \dfrac{1}{2}(\dfrac{1}{133}(\sum_{i=1}^{133}d_i)^2)$

$-\sum_{i=1}^{133}d_i ]>C^2_{133} $
Nhưng $ 133 $ điểm thì có $ C^2_{133} $ cặp, nên sẽ có một cặp nào đó được tính hai lần, tức là tồn tại cặp $ (A,C) $ cùng được nối với $ B$ và $ D $. Tức là ta có 4 đoạn $ AB, BC,CD,DA. $

Ví dụ 11.  Cho tập $ X $ có $ n $ phần tử, gọi $ A_1,A_2,…,A_m $ là một họ các tập con của $ X $, sao cho $ |Ai| = 3 $ và $ |A_i \cap A_j| \leq 1 $ với $ i \neq j $. Chứng minh rằng tồn tại một tập con $ A $ của $ X $ có ít nhất $ [\sqrt{2n}] $ phần tử và không chứa bất kì tập $ A_i $ nào.

Giải
 

Ta xét tập tất cả các tập con của $ X $ mà không chứa bất kỳ tập $ A_i $ nào, khi đó dễ thấy tập này là khác rỗng (xét tập có 2 phần tử là thỏa) và hữu hạn, nên tồn tại một tập $ M $ có nhiều phần tử nhất. Đặt $ |M|=k $. Khi đó, do $ M $ có số phần tử lớn nhất nên mọi tập có số phần tử lớn hơn $ M $ đều chứa một tập $ A_i. $ Xét tập $ M’=X \setminus M= \{a_1,a_2,…,a_{n-k}\} $. Khi đó $ M \cup \{a_i\} $ có $ k+1 $ phần tử, nên theo cách xác định $ M $ thì sẽ tồn tại $ A_i \subset M’,$ do $ A_i \nsubseteq M $ nên $ A_i=\{a_i,x,y\} $ trong đó $ x,y \in M. $
Hơn nữa hai tập giao nhau có không quá một phần tử nên với mỗi $ a_i $ có nhiều nhất một cặp $ (x,y) \in A_i$. Ta đếm số cặp $ (x,y) $ theo hai cách:\\
Số cặp $ (x,y) \in X $ là $ C_k^2. $
Vì $ i=1,2,…,n-k $ nên có $ n-k $ cặp. Vậy ta có:
$ n-k \leq C^2_k \Leftrightarrow k^2+k \geq 2n $
Mà $ k \leq \sqrt{k^2+k} \leq k+1, $ suy ra $ k \geq [\sqrt{2n}] $. Ta có điều cần chứng minh.

Bài tập rèn luyện
Bài 1.  Cho 7 tập $ A1,A2,…,A7 $ là các tập con của $ X = {1,2,3,4,5,6,7} $, sao cho mội cặp phần tử thuộc $ X $ thuộc đúng một tập con, và $ |Ai|\geq 3 $ với mọi $ i $. Chứng minh rằng $ |A_i \cap Aj| = 1 $ với mọi $ i,j. $

Bài 2. Cho 16 bạn học sinh làm một bài kiểm tra trắc nghiệm, trong đó mỗi câu hỏi có 4 lựa chọn. Sau bài kiểm tra, ta thấy rằng với hai học sinh bất kì có nhiều nhất một câu trả lời giống nhau. Hỏi bài kiểm tra có nhiều nhất bao nhiêu câu hỏi?

Bài 3. Một hội nghị có n thành viên tham gia, hội nghị đã tổ chứng $ n + 1 $ cuộc họp, trong đó mỗi cuộc họp có đúng 3 người và không có cuộc họp nào có thành viên giống nhau. Chứng minh rằng có hai cuộc họp mà có chung đúng một thành viên.

Bài 4.  (China 1996) Trong một hội nghị có 8 người tham gia, hội nghị tổ chức $ m $ cuộc họp, mỗi cuộc họp có đúng 4 người tham gia. Hơn nữa hai người bất kì thì cùng tham gia một số cuộc họp như nhau. Tìm giá trị nhỏ nhất của $ m $.
Bài 5.  Cho $ A1,A2,…,Ak $ là các tập con của $ S = {1,2,…,10} $ sao cho:
i) $ |A_i| = 5,i = 1,2,…,k. $
ii) $ |A_i \cap A_j| \leq 2, 1 \leq i < j \leq k. $ Tìm giá trị lớn nhất của $ k $.

Bài 6. (IMO 2001) Có 21 bạn nam và 21 bạn nữ tham dự một kì thi học sinh giỏi toán. Biết rằng:
a) Mỗi bạn giải được nhiều nhất sáu bài.
b) Mỗi cặp một nam và một nữ thì có ít nhất một bài toán được giải bởi hai người đó.
Chứng minh rằng có môt bài toán mà giải được bởi ít nhất 3 nam và 3 nữ.

Bài 7.  (USAMO 2001) Có 8 hộp, mỗi hộp chứa 6 viên bi. Mỗi viên bi được tô màu sao cho:
i) Mội hộp chứa các viên bi khác màu.
ii) Không có hai màu nào cùng xuất hiện nhiều hơn trong một hộp.
Tìm số màu ít nhất cần dùng.

Bài 8.  (IMO 1989) Cho $ n $ và $ k $ là các số nguyên dương và $ S $ là tập $ n $ điểm trong mặt phẳng sao cho:
i) Không có 3 điểm nào thẳng hàng,
ii) Với điểm $ P $ bất kì thuộc $ S $ thì có ít nhất $ k $ điểm của $ S $ cách đều $ P $.
Chứng minh rằng: $ k<\dfrac{1}{2}+\sqrt{2n} $

Bài 9. (IMO 2005) Trong một cuộc thi toán trong đó đề thi có 6 bài. Mỗi một cặp bài toán được giải bởi nhiều hơn $ \dfrac{2}{5} $ số thí sinh. Không có ai giải được 6 bài. Chứng minh rằng có ít nhất 2 thí sinh giải được đúng 5 bài.

Bài 10. Trong một hội nghị có 35 người tham gia. Biết rằng có 111 cặp đôi một quen nhau. Chứng minh rằng có thể chọn ra 4 thành viên xếp ngồi vào một bàn tròn sao cho hai người ngồi gần nhau thì quen nhau.

 

Biến đổi góc – Phần 1

Một trong những kĩ năng làm toán hình học đó là chứng minh các góc bằng nhau hay so sánh các góc, để dẫn tới các tam giác bằng nhau hay tam giác đồng dạng. Do đó kĩ năng biến đổi góc chiếm vị trí quan trọng trong việc chứng minh các tính chất hình học, vì thế chương đầu tiên của sách này tôi đưa ra một số bài toán liên quan đến việc tính toán, so sánh các góc, từ đó giải quyết được yêu cầu bài toán.

Việc tính toán các góc, tôi ưu tiên cho góc hình học mà không sử dụng góc định hướng. Việc sử dụng góc hình học phụ thuộc và hình vẽ nên lời giải nhiều khi không mang tính tổng quát, tuy vậy đối với các em mới từ lớp 9 lên thì cách trình bày này dễ tiếp thu hơn, và thực sự đối với số đông cũng vậy. Việc vẽ hình đó cũng là kĩ năng của người làm hình học, chú ý các trường hợp đề bài nêu ra để vẽ hình chính xác yêu cầu, từ đó có lời giải phù hợp. Chương trình vẽ hình trong sách là geogebra đã rất phổ biến với cộng đồng làm toán sơ cấp, tôi sẽ dùng chương trình này hỗ trợ làm tài liệu này. Có một điều khuyên cho các em học sinh là hãy vẽ bằng tay và dùng compa thước, không nên dùng phần mềm hỗ trợ để vẽ, vì khi thi cử thì không dùng máy để vẽ hay phát hiện tính chất.

Kiến thức chính của chương này là các kiến thức liên quan đến góc và đường tròn, tam giác đồng dạng, tứ giác nội tiếp đã học trong chương trình THCS. Các bài toán cũng chỉ sử dụng kiến thức của trung học cơ sở để giải.

Ví dụ 1. (Định lý Migel) Cho tam giác $ABC$. Các điểm $D, E, F$ lần lượt thuộc các đường thẳng $BC, AC$ và $AB$.
a. Chứng minh rằng đường tròn ngoại tiếp các tam giác $AEF, BDF, CDE$ cùng đi qua một điểm. Điểm này được gọi là điểm Migel.
b. Chứng minh điểm Migel thuộc đường tròn ngoại tiếp của tam giác $ABC$ khi và chỉ khi $D, E, F$ thẳng hàng.
c. Khi $D, E, F$ thẳng hàng. Chứng minh rằng tâm đường tròn ngoại tiếp của các tam giác $AEF, BDF, CDE$ và điểm $P$ cùng thuộc một đường tròn.

Giải

a. Gọi $P$ là giao điểm của $(AEF)$ và $(BDF)$. Ta có $\angle PDC = \angle BFP = \angle AEP$. Suy ra $CDPE$ nội tiếp, hay $P \in (CDE)$. \\Vậy $(AEF), (BDF)$ và $(CDE)$ cùng đi qua một điểm.

b. Khi $D, E, F$ thẳng hàng.
Ta có $\angle DPB = \angle PFD = \angle PAE = \angle PAC$. Suy ra $P \in (ABC)$.
Ngược lại nếu $P \in (ABC)$ ta có $\angle PFD = \angle PBD = \angle PAE = 180^\circ – \angle PFE$. Suy ra $D, E, F$ thẳng hàng.

c.  

  • Gọi $O, O_a, O_b, O_c$ lần lượt là tâm đường tròn ngoại tiếp các tam giác $ABC, AEF, BDF, CDE$.
  • Gọi $H = O_bO_c \cap PD, K = OO_a \cap PB, L = OO_c \cap PC$.
    Ta có $O_bOc$ là trung trực của $PD$ nên $H$ là trung điểm của $PD$ và $\angle PH \bot O_bO_c$; tương tự với $K, L$.
  • $H, K, L$ là hình chiếu của $P$ trên các đường thẳng chứa các cạnh của tam giác $OO_bO_c$, dễ thấy $H, K, L$ thẳng hàng nên 4 điểm $P, O, O_b, O_c$ cùng thuộc đường tròn. (Định lý đảo của đường thẳng Simson).
  • Tương tự cho $P, O, O_a, O_c$ cũng cùng thuộc một đường tròn. Vậy 5 điểm $P, O, O_a, O_b, O_c$ cùng thuộc một đường tròn.

 

Ví dụ 2. (Đề đề nghị IMO 2002) Cho đường tròn $w$, $B$ là một điểm $w$. Trên tiếp tuyến tại $B$ của $w$ lấy điểm $A$; lấy điểm $C$ sao cho đoạn thẳng $AC$ cắt $w$ tại hai điểm phân biệt. Đường tròn $w’$ tiếp xúc với $AC$ tại $C$, tiếp xúc với $w$ tại $D$ sao cho $D$ khác phía $B$ đối với $AC$. Chứng minh tâm đường tròn ngoại tiếp tam giác $BCD$ thuộc đường tròn ngoại tiếp tam giác $ABC$.

Giải

  •  Vẽ tiếp tuyến chung tại $D$ của $w$ và $w’$.
  • Ta có $\angle BDC = \angle BDy + \angle yDC = \angle 180^o – \angle xDB$ $+ DCH + \angle 180^\circ – \angle ACD + \angle DCH$  $= \angle BAC + \angle AHB +\angle DCH = \angle BAC + 180^\circ – \angle BDC$.
  • Suy ra $2 \angle BDC = 180^\circ + \angle BAC$. (1)
  • Mặt khác $\angle BTC = 2 (180^\circ – \angle BDC)$, suy ra $2 \angle BDC = 360^\circ – \angle BTC$.(2)
  • Từ (1) và (2) ta có $\angle BAC + \angle BTC = 180^\circ$, vậy tứ giác $ABTC$ nội tiếp.

Ví dụ 3. Tiếp tuyến của đường tròn $(O)$ tại $A$ và $B$ cắt nhau tại điểm $P$. Trên cung nhỏ $AB$ lấy điểm $C$ sao cho $CAB$ khác tam giác cân. Các đường thẳng $CA$ và $BP$ cắt nhau tại $D$, $BC$ và $AP$ cắt nhau tại $E$. Chứng minh rằng tâm đường tròn ngoại tiếp các tam giác $ACE, BCD$ và $OPC$ thẳng hàng.

Giải

  • Gọi $Q$ là giao của $(ACE)$ và $BCD$ ($Q$ khác $C$).Ta có $\angle BDQ = \angle BCQ = \angle QAE$. Suy ra $AQDP$ nội tiếp. Tương tự thì $BQEP$ nội tiếp.
  •  Khi đó $\angle PQC = \angle EQC – \angle EQP = \angle PAC – \angle PBE = \dfrac{1}{2}(\angle AOC – \angle BOC) = \angle POQ$.
  • Vậy tứ giác $OPCQ$ nội tiếp.
  • Từ đó ta có tâm các đường tròn $(ACE), (BCD), (OPC)$ thẳng hàng.

Ví dụ 4. Cho đường tròn $(O)$ và điểm $P$ nằm ngoài $(O)$. Từ $P$ vẽ các tiếp tuyến $PA$ và $PB$ đến $(O)$ với các tiếp điểm $A, B$. Trên tia đối của tia $BP$ lấy điểm $M$. Đường tròn ngoại tiếp tam giác $APM$ cắt $(O)$ tại điểm thứ hai là $D$. Gọi $H$ là hình chiếu của $B$ trên $AM$. Chứng minh rằng $\angle HDM = 2\angle AMP$.

Giải

  • Gọi $E$ là giao điểm của $MD$ và $(O)$, $K$ là giao điểm của $AM$ và $OB$.
  • $\angle xAE = \angle ADE = \angle APM$. Suy ra $AE\parallel PM$, suy ra $\angle EAM = \angle AMP$. (1)
  • Ta có $MD\cdot ME = MB^2 = MH\cdot MK$. Suy ra $DHKE$ nội tiếp. Do đó $\angle HDM = \angle HKE = 2\angle EAM$. (2)
  • Từ (1) và (2) ta có $\angle HDM = 2\angle AMP$.