Category Archives: Phương trình

Phương trình vô tỉ – Phương pháp nhân chia lượng liên hợp

Phương pháp nhân lượng liên hợp được sự dụng khi phương trình có độ phức tạp cao, lệch bậc nhiều ở các biểu thức chứa căn và nghiệm của phương trình thường dễ đoán và có ít nghiệm.
Nội dung phương pháp là ta phải đoán được nghiệm, thêm bớt (tách) và nhóm các số hạng phù hợp và nhân chia với biểu thức liên hợp để xuất hiện nhân tử. Ta xét các ví dụ sau.
Ví dụ 1
Giải phương trình:
$$\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3(x^2-x-1)}-\sqrt{x^2-3x+4}$$

Lời giải

Ta có

$\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3(x^2-x-1)}-\sqrt{x^2-3x+4}$
$\Leftrightarrow \sqrt{3x^2-5x+1}-\sqrt{3(x^2-x-1)}=\sqrt{x^2-2}-\sqrt{x^2-3x+4}$
$\Leftrightarrow \dfrac{-2x+4}{\sqrt{3x^2-5x+1}+\sqrt{3(x^2-x+1)}}=\dfrac{3x-6}{\sqrt{x^2-2}+\sqrt{x^2-3x+4}}$
$\Leftrightarrow
-(x-2)\left[ \dfrac{2}{\sqrt{3x^2-5x+1}+\sqrt{3(x^2-x+1)}}+\dfrac{3}{\sqrt{x^2-2}+\sqrt{x^2-3x+4}}\right] =0$
$\Leftrightarrow x=2.$

(Rõ ràng biểu thức trong ngoặc “[]” là dương)
Thử lại ta thấy $x=2$ thoả mãn.
Vậy $x=2$ là nghiệm của phương trình.

Ta có bước thử lại vì chưa đặt điều kiện của phương trình.

Ví dụ 2 Giải phương trình $$\sqrt[3]{x^2-1}+x=\sqrt{x^3-1}$$

Lời giải
Điều kiện $x \ge \sqrt[3]{2}$.

$\sqrt[3]{x^2-1}-2+x-3=\sqrt{x^2-2}-5$
$\Leftrightarrow (x-3)[1+\dfrac{x+3}{\sqrt[3]{(x^1-1)^2}+2\sqrt[]{x^2-1}+4}]=\dfrac{(x-3)(x^2+3x+9)}{\sqrt{x^3-2}+5}$
$\Leftrightarrow (x-3)[1+\dfrac{x+3}{\sqrt[3]{(x^2-1)^2}+2\sqrt[3]{x^2-1}+4}- \dfrac{x^2+3x+9}{\sqrt{x^3-x}+5}]=0$
$\Leftrightarrow x=3.$

Vì $$1+\dfrac{x+3}{\sqrt[3]{(x^2-1)^2}+2\sqrt[3]{x^2-1}+4}=1+\dfrac{x+2}{(\sqrt[3]{x^2-1}+1)^2+3}<2<\dfrac{x^2+3x+9}{\sqrt{x^3-x}+5}.$$
Vậy phương trình có nghiệm duy nhất $x=3.$

Ví dụ 3 Giải phương trình $\sqrt{x-2}+\sqrt{4-x}=2x^2-5x-1.$

Lời giải
Điều kiện $2 \le x \le 4$.
Khi đó

$\sqrt{x-2}+\sqrt{4-x}=2x^2-5x-1$
$\Leftrightarrow \sqrt{x-2}-1+\sqrt{4-x}-1=2x^2-5x-3$
$\Leftrightarrow \dfrac{x-3}{\sqrt{x-2}+1}-\dfrac{x-3}{\sqrt{4-x}+1}=(x-3)(2x+1)$
$\Leftrightarrow (x-3)[\dfrac{1}{\sqrt{x-2}+1}-\dfrac{1}{\sqrt{4-x}+1}-(2x+1)]=0$
$\Leftrightarrow x=3.$

$\dfrac{1}{\sqrt{x-2}+1} \le 1$
$\dfrac{1}{\sqrt{4-x}+1} \ge \dfrac{1}{\sqrt{2}+1}=\sqrt{2}-1 $
$\Rightarrow \dfrac{1}{\sqrt{x-2}+1}-\dfrac{1}{\sqrt{4-x}+1} \le 2-\sqrt{2}.$
Và $2x+1 \ge 5 $ (do \ x \ge 2$
$
Vậy phương trình có nghiệm duy nhất $x=2.$

Ví dụ 4 Giải phương trình $x^2+x-1=(x+2)\sqrt{x^2-2x+2}$.

Lời giải
Ta có

$x^2+x-1=(x+2)\sqrt{x^2-2x+2}$
$\Leftrightarrow x^2-2x-7+3(x+2)-(x+2)\sqrt{x^2-2x+2}=0$
$\Leftrightarrow x^2-2x-7+(x+2)(3-\sqrt{x^2-2x+2})=0$
$\Leftrightarrow x^2-2x-7-\dfrac{(x+2)(x^2-2x-7)}{\sqrt{x^2-2x+2}+3}=0$
$\Leftrightarrow (x^2-2x-7)(1-\dfrac{x+2}{\sqrt{x^2-2x+2}+3})=0$
$\Leftrightarrow (x^2-2x-7)[\dfrac{\sqrt{(x-1)^2+1}-(x-1)}{\sqrt{x^2-2x+2}+3}]=0$
$\Leftrightarrow x^2-2x-7=0$
$\Leftrightarrow x=1 \pm \sqrt{7}.$
Vậy phương trình có nghiệm $x=1 \pm \sqrt{7}$.

Bài tập rèn luyện

Bài tập 1 Giải các phương trình sau:

a) $\sqrt{2x-3}-\sqrt{x}=2x-6$
b) $\sqrt{x+1}+1=4x^2+\sqrt{3x}$
c) $\sqrt{10x+1}+\sqrt{3x-5}=\sqrt{9x+4}+\sqrt{2x-2}$

d) $\dfrac{2x^2}{(3-\sqrt{9+2x})^2}=x+21$
e) $9(x+1)^2=(3x+7)(1-\sqrt{3x+4})^2$

Bài tập 2 Giải các phương trình sau:

a) $\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8=0$
b) $\sqrt{2x^3+3x^2+6x+16}-\sqrt{4-x} =2 \sqrt{3}$
c) $\sqrt{x^2+12}+5=3x+\sqrt{x^2+5}$
d) $x^2-4x-2+\sqrt{x^2-4x+7}+\sqrt{5x-6}=0$
e) $3 \sqrt[3]{x^2}+\sqrt{x^2+8}-2=\sqrt{x^2+15}$

Bài tập 3 Giải các phương trình sau:

a) $\sqrt{2x^2-x+3}-\sqrt{21x-17}+x^2-x=0$
b) $x(x+1)(x-3)+3=\sqrt{4-x}+\sqrt{1+x}$
c) $\sqrt{3x+1}+2\sqrt[3]{19x+8}=2x^2+x+5$
d) $\sqrt{3-x}+\sqrt{2+x}=x^3+x^2-4x-4+|x|+|x-1|$

Bài tập 4 Giải các phương trình sau

a) $\sqrt{x+2}+\sqrt{3-x}=x^3+x^2-4x-1$
b) $3x^2-8x+3=3\sqrt{x+1}$
c) $2x^2-x-2=\sqrt{5x+6}$
d) $\sqrt{x+1}+\sqrt{2x+3}=x^2-x-1$

Phương trình chứa ẩn ở mẫu

1. Kiến thức cần nhớ
Tìm điều kiện xác định (ĐKXĐ) của phương trình chứa ẩn ở mẫu là tìm các giá trị của ẩn để tất cả các mẫu của phương trình đều khác $0$.

Phương pháp: Các bước giải phương trình chứa ẩn ở mẫu:

    • Bước 1: Tìm điều kiện xác định.
    • Bước 2: Quy đồng mẫu hai vế và khử mẫu.
    • Bước 3: Giải phương trình vừa nhận được.
    • Bước 4: Xem xét các giá trị của ẩn vừa tìm được có thỏa mãn ĐKXĐ không và kết luận về nghiệm của phương trình.

2. Ví dụ

Ví dụ 1: Giải các phương trình sau:

a/ $\dfrac{4}{x-1}-\dfrac{5}{x-2}=-3$

b/ $3 x-\dfrac{1}{x-2}=\dfrac{x-1}{2-x}$

c/ $\dfrac{x+4}{x^{2}-3 x+2}+\dfrac{x+1}{x^{2}-4 x+3}=\dfrac{2 x+5}{x^{2}-4 x+3}$

d/ $\dfrac{2}{x^{2}-4}-\dfrac{1}{x(x-2)}+\dfrac{x-4}{x(x+2)}=0$

Giải

a/ $\dfrac{4}{x-1}-\dfrac{5}{x-2}=-3$

ĐKXĐ:
$\begin{cases}
x-1 \ne 0 \\
x-2 \ne 0
\end{cases}
\Leftrightarrow \begin{cases}
x \ne 1 \\
x \ne 2
\end{cases}$

$\dfrac{4}{x-1}-\dfrac{5}{x-2}=-3 $

$\Leftrightarrow \dfrac{4(x-2)-5(x-1)}{(x-1)(x-2)}=\dfrac{-3(x-1)(x-2)}{(x-1)(x-2)}$

$\Rightarrow 4x-8-5x+5 = -3(x^2-3x+2) $
$\Leftrightarrow -x-3+3(x^2-3x+2) = 0 $
$\Leftrightarrow 3x^2-10x+3 = 0 $
$\Leftrightarrow (3x-1)(x-3) = 0 $
$\Leftrightarrow \left[
\begin{array}{l}
3x-1=0 \\
x-3=0
\end{array} \right.
\Leftrightarrow \left[
\begin{array}{lc}
x= \dfrac{1}{3} & \text{(nhận)} \\
x= 3 & \text{(nhận)}
\end{array} \right. $
Vậy $ S = \left \{ \dfrac{1}{3}; 3 \right \} $

 

b/ $3 x-\dfrac{1}{x-2}=\dfrac{x-1}{2-x}$

ĐKXĐ:
$\begin{cases}
x-2 \ne 0 \\
2-x \ne 0
\end{cases}
\Leftrightarrow x \ne 0 $

$3 x-\dfrac{1}{x-2}=\dfrac{x-1}{2-x} $

$ \Leftrightarrow \dfrac{3x(x-2)-1}{x-2}=-\dfrac{x-1}{x-2} $

$ \Rightarrow 3x^2-6x-1 = -x +1 $
$\Leftrightarrow 3x^2-5x-2 = 0 $
$\Leftrightarrow (3x+1)(x-2) = 0 $
$\Leftrightarrow \left[
\begin{array}{l}
3x+1=0 \\
x-2=0
\end{array} \right.
\Leftrightarrow \left[
\begin{array}{lc}
x= – \dfrac{1}{3} & \text{(nhận)} \\
x= 2 & \text{(loại)}
\end{array} \right. $
Vậy $ S = \left \{ -\dfrac{1}{3}; \right \} $

 

c/ $\dfrac{x+4}{x^{2}-3 x+2}+\dfrac{x+1}{x^{2}-4 x+3}=\dfrac{2 x+5}{x^{2}-4 x+3} $

$\Leftrightarrow \dfrac{x+4}{(x-2)(x-1)}+\dfrac{x+1}{(x-3)(x-1)}=\dfrac{2x+5}{(x-3)(x-1)} $

ĐKXĐ:
$\begin{cases}
x-2 \ne 0 \\
x-1 \ne 0 \\
x-3 \ne 0
\end{cases}
\Leftrightarrow \begin{cases}
x \ne 2 \\
x \ne 1 \\
x \ne 3
\end{cases}$

$\Leftrightarrow \dfrac{x+4}{(x-2)(x-1)}+\dfrac{x+1}{(x-3)(x-1)}=\dfrac{2x+5}{(x-3)(x-1)} $

$\Leftrightarrow \dfrac{(x+4)(x-3)+(x+1)(x-2)}{(x-1)(x-2)(x-3)}=\dfrac{(2x+5)(x-2)}{(x-1)(x-2)(x-3)} $

$\Rightarrow (x^2+x-12)+(x^2-x-2) = (2x^2+x-10) $
$\Leftrightarrow (x^2+x-12)+(x^2-x-2) – (2x^2+x-10) = 0 $
$\Leftrightarrow -x – 4 = 0 $
$\Leftrightarrow x= -4 $ (nhận)
Vậy $ S = \left \{ -4 \right \} $

 

d/ $\dfrac{2}{x^{2}-4}-\dfrac{1}{x(x-2)}+\dfrac{x-4}{x(x+2)}=0 $

$\Leftrightarrow \dfrac{2}{(x+2)(x-2)}-\dfrac{1}{x(x-2)}+\dfrac{x-4}{x(x+2)}=0 $

ĐKXĐ:
$\begin{cases}
x-2 \ne 0 \\
x+2 \ne 0 \\
x \ne 0
\end{cases}
\Leftrightarrow \begin{cases}
x \ne 2 \\
x \ne -2 \\
x \ne 0
\end{cases}$

$\Leftrightarrow \dfrac{2}{(x+2)(x-2)}-\dfrac{1}{x(x-2)}+\dfrac{x-4}{x(x+2)}=0 $

$ \Leftrightarrow \dfrac{2x-(x+2)+(x-4)(x-2)}{x(x-2)(x+2)} = 0 $

$ \Rightarrow 2x-x-2+x^2-4x-2x-8 = 0 $
$\Leftrightarrow x^2-5x-8 =0 $
$\Leftrightarrow (x-2)(x-3)= 0 $
$\Leftrightarrow \left[
\begin{array}{lc}
x-2 =0 \\
x-3 = 0
\end{array} \right.
\Leftrightarrow \left[
\begin{array}{lc}
x = 2 & \text{(loại)} \\
x= 3 & \text{(nhận)}
\end{array} \right. $
Vậy $ S = \left \{ 3 \right \} $

Ví dụ 2: Giải các phương trình sau:

a/ $\dfrac{x^{2}+1}{x+1}+\dfrac{x^{2}+2}{x-2}=-2$

b/ $\dfrac{1}{x-1}+\dfrac{2 x^{2}-5}{x^{3}-1}=\dfrac{4}{x^{2}+x+1}$

c/ $\dfrac{12 x+1}{6 x-2}-\dfrac{9 x-5}{3 x+1}=\dfrac{108 x-36 x^{2}-9}{4\left(9 x^{2}-1\right)}$

d/ $x+\dfrac{1}{x}=x^{2}+\dfrac{1}{x^{2}}$

Giải

a/ $\dfrac{x^{2}+1}{x+1}+\dfrac{x^{2}+2}{x-2}=-2$

ĐKXĐ:
$\begin{cases}
x+1 \ne 0 \\
x-2 \ne 0
\end{cases}
\Leftrightarrow \begin{cases}
x \ne -1 \\
x \ne 2
\end{cases}$

$\dfrac{x^{2}+1}{x+1}+\dfrac{x^{2}+2}{x-2}=-2$

$ \Leftrightarrow \dfrac{(x^2+1)(x-2)+(x^2+2)(x+1)}{(x+1)(x-2)}=\dfrac{-2(x+1)(x-2)}{(x+1)(x-2)} $

$ \Rightarrow x^3-2x^2+x-2+x^3+x^2+2x+2 = -2(x^2-x-2) $
$\Leftrightarrow 2x^3+x^2+x-4 =0 $
$\Leftrightarrow 2x^3-2x^2+3x^2-3x+4x-4 = 0 $
$\Leftrightarrow 2x^2(x-1)+3x(x-1)+4(x-1) = 0 $
$\Leftrightarrow (x-1)(2x^2+3x+4) = 0 $
$\Leftrightarrow \left[
\begin{array}{lc}
x-1=0 \\
2x^2+3x +4 = 0
\end{array} \right. $

$\Leftrightarrow \left[
\begin{array}{ll}
x = 1 & \text{(nhận)} \\
2 \left (x+\dfrac{3}{4} \right)^2+\dfrac{23}{8} = 0 & \Rightarrow \text{ Phương trình vô nghiệm vì } 2 \left (x+\dfrac{3}{4} \right)^2+\dfrac{23}{8} \geqslant \dfrac{23}{8}
\end{array} \right. $

Vậy $ S = \left \{ 1 \right \} $

 

b/ $\dfrac{1}{x-1}+\dfrac{2 x^{2}-5}{x^{3}-1}=\dfrac{4}{x^{2}+x+1} $

$\Leftrightarrow \dfrac{1}{x-1}+\dfrac{2x^2-5}{(x-1)(x^2+x+1)}=\dfrac{4}{x^2+x+1}$

ĐKXĐ:
$\begin{cases}
x-1 \ne 0 \\
x^2+x+1 \ne 0
\end{cases}
\Leftrightarrow \begin{cases}
x \ne 1 \\
\left (x+\dfrac{1}{2} \right)^2 +\dfrac{3}{4} > 0
\end{cases}$

$\Leftrightarrow \dfrac{1}{x-1}+\dfrac{2x^2-5}{(x-1)(x^2+x+1)}=\dfrac{4}{x^2+x+1}$

$ \Leftrightarrow \dfrac{(x^2+x+1)+(2x^2-5)}{(x-1)(x^2+x+1)}=\dfrac{4(x-1)}{(x-1)(x^2+x+1)} $

$\Rightarrow (x^2+x+1)+(2x^2-5) = 4x-4 $
$\Leftrightarrow 3x^2-3x = 0 $
$\Leftrightarrow 3x(x-1) = 0 $
$\Leftrightarrow \left[
\begin{array}{lc}
x =0 \\
x-1 = 0
\end{array} \right.
\Leftrightarrow \left[
\begin{array}{lc}
x = 0 & \text{(nhận)} \\
x= 1 & \text{(loại)}
\end{array} \right. $
Vậy $ S = \left \{ 0 \right \} $

 

c/ $\dfrac{12 x+1}{6 x-2}-\dfrac{9 x-5}{3 x+1}=\dfrac{108 x-36 x^{2}-9}{4\left(9 x^{2}-1\right)}$

$\Leftrightarrow \dfrac{12x+1}{2(3x-1)}-\dfrac{9x-5}{3x+1}=\dfrac{108x-36x^2-9}{4(3x+1)(3x-1)} $

ĐKXĐ:
$\begin{cases}
3x-1 \ne 0 \\
3x+1 \ne 0
\end{cases}
\Leftrightarrow \begin{cases}
x \ne \dfrac{1}{3} \\
x \ne -\dfrac{1}{3}
\end{cases}$

$\Leftrightarrow \dfrac{12x+1}{2(3x-1)}-\dfrac{9x-5}{3x+1}=\dfrac{108x-36x^2-9}{4(3x+1)(3x-1)} $

$ \Leftrightarrow \dfrac{2(3x+1)(12x+1)-4(3x-1)(9x-5)}{4(3x+1)(3x-1_)}=\dfrac{108x-36x^2-9}{4(3x+1)(3x-1)} $

$\Rightarrow 2(36x^2+15x+1)-4(27x^2-24x+5) = 108x-36x^2-9 $
$\Leftrightarrow 18x = 9 $
$\Leftrightarrow x = \dfrac{1}{2} $ (nhận)
Vậy $ S = \left \{ \dfrac{1}{2} \right \} $

 

d/ $x+\dfrac{1}{x}=x^{2}+\dfrac{1}{x^{2}}$

ĐKXĐ: $ x \ne 0 $

$x+\dfrac{1}{x}=x^{2}+\dfrac{1}{x^{2}}$

$\Leftrightarrow \dfrac{x^3+x}{x^2} = \dfrac{x^4+1}1{x^2} $

$\Rightarrow x^3+x = x^4 +1 $
$\Leftrightarrow -x^4 +x^3+x-1 = 0 $
$\Leftrightarrow -x^3(x-1)+(x-1) = 0 $
$\Leftrightarrow (x-1)(-x^3+1) = 0 $
$\Leftrightarrow (x-1)(1-x)(1+x+x^2) = 0 $
$\Leftrightarrow \left[
\begin{array}{lc}
x -1=0 \\
1-x = 0 \\
1+x+x^2 = 0
\end{array} \right.$

$\Leftrightarrow \left[
\begin{array}{ll}
x = 1 & \text{(nhận)} \\
\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4} = 0 & \Rightarrow \text{ Phương trình vô nghiệm vì } \left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4} \geqslant \dfrac{3}{4}
\end{array} \right. $
Vậy $ S = \left \{ 1 \right \} $

 Ví dụ 3: Giải các phương trình sau:

a/ $\dfrac{x}{x+1}+\dfrac{x+1}{x+2}+\dfrac{x+2}{x}=\dfrac{25}{6}$

b/ $x^{2}+\dfrac{2 x}{x-1}=8$

c/ $\dfrac{2}{x-14}-\dfrac{5}{x-13}=\dfrac{2}{x-9}-\dfrac{5}{x-11}$

d/ $\dfrac{1}{x^{2}+5 x+6}+\dfrac{1}{x^{2}+7 x+12}+\dfrac{1}{x^{2}+9 x+20}+\dfrac{1}{x^{2}+11 x+30}=\dfrac{1}{8}$

Giải

a/ $\dfrac{x}{x+1}+\dfrac{x+1}{x+2}+\dfrac{x+2}{x}=\dfrac{25}{6}$

ĐKXĐ:
$\begin{cases}
x+1 \ne 0 \\
x+2 \ne 0 \\
x \ne 0
\end{cases}
\Leftrightarrow \begin{cases}
x \ne -1 \\
x \ne -2 \\
x \ne 0
\end{cases}$

$\dfrac{x}{x+1}+\dfrac{x+1}{x+2}+\dfrac{x+2}{x}=\dfrac{25}{6}$

$ \Leftrightarrow \dfrac{6x^2(x+2)+6x(x+1)^2+6(x+1)(x+2)^2}{6x(x+1)(x+2)}=\dfrac{25x(x+1)(x+2)}{6x(x+1)(x+2)} $

$\Rightarrow 6x^3+12x^2+6x(x^2+2x+1)+6(x+1)(x^2+4x+4) = 25x(x^2+3x+2)$

$\Leftrightarrow 6x^3+12x^2+6x^3+12x^2+6x+6x^3+24x^2+24x+6x^2+24x+24=25x^3+75x^2+50x $
$\Leftrightarrow 7x^3+21x^2-4x-24 = 0 $
$\Leftrightarrow 7x^3 -7x^2 +28x^2-28x+24x-24 = 0 $
$\Leftrightarrow 7x^2(x-1)+28x(x-1)+24(x-1) = 0 $
$\Leftrightarrow 7(x-1)\left(x^2+4x+\dfrac{24}{7}\right) = 0 $
$\Leftrightarrow 7(x-1) \left[(x+2)^2-\dfrac{4}{7}\right] = 0 $
$\Leftrightarrow 7(x-1) \left(x+2+\dfrac{2}{\sqrt{7}}\right) \left(x+2-\dfrac{2}{\sqrt{7}}\right) = 0 $
$\Leftrightarrow \left[
\begin{array}{lc}
x -1=0 \\
x+2+\dfrac{2}{\sqrt{7}}= 0 \\
x+2-\dfrac{2}{\sqrt{7}} =0
\end{array} \right.
\Leftrightarrow \left[
\begin{array}{ll}
x = 1 & \text{(nhận)} \\
x = -2-\dfrac{2}{\sqrt{7}} & \text{(nhận)} \\
x = -2+\dfrac{2}{\sqrt{7}} & \text{(nhận)}
\end{array} \right. $
Vậy $ S = \left \{ 1; -2-\dfrac{2}{\sqrt{7}}; -2+\dfrac{2}{\sqrt{7}} \right \} $

 

b/ $x^{2}+\dfrac{2 x}{x-1}=8$

ĐKXĐ: $ x-1 \ne 0 \Leftrightarrow x \ne 1 $

$x^{2}+\dfrac{2 x}{x-1}=8$

$ \Leftrightarrow \dfrac{x^2(x-1)+2x}{x-1} = \dfrac{8(x-1)}{x-1} $

$ \Rightarrow x^3-x^2+2x = 8x-8 $
$\Leftrightarrow x^3-x^2-6x+8 = 0 $
$\Leftrightarrow x^3-2x^2+x^2-2x-4x+8 = 0 $
$\Leftrightarrow x^2(x-2)+x(x-2)-4(x-2) = 0 $
$\Leftrightarrow (x-2)(x^2+x-4)= 0 $
$\Leftrightarrow (x-2) \left[\left(x+\dfrac{1}{2} \right)^2 -\dfrac{17}{4} \right] = 0 $
$\Leftrightarrow (x-2) \left(x+\dfrac{1}{2}+\dfrac{\sqrt{17}}{2} \right) \left(x+\dfrac{1}{2}-\dfrac{\sqrt{17}}{2} \right) =0 $
$\Leftrightarrow \left[
\begin{array}{lc}
x -2 =0 \\
x+\dfrac{1}{2}+\dfrac{\sqrt{17}}{2} = 0 \\
x+\dfrac{1}{2}-\dfrac{\sqrt{17}}{2} =0
\end{array} \right.
\Leftrightarrow \left[
\begin{array}{ll}
x = 2 & \text{(nhận)} \\
x= -\dfrac{1}{2}-\dfrac{\sqrt{17}}{2} & \text{(nhận)} \\
x= -\dfrac{1}{2}+\dfrac{\sqrt{17}}{2} & \text{(nhận)}
\end{array} \right. $

Vậy $ S = \left \{ 2; -\dfrac{1}{2}-\dfrac{\sqrt{17}}{2} ; -\dfrac{1}{2}+\dfrac{\sqrt{17}}{2} \right \} $

 

c/ $\dfrac{2}{x-14}-\dfrac{5}{x-13}=\dfrac{2}{x-9}-\dfrac{5}{x-11}$

ĐKXĐ:
$\begin{cases}
x-14 \ne 0 \\
x-13 \ne 0 \\
x-9 \ne 0 \\
x-11 \ne 0
\end{cases}
\Leftrightarrow \begin{cases}
x \ne 14 \\
x \ne 13 \\
x \ne 9 \\
x \ne 11
\end{cases}$

$\dfrac{2}{x-14}-\dfrac{5}{x-13}=\dfrac{2}{x-9}-\dfrac{5}{x-11}$

$\Leftrightarrow 2 \left(\dfrac{1}{x-14}-\dfrac{1}{x-9} \right)=5 \left(\dfrac{1}{x-13}-\dfrac{1}{x-11} \right) $

$\Leftrightarrow 2 \dfrac{(x-9)-(x-14)}{(x-14)(x-9)}=5 \dfrac{(x-11)-(x-13)}{(x-11)(x-13)} $

$\Leftrightarrow \dfrac{10}{(x-14)(x-9)} = \dfrac{10}{(x-13)(x-11)} $

$\Rightarrow (x-14)(x-9) = (x-13)(x-11) $
$\Leftrightarrow x^2 -23x +126 = x^2 -24x + 143 $
$\Leftrightarrow x = 17 $ (nhận)
Vậy $ S = \left \{ 17 \right \} $

 

d/ $\dfrac{1}{x^{2}+5 x+6}+\dfrac{1}{x^{2}+7 x+12}+\dfrac{1}{x^{2}+9 x+20}+\dfrac{1}{x^{2}+11 x+30}=\dfrac{1}{8}$

$\dfrac{1}{(x+2)(x+3)}+\dfrac{1}{(x+3)(x+4)}+\dfrac{1}{(x+4)(x+5)}+\dfrac{1}{(x+5)(x+6)} = \dfrac{1}{8} $

ĐKXĐ:
$\begin{cases}
x+2 \ne 0 \\
x+3 \ne 0 \\
x+4 \ne 0 \\
x+5 \ne 0 \\
x+6 \ne 0
\end{cases}
\Leftrightarrow \begin{cases}
x \ne -2 \\
x \ne -3 \\
x \ne -4 \\
x \ne -5 \\
x \ne -6
\end{cases}$

$\dfrac{1}{(x+2)(x+3)}+\dfrac{1}{(x+3)(x+4)}+\dfrac{1}{(x+4)(x+5)}+\dfrac{1}{(x+5)(x+6)} = \dfrac{1}{8} $

$\Leftrightarrow \dfrac{(x+4)+(x+2)}{(x+2)(x+3)(x+4)} + \dfrac{(x+6)+(x+4)}{(x+4)(x+5)(x+6)} = \dfrac{1}{8} $

$\Leftrightarrow \dfrac{2(x+3)}{(x+2)(x+3)(x+4)} + \dfrac{2(x+5)}{(x+4)(x+5)(x+6)} = \dfrac{1}{8} $

$ \Leftrightarrow \dfrac{2}{(x+2)(x+4)} +\dfrac{2}{(x+4)(x+6)} =\dfrac{1}{8} $

$ \Leftrightarrow \dfrac{2(x+6)+2(x+2)}{(x+2)(x+4)(x+6)} =\dfrac{1}{8} $

$\Leftrightarrow \dfrac{4(x+4)}{(x+2)(x+4)(x+6)} = \dfrac{1}{8} $

$ \leftrightarrow \dfrac{4}{(x+2)(x+6)} = \dfrac{1}{8} $

$ \Rightarrow (x+2)(x+6) = 32 $
$\Leftrightarrow x^2+8x-20 = 0 $
$\Leftrightarrow (x+10)(x-2) = 0 $
$\Leftrightarrow \left[
\begin{array}{lc}
x+10 =0 \\
x-2 = 0
\end{array} \right.
\Leftrightarrow \left[
\begin{array}{lc}
x = -10 & \text{(nhận)} \\
x= 2 & \text{(nhận)}
\end{array} \right. $
Vậy $ S = \left \{-10; 2 \right \} $

 

3. Bài tập tự luyện

Bài 1: Giải các phương trình sau:

a/ $\dfrac{3 x^{2}+7 x-10}{x}=0$

b/ $\dfrac{4 x-17}{2 x^{2}+1}=0$

c/ $\dfrac{x-6}{x-4}=\dfrac{x}{x-2}$

d/ $1+\dfrac{2 x-5}{x-2}-\dfrac{3 x-5}{x-1}=0$

e/ $\dfrac{x-3}{x-2}-\dfrac{x-2}{x-4}=3 \dfrac{1}{5}$

f/ $\dfrac{x-3}{x-2}+\dfrac{x-2}{x-4}=-1$

g/ $\dfrac{3 x-2}{x+7}=\dfrac{6 x+1}{2 x-3}$

h/ $\dfrac{x+1}{x-2}-\dfrac{x-1}{x+2}=\dfrac{2\left(x^{2}+2\right)}{x^{2}-4}$

Bài 2: Giải các phương trình sau:

a/ $\dfrac{2 x+1}{x-1}=\dfrac{5(x-1)}{x+1}$

b/ $\dfrac{x-1}{x+2}-\dfrac{x}{x-2}=\dfrac{5 x-2}{4-x^{2}}$

c/ $\dfrac{x-2}{2+x}-\dfrac{3}{x-2}=\dfrac{2(x-11)}{x^{2}-4}$

d/ $\frac{x-1}{x+1}-\dfrac{x^{2}+x-2}{x+1}=\dfrac{x+1}{x-1}-x-2$

e/ $\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{4}{x^{2}-1}$

f/ $\dfrac{3}{4(x-5)}+\dfrac{15}{50-2 x^{2}}=-\dfrac{7}{6(x+5)}$

g/ $\dfrac{8 x^{2}}{3\left(1-4 x^{2}\right)}=\dfrac{2 x}{6 x-3}-\dfrac{1+8 x}{4+8 x}$

h/ $\dfrac{13}{(x-3)(2 x+7)}+\dfrac{1}{2 x+7}=\dfrac{6}{x^{2}-9}$

Bài 3: Giải các phương trình sau:

a/ $\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{16}{x^{2}-1}$

b/ $\dfrac{12}{x^{2}-4}-\dfrac{x+1}{x-2}+\dfrac{x+7}{x+2}=0$

c/ $\dfrac{12}{8+x^{3}}=1+\dfrac{1}{x+2}$

d/ $\dfrac{x+25}{2 x^{2}-50}-\dfrac{x+5}{x^{2}-5 x}=\dfrac{5-x}{2 x^{2}+10 x}$

e/ $\dfrac{4}{x^{2}+2 x-3}=\dfrac{2 x-5}{x+3}-\dfrac{2 x}{x-1}$

f/ $\dfrac{3}{x^{2}+x-2}-\dfrac{1}{x-1}=\dfrac{-7}{x+2}$

Bài 4: Giải các phương trình sau:

a/ $\dfrac{2}{-x^{2}+6 x-8}-\dfrac{x-1}{x-2}=\frac{x+3}{x-4}$

b/ $\dfrac{2}{x^{3}-x^{2}-x+1}=\dfrac{3}{1-x^{2}}-\dfrac{1}{x+1}$

c/ $\dfrac{x+2}{x-2}-\dfrac{2}{x^{2}-2 x}=\dfrac{1}{x}$

d/ $\dfrac{5}{-x^{2}+5 x-6}+\dfrac{x+3}{2-x}=0$

e/ $\dfrac{x}{2 x+2}-\dfrac{2 x}{x^{2}-2 x-3}=\dfrac{x}{6-2 x}$

f/ $\dfrac{1}{x-1}-\dfrac{3 x^{2}}{x^{3}-1}=\dfrac{2 x}{x^{2}+x+1}$

Giải bài toán bằng cách lập phương trình

1. Kiến thức cần nhớ

Phương pháp: Các bước giải bài toán bằng cách lập phương trình:

  • Bước 1: Lập phương trình
    • Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số.
    • Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết.
    • Lập phương trình biểu thị mối quan hệ giữa các đại lượng.
  • Bước 2: Giải phương trình
  • Bước 3: Kiểm tra xem trong các nghiệm của phương trình, nghiệm nào chưa thỏa mãn điều kiện của ẩn, nghiệm nào không, rồi kết luận.

 

Một số lưu ý về chọn ẩn và điều kiện thích hợp của ẩn:

  • Thông thường thì bài toán hỏi về đại lượng gì thì chọn ẩn là đại lượng đó.
  • Nếu $x$ biểu thị là một chữ số thì $ 0 \leqslant x \leqslant 9 $.
  • Nếu $x$ biểu thị tuổi, sản phẩm, người, thì $x$ mang giá trị nguyên dương.
  • Nếu $x$ biểu thị vận tốc của chuyển động thì $x>0$.

 

2. Ví dụ

2.1. Dạng toán chuyển động: $S = v \cdot t$

Loại toán này có rất nhiều dạng, tuy nhiên có thể phân ra một số dạng thường gặp như sau:

a) Toán có nhiều phương tiện tham gia trên nhiều tuyến đường.

Ví dụ 1: Đường sông từ A đến B ngắn hơn đường bộ là $10$ km. Ca nô đi từ A đến B mất $3$ giờ $20$ phút, ô tô đi hết $2$ giờ. Vận tốc ca nô nhỏ hơn vận tốc ô tô là $17$ km. Tính vận tốc của ca nô và ô tô.

Giải

Gọi $x$ (km/h) là vận tốc của ca nô. Điều kiện: $x>0$

Vận tốc của ô tô là: $x+17$ (km/h)

Quảng đường ca nô đi là: $x \left(3+\dfrac{20}{60} \right) = \dfrac{10x}{3}$ (km)

Quảng đường ô tô đi là: $2(x+17)$ (km)

Vì đường sông ngắn hơn đường bộ $10$ km nên ta có phương trình:

$2(x+17)-\dfrac{10x}{3}=10 $

$\Leftrightarrow -\dfrac{4}{3}x=-24 $

$\Leftrightarrow x = 18 $ (nhận)

Vậy

  • Vận tốc của ca nô là: $18$ km/h
  • Vận tốc của ô tô là: $(18+17) = 35$ km/h

Ví dụ 2: Một người đi xe đạp từ A đến B cách nhau $33$ km với vận tốc xác định. Khi đi từ B đến A, người đó đi bằng con đường khác dài hơn trước $29$ km, nhưng với vận tốc lớn hơn vận tốc lúc đi là $3$ km/h. Tính vận tốc lúc đi, biết thời gian đi nhiều hơn thời gian về là $1$ giờ $30$ phút.

Giải

Gọi $x$ (km/h) là vận tốc lúc đi. Điều kiện: $x>0$

Vận tốc lúc về là: $x+3$ (km/h)

Vì thời gian đi nhiều hơn thời gian về là $1h30$ nên ta có phương trình:

$\dfrac{33+29}{x+3}-\dfrac{33}{x}=1+\dfrac{30}{60}$

$\Leftrightarrow \dfrac{62}{x+3}-\dfrac{33}{x}=\dfrac{3}{2} $

$\Leftrightarrow \dfrac{62\cdot 2x – 33 \cdot 2(x+3)}{2x(x+3)}=\dfrac{3x(x+3)}{2x(x+3)} $

$\Rightarrow 124x-66x-198=3x^2+9x $
$\Leftrightarrow 3x^2 -49x + 198 = 0 $
$\Leftrightarrow (3x-22)(x-9) = 0 $
$\Leftrightarrow \left[
\begin{array}{lc}
3x-22=0\\
x-9=0
\end{array} \right.
\Leftrightarrow \left[
\begin{array}{lc}
x = \dfrac{22}{3} & \text{(nhận)} \\
x= 9 & \text{(nhận)}
\end{array} \right. $

Vậy vận tốc lúc đi của người đi xe đạp là $\dfrac{22}{3}$ km/h hoặc là $9$ km/h.

 

b) Toán chuyển động thường

Với các bài toán chuyển động dưới nước, yêu cầu học sinh nhớ công thức:

  • $v_{\text{xuôi}} = v_{\text{thực}}+v_{\text{nước}} $
  •  $v_{\text{ngược}} = v_{\text{thực}}-v_{\text{nước}}

Ví dụ 3: Một tàu thủy chạy trên khúc sông dài $80$ km, cả đi lẫn về mất $8$ giờ $20$ phút. Tính vận tốc của tàu thủy khi nước yên lặng? Biết rằng vận tốc dòng nước là $4$ km/h.

Giải

Gọi $x$ (km/h) là vận tốc của tàu khi nước yên lặng. Điều kiện: $x>0$

Vận tốc của tàu khi xuôi dòng là: $x+4$ (km/h)

Vận tốc của tàu khi ngược dòng là: $x-4$ (km/h)

Thời gian cả đi lẫn về là $8h20’=\dfrac{25}{3}$ nên ta có phương trình:

$\dfrac{80}{x+4}+\dfrac{80}{x-4} =\dfrac{25}{3} $

$\Leftrightarrow \dfrac{80\cdot 3(x-4)+80\cdot 3(x+4)}{3(x-4)(x+4)}=\dfrac{25(x^2-16)}{3(x+4)(x-4)} $

$\Rightarrow 240x -960+240x+960 = 25x^2-400 $
$\Leftrightarrow 25x^2-480x – 400 = 0  $
$\Leftrightarrow 5x^2-96x-80=0 $
$\Leftrightarrow (5x+4)(x-20) = 0 $
$\Leftrightarrow \left[
\begin{array}{lc}
5x+4=0\\
x-20=0
\end{array} \right.
\Leftrightarrow \left[
\begin{array}{lc}
x = -\dfrac{4}{5} & \text{(loại)} \\
x= 20 & \text{(nhận)}
\end{array} \right. $

Vậy vận tốc của tàu thủy khi nước yên lặng là $20$ km/h.

Ví dụ 4: Lúc 7 giờ sáng, một ca nô xuôi dòng từ bến A đến bến B cách nhau $36$ km, rồi lặp tức trở về bến A lúc $11$ giờ $30$ phút. Tính vận tốc ca nô khi xuôi dòng biết vận tốc dòng nước là $6$ km/h.

Giải

Gọi $x$ (km/h) là vận tốc của thực của ca nô. Điều kiện: $x>0$

Vận tốc xuôi dòng của ca nô là: $x+6$ (km/h)

Vận tốc ngược dòng của ca nô là: $x-6$ (km/h)

Thời gian cả đi và về của ca nô là: $ 11h30′ – 7h = 4h30’=\dfrac{9}{2} $ (giờ) nên ta có phương trình:

$\dfrac{36}{x+6}+\dfrac{36}{x-6}=\dfrac{9}{2} $

$\Leftrightarrow \dfrac{36 \cdot 2(x-6)+36\cdot 2(x+6)}{2(x+6)(x-6)} =\dfrac{9(x^2-36)}{2(x^2-36)} $

$\Rightarrow 72x-432 +72x+432 = 9x^2-324 $
$\Leftrightarrow 9x^2 -144x-324 = 0 $
$\Leftrightarrow x^2-16x-36 = 0 $
$\Leftrightarrow (x-18)(x+2) = 0 $
$\Leftrightarrow \left[
\begin{array}{lc}
x -18=0 \\
x+2 = 0
\end{array} \right.
\Leftrightarrow \left[
\begin{array}{lc}
x = 18 & \text{(nhận)} \\
x= -2 & \text{(loại)}
\end{array} \right. $

Vậy: vận tốc ca nô khi xuôi dòng là $18+6 = 24$ km/h.

 

c) Toán chuyển động có nghỉ ngang đường.

Học sinh cần nhớ:

  • $ t_{\text{dự định}}= t_{\text{đi}}+t_{\text{nghỉ}} $
  • $ \text{Quãng đường dự định đi} = \text{Tổng quãng đường đi}$

Ví dụ 5: Một ô tô đi từ Hà Nội đến Thanh Hóa với vận tốc $40$ km/h. Sau $2$ giờ nghỉ lại ở Thanh Hóa, ô tô lại từ Thanh Hóa về Hà Nội với vận tốc $30$ km/h. Tổng thời gian cả đi lẫn về là $10$ giờ $45$ phút kể cả thời gian nghỉ lại ở Thanh Hóa. Tính quãng đường Hà Nội – Thanh Hóa.

Giải

Gọi $x$ (km) là quãng đường Hà Nội – Thanh Hóa. Điều kiện: $x>0$

Tổng thời gian cả đi lẫn về, kể cả thời gian nghỉ là $10h45′ = \dfrac{43}{4} $ (giờ), nên ta có phương trình:

$\dfrac{x}{40}+\dfrac{x}{30} +2 =\dfrac{43}{4} $

$\Leftrightarrow x\left(\dfrac{1}{40}+\dfrac{1}{30}\right)=\dfrac{43}{4}-2 $

$\Leftrightarrow \dfrac{7}{120}x = \dfrac{35}{4} $

$\Leftrightarrow x = 150 $ (nhận)

Vậy quãng đường Hà Nội – Thanh Hóa là $150$ km.

Ví dụ 6: Một ô tô đi từ A đến B cách nhau $120$ km trong môt thời gian dự định. Sau khi đi được $1$ giờ thì ô tô bị chắn bởi xe lửa $10$ phút. Do đó để đến nơi đúng giờ, xe phải tăng vận tốc lên thêm $6$ km/h. Tính vận tốc của ô tô lúc đầu.

Giải

Gọi $x$ là vận tốc lúc đầu của ô tô. Điều kiện: $x>0$

Công thức lập phương trình: $t_{\text{đi}}+t_{\text{nghỉ}}=t_{\text{dự định}} $

$\Leftrightarrow 1+\dfrac{1}{6}+\dfrac{120-x}{x+6}=\dfrac{120}{x} $

$ \Leftrightarrow \dfrac{6x(x+6)+x(x+6)+6x (120-x)}{6x(x+6)}=\dfrac{120 \cdot 6(x+6)}{6x(x+6)} $

$\Rightarrow 6x^2+36x+x^2+6x+720x-6x^2 = 720x +4320 $
$\Leftrightarrow x^2+ 42x- 4320= 0  $
$\Leftrightarrow (x+90)(x-48) = 0 $
$\Leftrightarrow \left[
\begin{array}{lc}
x +90=0 \\
x-48 = 0
\end{array} \right.
\Leftrightarrow \left[
\begin{array}{lc}
x = -90 & \text{(loại)} \\
x= 48 & \text{(nhận)}
\end{array} \right. $

Vậy vận tốc của ô tô lúc đầu là $48$ km/h.

 

d/ Toán chuyển động ngược chiều

Học sinh cần nhớ:

  • Hai chuyển động đi để gặp nhau thì $S_{1} + S_{2} = S$
  • Hai chuyển động đi để gặp nhau: $t_{1} =t_{2}$ (không kể thời gian xuất phát sớm)

Ví dụ 7: Hai ô tô cùng khởi hành từ hai bến cách nhau $175$ km để gặp nhau. Xe 1 đi sớm hơn xe 2 là $1$ giờ $30$ phút với vận tốc $30$ km/h. Vận tốc xe 2 là $35$ km/h. Hỏi sau mấy giờ hai xe gặp nhau.

Giải

Gọi $x$ (giờ) là thời gian đi của xe 2. Điều kiện: $x>0$

Thời gian đi của xe 1 là: $ x+\dfrac{3}{2}$ (giờ)

Vì 2 bến cách nhau $175$km nên ta có phương trình:

$ 30 \left(x+\dfrac{3}{2} \right) +35x = 175 $
$\Leftrightarrow 65x = 130 $
$\Leftrightarrow x = 2 $ (nhận)

Vậy: Sau $2$ giờ xuất phát thì xe 2 gặp xe 1.

 

e/ Toán chuyển động cùng chiều

Học sinh cần nhớ:

  • Quãng đường mà hai chuyển động đi để gặp nhau thì bằng nhau.
    \item Cùng khởi hành: $ t_{\text{c/đ chậm}} – t_{\text{c/đ nhanh}}= t_{\text{nghỉ}} $ (hoặc $t_{\text{đến sớm}}$)
  • Khởi hành trước sau:
    $\begin{cases}
    t_{\text{c/đ trước}} – t_{\text{c/đ sau}} = t_{\text{đi sau}} \\
    t_{\text{c/đ sau}}+t_{\text{đi sau}}+t_{\text{đến sớm}} = t_{\text{c/đ trước}}
    \end{cases}$

Ví dụ 8: Một tàu hỏa từ Hà Nội đi Tp.HCM. $1$ giờ $48$ phút sau, một tàu hỏa khác khởi hành từ Nam Định cũng đi Tp.HCM với vận tốc nhỏ hơn vận tốc tàu thứ nhất $5$ km/h. Hai tàu gặp nhau tại một nhà ga sau $4$ giờ $48$ phút kể từ khi tàu thứ nhất khởi hành. Tính vận tốc của mỗi tàu, biết rằng ga Nam Định nằm trên đường từ Hà Nội đi Tp.HCM và cách ga Hà Nội $87$ km.

Giải

Gọi $x$ (km/h) là vận tốc của tàu thứ nhất. Điều kiện: $x>0$

Vận tốc của tàu thứ hai là: $x-5$ (km/h)

Ta có: $1h48’=\dfrac{9}{5}$ (giờ)

Hai tàu gặp nhau sau $4h48’= \dfrac{24}{5}$ (giờ) nên ta có phương trình:

$ \dfrac{24}{5}x = 87 +(x-5)\left(\dfrac{24}{5}-\dfrac{9}{5}\right)$

$\Leftrightarrow \dfrac{24}{5}=87+3(x-5) $

$\Leftrightarrow \dfrac{9}{5}x= 72$

$\Leftrightarrow x = 40 $ (nhận)

Vậy

  • Vận tốc của tàu thứ nhất là: $40$ km/h
  • Vận tốc của tàu thứ hai là: $(40-5) = 35$ km/h

Ví dụ 9: Hai xe ô tô khởi hành từ Lạng Sơn về Hà Nội, quãng đường dài $163$ km. Trong $43$ km đầu, hai xe có cùng vận tốc. Nhưng sau đó xe thứ nhất tăng vận tốc lên gấp $1,2$ lần vận tốc ban đầu, trong khi xe thứ hai vẫn duy trì vận tốc cũ. Do đó xe thứ nhất đến Hà Nội sớm hơn xe thứ hai $40$ phút. Tính vẫn tốc ban đầu của hai xe.

Giải

Gọi $x$ (km/h) là vận tốc ban đầu của hai xe. Điều kiện: $x>0$

Thời gian đi của xe thứ nhất là: $\dfrac{43}{x}+\dfrac{163-43}{1,2x}$ (giờ)

Thời gian đi của xe thứ hai là: $ \dfrac{163}{x}$ (giờ)

Xe thứ nhất đến Hà Nội sớm hơn xe thứ hai $ 40′ = \dfrac{2}{3}$ (giờ) nên ta có phương trình:

$\dfrac{43}{x}+\dfrac{163-43}{1,2x}+\dfrac{2}{3}=\dfrac{163}{x}$

$\Leftrightarrow \dfrac{43\cdot 3,6+120\cdot 3+2\cdot 1,2x}{3,6x}=\dfrac{163\cdot 3,6}{3,6x} $

$ \Rightarrow 514,8+2,4x = 586,8 $
$\Leftrightarrow 2,4x = 72 $
$\Leftrightarrow x = 30 $ (nhận)

Vậy vận tốc ban đầu của hai xe là $30$ km/h.

 

f/ Toán chuyển động một phần đoạn đường

Học sinh cần nhớ:

  • \ $t_{\text{dự định}} = t_{\text{đi}} + t_{\text{nghỉ}} + t_{\text{về sớm}}$
  •  $t_{\text{dự định}}=t_{\text{thực tế}} – t_{\text{đến muộn}} $
  •  $ t_{\text{c/đ trước}}-t_{\text{c/đ sau}}=t_{\text{đi sau}}+t_{\text{đến sớm}}$

Ví dụ 10: Một người dự định đi xe đạp từ nhà ra tỉnh với vận tốc trung bình $12$ km/h. Sau khi đi được $\frac{1}{3}$ quãng đường với vận tốc đó vì xe hỏng nên người đó chờ ô tô mất $20$ phút và đi ô tô với vận tốc $36$ km/h do vậy người đó đến sớm hơn dự định $1h40’$. Tính quãng đường từ nhà ra tỉnh?

Giải

Gọi $x$ (km) là quãng đường từ nhà ra tỉnh. Điều kiện: $x>0$

Ta có:
$\begin{cases}
40′ = \dfrac{2}{3} \text{ (giờ)} \
1h40′ = \dfrac{5}{3} \text{ (giờ)}
\end{cases} $

Công thức lập phương trình:

$t_{\text{dự định}}= t_{\text{đi}}+t_{\text{nghỉ}}+t_{\text{đến sớm}} $

$ \Leftrightarrow \dfrac{x}{12}= \dfrac{1}{3}\cdot \dfrac{x}{12} +\dfrac{2}{3} \cdot \dfrac{x}{36}+\dfrac{1}{3}+\dfrac{5}{3} $

$\Leftrightarrow \dfrac{x}{12} = \dfrac{x}{36}+\dfrac{x}{54}+\dfrac{1}{3}+\dfrac{5}{3} $

$ \Leftrightarrow x\left(\dfrac{1}{12}-\frac{1}{36}-\dfrac{1}{54}\right) = 2 $

$ \Leftrightarrow \dfrac{1}{27}x= 2 $

$ \Leftrightarrow x = 54 $ (nhận)

Vậy quãng đường từ nhà ra tỉnh là $54$ km.

Ví dụ 11: Một người dự định đi từ tỉnh A đến tỉnh B với vận tốc $50$ km/h. Sau khi đi được $\frac{2}{3}$ quãng đường với vận tốc đó, vì đường khó đi nên người lái xe phải giảm vận tốc mỗi giờ $10$ km trên quãng đường còn lại. Do đó ô tô đến tỉnh B chậm $30$ phút so với dự định. Tính quãng đường AB.

Giải

Gọi $x$ (km) là quãng đường AB. Điều kiện: $x>0$

Ta có: $30′ = \dfrac{1}{2} $ (giờ)

Công thức lập phương trình:

$ t_{\text{dự định}}=t_{\text{thực tế}} – t_{\text{đến muộn}} $

$ \Leftrightarrow \dfrac{x}{50}= \dfrac{2x}{3\cdot50}+\dfrac{x}{3\cdot 40}-\dfrac{1}{2} $

$\Leftrightarrow \dfrac{x}{50}=\dfrac{x}{75}+\dfrac{x}{120}-\dfrac{1}{2} $

$\Leftrightarrow x \left(\dfrac{1}{50}-\dfrac{1}{75}-\dfrac{1}{120}\right) = -\dfrac{1}{2} $

$ \Leftrightarrow -\dfrac{1}{600}x = – \dfrac{1}{2} $

$ \Leftrightarrow x = 300 $ (nhận)

Vậy quãng đường từ tỉnh A đến tỉnh B là $300$ km.

 

2.2. Dạng toán năng suất

Ví dụ 12: Một xí nghiệp ký hợp đồng dệt một số tấm thảm len trong $20$ ngày. Do cải tiến kỹ thuật, năng xuất dệt của xí nghiệp đã tăng $20\%$. Bởi vậy, chỉ trong $18$ ngày, không những xí nghiệp đã hoàn thành số thảm cần dệt mà còn thêm được $24$ tấm nữa. Tính số thảm len mà xí nghiệp phải dệt theo hợp đồng.

Giải

Gọi $x$ là số tấm thảm len dệt được trong một ngày theo kế hoạch. Điều kiện: $x$ là số nguyên dương

Số tấm thảm dệt theo hợp đồng là: $20x$ (tấm thảm)

Số tấm thảm thực tế dệt được là: $18 \cdot 1,2x = \dfrac{108}{5}x$ (tấm thảm)

Theo đề bài, số tấm thảm dệt vượt chỉ tiêu là $24$ tấm thảm nên ta có phương trình:

$ 20x = \dfrac{108}{5}x – 24 $

$\Leftrightarrow -\dfrac{8}{5}x=-24 $

$ \Leftrightarrow x = 15$ (nhận)

Vậy số tấm thảm len mà xí nghiệp phải dệt theo hợp đồng là $ 15 \cdot 20 = 300$ tấm.

Ví dụ 13: Một hợp tác xã dự định trung bình mỗi tuần đánh được $20$ tấn cá. Nhưng do vướt mức $6$ tấn/tuần nên chẳng những hoàn thành kế hoạch sớm hơn $1$ tuần mà còn vượt 10 tấn. Tính mức kế hoạch đã dự định?

Giải

Gọi $x$ (tuần) là số tuần hoàn thành kế hoạch dự định. Điều kiện: $x$ là số nguyên dương.

Số cá đánh được theo kế hoạch dự định là: $20x$ (tấn)

Kế hoạch được hoàn thành sớm hơn $1$ tuần và vượt $10$ tấn cá nên ta có phương trình:

$ 20x = 26(x-1)-10 $
$\Leftrightarrow -6x = -36 $
$\Leftrightarrow x = 6 $ (nhận)

Vậy số cá đánh được theo kế hoạch dự định là $ 20 \cdot 6 = 120$ tấn.

 

2.3. Dạng toán tìm hai số

Dạng toán tìm hai số có thể phân ra một số dạng thường gặp như sau:

a) Tìm hai số biết tổng hoặc hiệu, hoặc tỉ số của chúng

Ví dụ 14: Một phân số có tử số nhỏ hơn mẫu số $11$ đơn vị. Nếu tăng tử số lên $3$ đơn vị và giảm mẫu số đi $4$ đơn vị thì được một phân số bằng $\dfrac{3}{4}$. Tìm phân số ban đầu.

Giải

Goi $x$ là tử số của phân số cần tìm. Điều kiện: $x$ nguyên dương.

Mẫu số của phân số cần tìm là: $x+11$

Phân số cần tìm có dạng như sau: $\dfrac{x}{x+11}$

Tăng tử số lên $3$ đơn vị và giảm mẫu số đi $4$ đơn vị thì được một phân số bằng $\dfrac{3}{4}$ nên ta có phương trình:

$\dfrac{x+3}{x+11-4}=\dfrac{3}{4}$

$\Leftrightarrow \dfrac{x+3}{x+7}=\dfrac{3}{4}$

$\Leftrightarrow \dfrac{4(x+3)}{4(x+7)} =\dfrac{3(x+7)}{4(x+7)} $

$ \Rightarrow 4x+12 = 3x+21 $

$\Leftrightarrow x = 9 $ (nhận)

Vậy phân số cần tìm là $\dfrac{9}{9+11} = \dfrac{9}{20} $

Ví dụ 15: Một số có $2$ chữ số. Biết rằng chữ số hàng đơn vị gấp $3$ lần chữ số hàng chục. Nếu đổi chỗ $2$ chữ số cho nhau được chữ số mới lơn hơn chữ số cũ $54$ đơn vị. Tìm chữ số ban đầu?

Giải

Gọi $x$ là chữ số hàng đơn vị của số cần tìm.
Điều kiện:
$\begin{cases}
1 \leqslant x \leqslant 9 \
x \text{ là số nguyên dương}
\end{cases}$

Chữ số hàng chục là $\dfrac{x}{3} $

Chữ số cần tìm là $\dfrac{x}{3}\cdot 10 +x$

Nếu đổi chỗ hai chữ số cho nhau được chữ số mới lớn hơn chữ số cũ $54$ đơn vị nên ta có phương trình:

$\left (10x+\dfrac{x}{3}\right)-\left(\dfrac{x}{3}\cdot 10 + x \right) = 54 $

$\Leftrightarrow 6x = 54 $

$\Leftrightarrow x =9 $ (nhận)

Vậy số cần tìm là $\dfrac{9}{3}\cdot 10 +x = 39$.

Ví dụ 16: Hiệu hai số là $12$. Nếu chia số bé cho $7$ và số lớn cho $5$ thì thương thứ nhất lớn hơn thương thứ hai là $4$ đơn vị. Tìm hai số ban đầu.

Giải

Gọi $x$ là số thứ nhất cần tìm.

Số thứ hai cần tìm là $x+12$

Nếu chia số bé cho $7$ và số lớn cho $5$ thì thương thứ nhất lớn hơn thương thứ hai là $4$ đơn vị nên ta có phương trình:

$\dfrac{x}{7}-\dfrac{x+12}{5} = 4 $

$\Leftrightarrow x \left (\dfrac{1}{7}-\dfrac{1}{5} \right)=4+\dfrac{12}{5} $

$\Leftrightarrow -\dfrac{2}{35}x = \dfrac{32}{5} $

$\Leftrightarrow x= -112 $

Vậy hai số cần tìm là $-112$ và $ (-112+12) = -100 $.

b)Tìm số sách trong mỗi giá sách, tính tuổi cha và con, tìm số công nhân mỗi phân xưởng

Ví dụ 17: Hai thư viện có cả thảy $15000$ cuốn sách. Nếu chuyển từ thư viện thứ nhất sang thư viện thứ hai $3000$ cuốn, thì số sách của hai thư viện là bằng nhau. Tính số sách lúc đầu ở mỗi thư viện.

Giải

Gọi $x$ (cuốn) là số sách lúc đầu ở thư viện thứ nhất. Điều kiện: $x$ nguyên dương.

Số sách lúc đầu ở thư viện thứ hai là $15000-x$ (cuốn)

Nếu chuyển từ thư viện thứ nhất sang thư viện thứ hai $3000$ cuốn, thì số sách của hai thư viện là bằng nhau, nên ta có phương trình:

$x-3000 = (15000-x)+3000 $
$\Leftrightarrow 2x=21000 $
$\Leftrightarrow x =10500 $ (nhận)

Vậy số sách lúc đầu ở thư viện thứ nhất là $10500$ cuốn, ở thư viện thứ hai là $(15000-10500)=4500$ cuốn.

Ví dụ 18: Số công nhân của hai xí nghiệp trước kia tỉ lệ $3$ và $4$. Nay xí nghiệp 1 thêm $40$ công nhân, xí nghiệp 2 thêm $80$ công nhân. Do đó số công nhân hiện nay của hai xí nghiệp tỉ lệ với $8$ và $11$. Tính số công nhân của mỗi xí nghiệp hiện nay.

Giải

Gọi $x$ (người) là số công nhân trước kia của xí nghiệp thứ nhất. Điều kiện: $x$ nguyên dương.

Số công nhân trước kia của xí nghiệp thứ hai là: $\dfrac{4}{3}x$ (người)

Số công nhân hiện nay của xí nghiệp thứ nhất là: $x+40$ (người)

Số công nhân hiện nay của xí nghiệp thứ hai là: $\dfrac{4}{3}x+x 80$ (người) \

Số công nhân hiện nay của hai xí nghiệp tỉ lệ với $8$ và $11$ nên ta có phương trình:

$ \dfrac{x+40}{\dfrac{4}{3}x+80} = \dfrac{8}{11} $

$ \Rightarrow 11(x+40) = 8\left(\dfrac{4}{3}x+80 \right)$
$\Leftrightarrow \dfrac{1}{3}x = 200 $
$\Leftrightarrow x = 600 $ (nhận)

Vậy

  • Số công nhân hiện nay ở xí nghiệp thứ nhất là: $(200+40) = 240$ người
  • Số công nhân hiện nay ở xí nghiệp thứ hai là: $\left(\dfrac{4}{3} \cdot 600 +80 \right) = 880$ người

Ví dụ 19: Ông của Bình hơn Bình $58$ tuổi. Nếu cộng tuổi của bố Bình và hai lần tuổi của Bình thì bằng tuổi của ông và tổng số tuổi của ba người là $130$. Hãy tính tuổi của Bình.

Giải

Gọi $x$ là số tuổi của Bình. Điều kiện: $x$ nguyên dương.

Tuổi của ông Bình là: $x+58$ (tuổi)

Tuổi của bố Bình là: $(x+58)-2x = 58-x$ (tuổi)

Tổng số tuổi của ba người là $130$, nên ta có phương trình:

$x+(x+58)+(58-x) = 130 $
$\Leftrightarrow x = 14$ (nhận)

Vậy tuổi của Bình là 14 tuổi.

 

c)Tìm số dòng một trang sách, tìm số dãy ghế và số người trong một dãy

 

Ví dụ 20: Thùng thứ nhất chứa $60$ gói kẹo, thùng thứ hai chứa $80$ gói kẹo. Người ta lấy ra từ thùng thứ hai số gói kẹo nhiều gấp $3$ lần số gói kẹo lấy ra từ thùng thứ nhất. Hỏi có bao nhiêu gói kẹo được lấy ra từ thùng thứ nhất, biết rằng số gói kẹo còn lại trong thùng thứ nhất nhiều gấp $2$ lần số gói kẹo còn lại trong thùng thứ hai.

Giải

Gọi $x$ (gói) là số kẹo được lấy ta từ thùng thứ nhất. Điều kiện: $x$ nguyên dương.

Số kẹo được lấy ra từ thùng thứ hai là: $3x$ (gói)

Số gói kẹo trong thùng thứ nhất nhiều gấp $2$ lần số gói kẹo còn lại trong thùng thứ hai, nên ta có phương trình:

$ 60 -x = 2(80-3x) $
$\Leftrightarrow 5x=100 $
$\Leftrightarrow x =20 $ (nhận)

Vậy số kẹo được lấy ra từ thùng thứ nhất và thứ hai lần lượt là $20$ gói và $60$ gói.

Ví dụ 21: Một phòng họp có $100$ chỗ ngồi, nhưng số người đến họp là $144$ người. Do đó, người ta phải kê thêm $2$ dãy ghế và mỗi dãy ghế phải thêm $2$ người ngồi. Hỏi phòng họp lúc đầu có mấy dãy ghế và mỗi dãy ghế có bao nhiêu chỗ ngồi?

Giải

Gọi $x$ là số dãy ghế lúc đầu. Điều kiện: $x$ nguyên dương.

Số dãy ghế lúc sau là: $x+2$ (dãy)

Số ghế ở mỗi dãy lúc đầu là: $\dfrac{100}{x}$ (ghế)

Số ghế ở mỗi dãy lúc đầu là: $\dfrac{144}{x+2} $ (ghế)

Mỗi dãy ghế phải thêm $2$ người ngồi nên ta có phương trình:

$\dfrac{144}{x+2}-\dfrac{100}{x} = 2 $

$\Leftrightarrow \dfrac{144x-100(x+2)}{x(x+2)} = \dfrac{2x(x+2)}{x(x+2)} $

$\Rightarrow 144x -100x – 200 = 2x^2 +4x $
$\Leftrightarrow 2x^2-40 x+200 = 0 $
$\Leftrightarrow 2(x-10)^2 = 0 $
$\Leftrightarrow x-10 = 0 $
$\Leftrightarrow x =10 $ (nhận)

Vậy Số dãy ghế trong phòng họp lúc đầu là $10$ dãy.

 

2.4. Dạng toán làm chung công việc

Ví dụ 22: Hai công nhân cùng làm chung công việc trong $12$ giờ thì xong. Nhưng chỉ làm được trong $4$ giờ, người kia đi làm việc khác, người thứ hai làm tiếp trong $10$ giờ nữa thì xong. Hỏi mỗi người làm một mình thì bao lâu xong công việc?

Giải

Gọi $x$ (giờ) là thời gian người thứ nhất một mình hoàn thành công việc. Điều kiện: $x > 0$.

Trong 1 giờ, người thứ nhất làm được: $\dfrac{1}{x}$ (công việc)

Trong 1 giờ, cả hai người làm được: $\dfrac{1}{12} $ (công việc)

Trong 1 giờ, người thứ hai làm được: $\dfrac{1}{12}-\dfrac{1}{x} $ (công việc)

Hai người làm chung trong $4$ giờ, sau đó người thứ hai làm tiếp trong $10$ giờ nữa thì xong công việc, nên ta có phương trình:

$ 4 \cdot \dfrac{1}{x} + 14 \cdot \left(\dfrac{1}{12}-\dfrac{1}{x}\right) = 1 $

$ \Leftrightarrow \dfrac{4}{x}+\dfrac{7}{6}-\dfrac{14}{x} = 1 $

$\Leftrightarrow \dfrac{10}{x}=-\dfrac{1}{6} $

$ \Rightarrow x =60 $ (nhận)

Vậy

  • Nếu làm một mình, người thứ nhất sẽ hoàn thành công việc trong $60$ giờ
  • Nếu làm một mình, người thứ hai sẽ hoàn thành công việc trong $\dfrac{1}{\dfrac{1}{12}-\dfrac{1}{60}}= 15$ giờ

Ví dụ 23: Hai vòi nước cùng chảy vào một bể cạn, sau $4\dfrac{4}{9}$ giờ thì đầy bể. Mỗi giờ lượng nước vòi 1 chảy được bằng $1\dfrac{1}{4}$ lượng nước vòi 2 chảy. Hỏi mỗi vòi chảy riêng thì trong bao lâu sẽ đầy bề?

Giải

Gọi $x$ (giờ) là thời gian vòi 1 chảy riêng sẽ đầy bình. Điều kiện: $ x>0$

Trong một giờ, cả hai vòi chảy được: $\dfrac{1}{4\dfrac{4}{9}} = \dfrac{9}{40} $ (bể)

Trong một giờ, vòi 1 chảy được: $\dfrac{1}{x} $ (bể)

Trong một giờ, vòi 2 chảy được $\dfrac{1}{x} \cdot 1\dfrac{1}{4} = \dfrac{5}{4x} $ (bể)

Ta có phương trình:

$\dfrac{1}{x} +\dfrac{5}{4x} = \dfrac{9}{40} $

$\Leftrightarrow \dfrac{9}{4x} = \dfrac{9}{40}$

$\Rightarrow x =10 $ (nhận)

Vậy

  • Nếu chảy một mình, vòi nước thứ nhất sẽ chảy đầy bể trong thời gian là $10$ giờ
  • Nếu chảy một mình, vòi nước thứ hai sẽ chảy đầy bể trong thời gian là $\dfrac{1}{\dfrac{5}{4\cdot 10}} = 8$ giờ

 

2.5. Các dạng toán thực tế

Ví dụ 24: Một khu vườn hình chữ nhật có chu vi là $56$m. Nếu tăng chiều rộng thêm $4$m và giảm chiều dài đi $4$m thì diện tích tăng $8m^2$. Tính chiều dài và chiều rộng khu vườn?

Giải

Gọi $x$ (m) là chiều dài khu vườn hình chữ nhật. Điều kiện: $x > 0$

Chiều rộng hình chữ nhật là: $\dfrac{56}{2} – x = 28-x $

Nếu tăng chiều rộng thêm $4$m và giảm chiều dài đi $4$m thì diện tích tăng $8m^2$, nên ta có phương trình:

$x(28-x)-(x-4)(28-x+4) = 8 $
$\Leftrightarrow 28x-x^2 – (x-4)(32-x) = 8 $
$\Leftrightarrow 28x-x^2 -(-x^2+36x-128)=8 $
$\Leftrightarrow -8x = -120 $
$\Leftrightarrow x= 15 $ (nhận)

Vậy chiều dài của khu vườn hình chữ nhật là $15$ m và chiều rộng khu vườn hình chữ nhật là $(28-15) = 13$ m.

Ví dụ 25: Số học sinh khá của khối 8 bằng $\dfrac{5}{2}$ số học sinh giỏi. Nếu thêm số học sinh giỏi $10$ bạn và số học sinh khá giảm đi $6$ bạn, thì số học sinh khá gấp $2$ lần số học sinh giỏi. Tính số học sinh giỏi khối 8.

Giải

Gọi $x$ là số học sinh giỏi khối 8. Điều kiện: $x$ nguyên dương.

Số học sinh khá khối 8 là: $\dfrac{5}{2}x$ (học sinh)

Nếu thêm $6$ học sinh giỏi và giảm đi $6$ học sinh khá, thì số học sinh khá gấp $2$ lần số học sinh giỏi, nên ta có phương trình:

$ \dfrac{5}{2}x -6 = 2(x+10) $

$ \Leftrightarrow \dfrac{1}{2}x= 26 $

$ \Leftrightarrow x= 52 $ (nhận)

Vậy số học sinh giỏi khối 8 là $52$ học sinh.

 

3. Bài tập tự luyện

Bài 1:  Xe máy đi từ $A$ đến $B$ dài $35$ km Lúc về bằng đường khác dài $42$ km với vận tốc hơn vận tốc lượt đi $6$ km/h. Thời gian về bằng $\dfrac{12}{13}$ thời gian đi. Tìm vận tốc lượt đi và về.

Bài 2: Hùng đi từ nhà sang Hà Nội bằng đoạn đường $48$ km. Lúc về đi tắt ngắn hơn $13$ km. Vận tốc lúc về bằng $\frac{5}{6}$ vận tốc lúc di. Thời gian về ít hơn thời gian đi là $30$ phút. Tính vận tốc lúc đi.

Bài 3: Một người đi xe đạp tu $A$ đến $B$ với vận tốc $12$ km/h. Lúc về người ấy đi với vận tốc $10$ km/h nên thời gian về nhiều hơn thời gian đi $45$ phút. Tính chiều dài quãng đường $A B .$

Bài 4: Xe hơi đi tù $A$ đến $B$ với vận tốc $50$ km/h rồi từ $\mathrm{B}$ về $\mathrm{A}$ với vận tốc giảm bớt $10$ km/h. Cả đi và về mất $5$ giờ $24$ phút. Tính quãng đường $AB$.

Bài 5: Một canô xuôi dòng hết $2$ giờ $30$ phút và ngược dòng sông đó hết $3$ giờ $15$ phút. Tìm vận tốc riêng của canô biết rằng một đám bèo thả trôi trên sông $15$ phút trôi được $750 $ m.

Bài 6: Một canô xuôi dòng hết $42$ km rồi ngược dòng trở lại $20$ km, mất tổng cộng 5 giờ. Biết vận tốc dòng chảy là $2$ km/h. Tìm vận tốc thực của canô.

Bài 7: Lúc $4$ giờ $30$ phút một máy bay cất cánh từ $A$ với vận tốc $500$ km/h. Đến $B$ máy bay nghỉ $30$ phút rồi quay về vị trí $A$ với vận tốc $400$ km/h và tới $A$ lúc $11$ giờ $45$ phút. Tính quãng đường $AB$.

Bài 8: Một người đi xe gắn máy khởi hành lúc $7$ giờ đi tù $A$ đến $B$ với vận tốc $40$ km/h. Đến $B$ nghỉ lại $1$ giờ, người đó quay trở lại $A$ với vận tốc $50$ km/h và đã đến $A$ lúc $17$ giờ. Tính quãng đường $AB$.

Bài 9: Hai ô tô khởi hành cùng một lúc từ hai tỉnh $A$ và $B$ cách nhau $150 \mathrm{~km}$, đi ngược chiều và gặp nhau sau hai giờ. Tìm vận tốc của mỗi ô tô biết rằng nếu vận tốc của ô tô A tăng thêm $15 \mathrm{~km} / \mathrm{h}$ thì bằng $2$ lần vận tốc ô tô $\mathrm{B}$.

Bài 10: Hai xe khởi hành cùng một lúc từ hai địa điểm $A$ và $B$, cách nhau $130 \mathrm{~km}$ và gặp nhau sau $2$ giờ. Tính vận tốc mỗi xe, biết xe đi từ $B$ có vận tốc nhanh hơn xe đi từ $A$ là $5 \mathrm{km} / \mathrm{h}$.

Bài 11: Một xe hơi đi từ $A$ đến $C$, cùng lúc đó tại một địa điểm $B$ nằm trên đoạn đường $A C$ có một ô tô tải cũng đi đến C. Sau $5$ giờ 2 ô tô găp nhau tại $C$. Biết vận tốc ô tô tải bằng $3 / 5$ vận tốc xe hơi. Hỏi xe hơi đi từ $A$ đến $B$ mất bao lâu?

Bài 12: Quãng đường $A B$ dài $270 \mathrm{~km} $. Hai ô tô khởi hành cùng một lúc đi từ $A$ tới $B$ . Ô tô thứ nhất chạy nhanh hơn ô tô thứ hai $12 \mathrm{~km} / \mathrm{h}$ nên đến trước ô tô thứ hai $42$ phút. Tìm vận tốc mỗi xe?

Bài 13: Ô tô dự định đi từ $A$ đến $B$ với vận tốc $50 \mathrm{~km} ừ/h$. Đi được $20$ phút thì gặp đường xấu nên giảm tốc độ còn $40 \mathrm{~km}/h $, vì vậy đến $B$ trễ $18$ phút. Tính quãng đường $AB$.

Bài 14: Một ô tô dự định đi từ $A$ đến $B$ trong một thời gian nhất định. Nếu xe chạy với vận tốc $35 \mathrm{~km} / \mathrm{h}$ thì đến $\mathrm{B}$ trễ $2$ giờ. Nếu xe chạy với vận tốc $50 \mathrm{~km} / \mathrm{h}$ thì đến $\mathrm{B}$ sớm hơn $1$ giờ. Tính quãng đường $\mathrm{AB}$ và thời gian dự định lúc đầu.

Bài 15: Theo kế hoạch hai tổ sản xuất phải làm $900$ sản phẩm. Do cải tiến kĩ thuật nên tổ I vượt mức $15 \%$ và tổ II vượt mức $10 \%$ so với kế hoạch nên hai tổ vượt mức được $110$ sản phẩm. Hỏi mỗi tổ đã sản xuất được bao nhiêu sản phẩm.

Bài 16: Trong tháng giêng hai tổ sản xuất được $720$ chi tiết máy. Trong tháng hai, tổ một vượt mức $15 \%$, tổ hai vượt mức $12 \%$ nên sản xuất được $819$ chi tiết máy. Tính xem trong tháng giêng, mỗi tổ sản xuất được bao nhiêu chi tiết máy.

Bài 17: Mua $36$ bông vừa hồng vừa cẩm chướng hết $10000$ đồng. Biết mỗi bông hồng giá $400$ đồng, mỗi bông cẩm chướng giá $200$ đồng. Tìm số bông mỗi loại.

Bài 18: Một số tự nhiên có hai chữ số. Chữ số hàng đơn vị gấp hai lần chữ số hàng chục. Nếu thêm chữ số 1 xen vào giữa hai chữ số ấy thì được một số mới lớn hơn số ban đầu là $370$. Tìm số ban đầu.

Bài 19: Tìm số tự nhiên có hai chữ số biết rằng $2$ lần chữ số hàng chục lớn hơn chữ số hàng đơn vị là $7$ đơn vị. Nếu viết hai chũ số ấy theo thứ tự ngược lại thì thu được một số mới có hai chũ số. Số mới nhỏ hơn số cũ $274$ số hàng đơn vị và hai lần chữ số hàng chục của một số có hai chũr số là $10$. Nếu đổi chỗ hai chữ số đó cho nhau thì ta thu được số mới nhỏ hơn số cũ là $18$ đơn vị. Tìm số có hai chữ số đó.

Bài 20: Có hai kho thóc. Kho thứ nhất hơn kho thứ hai $100$ tấn. Nếu chuyển từ kho thứ nhất sang kho thứ hai $60$ tấn thì số thóc ở kho thứ nhất bằng $\dfrac{12}{13}$ số thóc ở kho thứ hai. Tính số thóc mỗi kho lúc đầu.

Bài 21: Số lượng dầu ở thùng thứ nhất bằng $2$ lần số lượng dầu ở thùng thứ hai. Nếu bớt ở thùng thứ nhất ra $75$ lít và thêm vào thùng thứ hai $35$ lít thì lượng dầu trong hai thùng bằng nhau. Hỏi lúc đầu mỗi thùng chứa bao nhiêu lít dầu?

Bài 22: Trong một trang sách, nếu bớt đi $4$ dòng và mỗi dòng bớt đi $3$ chữ thì cả trang bớt đi $136$ chữ, nếu tăng thêm $3$ dòng và mỗi dòng thêm $2$ chữ thì cả trang tăng thêm $109$ chữ. Tính số dòng trong trang và số chữ có trong mỗi dòng.

Bài 23: Hai đội công nhân cùng sửa một con đường hết $24$ ngày. Mỗi ngày, phần việc làm được của đội I bằng $\frac{3}{2}$ phần việc đội II làm được. Hỏi nếu làm một mình thì mỗi đội sẽ sửa xong con đường trong bao lâu?

Bài 24: Hai vòi nước cùng chảy vào một bể thì sau $\frac{24}{5}$ giờ đầy bể. Mỗi giờ, lượng nước vòi A chảy bằng $\frac{3}{2}$ lượng nước vòi $B$ chảy. Hỏi nếu mỗi vòi chẩy một mình thì sao bao lâu đầy bể?

Bài 25: Một vòi nước chảy vào bể không có nước. Cùng lúc đó có một vòi chảy từ bể ra ngoài. Mỗi giờ lượng nước chảy ra bằng $\frac{4}{5}$ lượng nước chảy vào. Sau 5 giờ nước trong bể đạt $\frac{1}{8}$ dung tích bể. Hỏi nếu bể không có nước và chỉ mở vòi chảy vào thì sau bao lâu bể đầy.

Bài 26: Bà Năm mua hai món hàng phải trả tổng cộng $480$ nghìn đồng, trong đó đã tính cả $40$ nghìn đồng là thuế giá trị gia tăng (VAT). Biết rằng thuế VAT đối với loại hàng thứ nhất là $10 \%$; thuế VAT đối với loại hàng thứ hai là $8 \% $. Hỏi nếu không kể thuế VAT thì bà Năm phải trả mỗi loại hàng bao nhiêu tiền?

Bài 27: Bà An gửi vào quỹ tiết kiệm $x$ nghìn đồng với lãi suất mỗi tháng là $a \%$ ( $a$ là một số cho trước) và lãi tháng này được tính gộp vào vốn tháng sau.

a) Hãy viết biểu thức biểu thị:

    •  Số tiền lãi sau tháng thứ nhất.
    • Số tiền (cả gốc lẫn lãi) có được sau tháng thứ nhất.
    • Tổng số tiền lãi có được sau tháng thứ hai.

b) Nếu lãi suất là $1,2 \%$ (tức là $a=1,2$ ) và sau $2$ tháng tổng số tiền lãi là 48,288 nghìn đồng, thì lúc đầu bà An đã gửi bao nhiêu tiền tiết kiệm?

Bài 28: Một mảnh vườn hình chữ nhật có chiều dài gấp $3$ lần chiều rộng, nếu tăng mỗi cạnh thêm $5 \mathrm{~m}$ thì diện tích vườn tăng thêm $385 \mathrm{~m}^{2}$. Tính chiều dài và rộng của mảnh vườn.

Bài 29: Để khuyến khích tiết kiệm điện, giá điện sinh hoạt được tính theo kiểu lũy tiến, nghĩa là nếu người sử dụng càng nhiều điện thì giá mỗi số điện $(1 k W h)$ càng tăng lên theo các mức như sau:

  • Mức thứ nhất: Tính cho 100 số điện đầu tiên.
  • Mức thứ hai: Tính cho số điện thứ $101$ đến $150$, mỗi số đắt hơn $150$ nghìn đồng so với mức thứ nhất.
  • Mức thứ ba: Tính cho số điện thứ $151$ đến $200$, mỗi số đắt hơn $200$ nghìn đồng so với mức thứ hai.
  • $v.v \cdots$

Ngoài ra, người sử dụng còn phải trả thêm $10 \%$ thuế giá trị gia tăng (thuế VAT). Tháng vừa qua nhà thầy Thắng dùng hết $165$ số điện và phải trả $975000$ đồng. Hỏi mỗi số điện ở mức giá thứ nhất là bao nhiêu?

Bài 30: Một đội xe cần chuyên chở $120$ tấn hàng. Hôm làm việc có hai xe phải điều đi nơi khác nên mỗi xe còn lại phải chở thêm $16$ tấn. Hỏi đội xe có bao nhiêu xe?

Phương trình đưa về bậc nhất – Phần 2

1. Ví dụ

Ví dụ 1: Giải các phương trình sau:

a/ $\dfrac{x+4}{4}-\dfrac{x-3}{6}=\dfrac{x}{3}$
b/ $\dfrac{x-1}{2}-\dfrac{1-x}{4}=1-\dfrac{2(x-1)}{3}$
c/ $\dfrac{3 x-2}{6}-5=\dfrac{3-2(x+7)}{4}$
d/ $\dfrac{4 x+1}{3}-\dfrac{2}{3}-\dfrac{x-3}{6}=x$

Giải

a/ $\dfrac{x+4}{4}-\dfrac{x-3}{6}=\dfrac{x}{3} $

$ \Leftrightarrow \dfrac{3(x+4)-2(x-3)}{12} =\dfrac{4 x}{12} $

$ \Leftrightarrow 3x+12-2x+6=4x $
$ \Leftrightarrow -3x = -18 $
$ \Leftrightarrow x = 6 $
Vậy $ S= \{ 6 \} $

 

b/ $\dfrac{x-1}{2}-\dfrac{1-x}{4}=1-\dfrac{2(x-1)}{3}$

$ \Leftrightarrow (x-1) \left (\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{2}{3} \right)=1 $

$ \Leftrightarrow \dfrac{17}{12}(x-1)=1 $

$ \Leftrightarrow x-1 = \dfrac{12}{17} $

$ \Leftrightarrow x= \dfrac{12}{17}+1 = \dfrac{29}{17} $

Vậy $ S = \left \{ \dfrac{29}{17} \right \} $

 

c/ $\dfrac{3 x-2}{6}-5=\dfrac{3-2(x+7)}{4}$

$ \Leftrightarrow \dfrac{2(3x-2)-60}{12}= \dfrac{3[3-2x(x+7)]}{12} $

$ \Leftrightarrow 6x-4 -60 = 9-6x-42 $
$ \Leftrightarrow 12x = 31 $
$\Leftrightarrow x= \dfrac{31}{12} $

Vậy $ S= \left \{ \dfrac{31}{12} \right \} $

 

d/ $\dfrac{4 x+1}{3}-\dfrac{2}{3}-\dfrac{x-3}{6}=x$

$ \Leftrightarrow \dfrac{2(4x+1)-2 \cdot 2- (x-3)}{6}= \dfrac{6x}{6} $

$ \Leftrightarrow 8x+2-4 -x +3 = 6x $
$ \Leftrightarrow x = -1 $
Vậy $ S = \{ -1 \} $

Ví dụ 2: Giải các phương trình sau:

a/ $\dfrac{x}{2000}+\dfrac{x+1}{2001}+\dfrac{x+2}{2002}+\dfrac{x+3}{2003}=4$

b/ $\dfrac{59-x}{41}+\dfrac{57-x}{43}+\dfrac{55-x}{45}+d\dfrac{53-x}{47}+\dfrac{51-x}{49}=-5$

c/ $\dfrac{x+14}{86}+\dfrac{x+15}{85}+\dfrac{x+16}{84}+\dfrac{x+17}{83}+\dfrac{x+116}{4}=0$

d/ $\dfrac{x-90}{10}+\dfrac{x-76}{12}+\dfrac{x-58}{14}+\dfrac{x-36}{16}+\dfrac{x-15}{17}=15$

Giải

a/ $\dfrac{x}{2000}+\dfrac{x+1}{2001}+\dfrac{x+2}{2002}+\dfrac{x+3}{2003}=4$

$ \Leftrightarrow \left (\dfrac{x}{2000}-1 \right) + \left (\dfrac{x+1}{2001}-1 \right) + \left (\dfrac{x+2}{2002}-1 \right)+\left (\dfrac{x+3}{2003}-1 \right) =0 $

$ \Leftrightarrow \dfrac{x-2000}{2000}+\dfrac{x-2000}{2001} + \dfrac{x-2000}{2002}+\dfrac{x-2000}{2003} = 0 $

$ \Leftrightarrow (x-2000) \left(\dfrac{1}{2000}+\dfrac{1}{2001}+\dfrac{1}{2002}+\dfrac{1}{2003} \right) = 0 $

$ \Leftrightarrow x-2000 = 0 $
$\Leftrightarrow x = 2000$
Vậy $ S = \{ 2000 \} $

 

b/ $\dfrac{59-x}{41}+\dfrac{57-x}{43}+\dfrac{55-x}{45}+\dfrac{53-x}{47}+\dfrac{51-x}{49}=-5$

$ \Leftrightarrow \left(\dfrac{59-x}{41}+1 \right) +\left(\dfrac{57-x}{43}+1 \right)+\left(\dfrac{55-x}{45}+1 \right) +\left (\dfrac{53-x}{47}+1 \right) +\left(\dfrac{51-x}{49}+1 \right) = 0$

$ \Leftrightarrow \dfrac{100-x}{41}+\dfrac{100-x}{43}+\dfrac{100-x}{45}+\dfrac{100-x}{47}+\dfrac{1900-x}{49} = 0 $

$\Leftrightarrow (100-x) \left(\dfrac{1}{41}+\dfrac{1}{43}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{49} \right) = 0 $

$\Leftrightarrow 100 – x = 0 $
$\Leftrightarrow x = 100 $
Vậy $ S = \{ 100 \} $

c/ $\dfrac{x+14}{86}+\dfrac{x+15}{85}+\dfrac{x+16}{84}+\dfrac{x+17}{83}+\dfrac{x+116}{4}=0$

$\Leftrightarrow \left(\dfrac{x+14}{86}+1 \right)+\left(\dfrac{x+15}{85}+1 \right)+\left(\dfrac{x+16}{84}+1 \right)+\left(\dfrac{x+17}{83}+1 \right)+\left(\dfrac{x+116}{4}-4 \right)=0 $

$\Leftrightarrow \dfrac{x+100}{86}+\dfrac{x+100}{85}+\dfrac{x+100}{84}+\dfrac{x+100}{83}+\dfrac{x+100}{4} = 0 $

$\Leftrightarrow (x+100) \left(\dfrac{1}{86}+\dfrac{1}{85}+\dfrac{1}{84}+\dfrac{1}{83}+\dfrac{1}{4} \right) = 0 $

$\Leftrightarrow (x+100) = 0 $
$\Leftrightarrow x = – 100 $
Vậy $ S = \{ -100 \} $

 

d/ $\dfrac{x-90}{10}+\dfrac{x-76}{12}+\dfrac{x-58}{14}+\dfrac{x-36}{16}+\dfrac{x-15}{17}=15$

$\Leftrightarrow \left(\dfrac{x-90}{10}-1 \right)+\left(\dfrac{x-76}{12}-2 \right)+\left(\dfrac{x-58}{14}-3 \right)+\left(\dfrac{x-36}{16}-4 \right)+\left(\dfrac{x-15}{17}-5 \right) =0 $

$\Leftrightarrow \dfrac{x-100}{10}+\dfrac{x-100}{12}+\dfrac{x-100}{14}+\dfrac{x-100}{16}+\dfrac{x-100}{17} = 0 $

$\Leftrightarrow (x-100) \left(\dfrac{1}{86}+\dfrac{1}{10}+\dfrac{1}{12}+\dfrac{1}{14}+\dfrac{1}{16}+ \dfrac{1}{17} \right) = 0 $

$\Leftrightarrow (x-100) = 0 $
$\Leftrightarrow x = 100 $
Vậy $ S = \{ 100 \} $

2. Bài tập tự luyện

Bài 1: Giải các phương trình sau:

a/ $ \dfrac{x-2}{4}=\dfrac{5x+7}{8} $

b/ $ \dfrac{3x-2}{5}=\dfrac{4-7x}{3} $

c/ $ 1+ \dfrac{x}{9}= \dfrac{4}{3} $

d/ $ \dfrac{2x}{3}-\dfrac{2x-5}{6} = \dfrac{1}{2} $

e/ $ \dfrac{5x+2}{6}-x=1- \dfrac{x+2}{3} $

f/ $ 2x-\dfrac{1}{2}=\dfrac{2x+1}{4}-\dfrac{1-2x}{8} $

Bài 2: Giải các phương trình sau:

a/ $ \dfrac{x+3}{4}+2x-1 = \dfrac{x}{2} -\dfrac{x+2}{3} $

b/ $ \dfrac{5x-1}{10}+\dfrac{2x+3}{6}=\dfrac{x-8}{15}-\dfrac{x}{30} $

c/ $ \dfrac{(3x-1)(x+1)}{2}-\dfrac{3x^2}{2} = \dfrac{x-2}{2} $

d/ $ \dfrac{2(x+5)}{3}+\dfrac{x+12}{2}-\dfrac{5(x-2)}{6}=\dfrac{x}{3}+11 $

e/ $ x-\dfrac{2x-5}{5}+\dfrac{x+8}{8}=7+\dfrac{x-1}{3} $

f/ $ \dfrac{5x+2}{6}-\dfrac{8x-1}{3}= \dfrac{4x+2}{5}-5 $

Bài 3: Giải các hệ phương trình sau:

a/ $ \dfrac{x-2}{3}+\dfrac{x-2}{4}-\dfrac{x-2}{5}-\dfrac{x-2}{6}=0 $

b/ $ \dfrac{x-1}{2}+\dfrac{x-1}{3}+\dfrac{x-3}{4}= 6 $

c/ $ \dfrac{x-10}{1994}+\dfrac{x-8}{1996}+\dfrac{x-6}{1998}+\dfrac{x-4}{2000}+\dfrac{x-2}{2002} = 5 $

d/ $ \dfrac{x-85}{15}+\dfrac{x-74}{13}+\dfrac{x-67}{11}+\dfrac{x-64}{9} = 10 $
e/ $ \dfrac{x-2002}{5}+\dfrac{x-1992}{10}+\dfrac{x-1982}{15}+\dfrac{x-1972}{20} + \dfrac{x-1962}{25}= 10 $

f/ $ \dfrac{x+50}{15}+\dfrac{x+31}{17}+\dfrac{x+8}{19}+ \dfrac{x-19}{21}+\dfrac{x-50}{23}= – 15 $

Phương trình đưa về bậc nhất – Phần 1

1. Ví dụ

Ví dụ 1: Giải các phương trình sau:

a/ $(x-1)^{2}=2\left(x^{2}-1\right)$
b/ $2(x+2)^{2}-x^{3}-8=0$
c/ $(x-1)\left(x^{2}+5 x-2\right)-x^{3}+1=0$
d/ $(x-3)^{2}=(2 x+7)^{2}$

Giải

a/ $ (x-1)^{2}=2\left(x^{2}-1\right) $
$\Leftrightarrow (x-1)^{2}-2\left(x^{2}-1\right) = 0 $
$\Leftrightarrow (x-1)[x-1-2(x+1)] = 0 $
$\Leftrightarrow (x-1)(-x-3) = 0 $
$\Leftrightarrow \left[
\begin{array}{l}
x-1=0 \\
-x-3=0
\end{array} \right.
\Leftrightarrow \left[
\begin{array}{l}
x = 1 \\
x=-3
\end{array} \right. $
Vậy $ S = \{ 1; -3 \} $

b/ $2(x+2)^{2}-x^{3}-8=0 $
$\Leftrightarrow 2(x+2)^2 -(x+2)(x^2-2x+4) = 0 $
$\Leftrightarrow (x+2)[2(x+2)-(x^2-2x+4)] = 0 $
$\Leftrightarrow (x+2)(-x^2+4x) = 0 $
$\Leftrightarrow -x(x+2)(x-4) = 0 $
$\Leftrightarrow \left[
\begin{array}{l}
x = 0 \\
x+2=0 \\
x-4 = 0
\end{array} \right.
\Leftrightarrow \left[
\begin{array}{l}
x = 0 \\
x=-2 \\
x=4
\end{array} \right. $
Vậy $ S = \{ 0; -2; 4 \} $

c/ $(x-1)\left(x^{2}+5 x-2\right)-x^{3}+1=0 $
$ \Leftrightarrow (x-1)(x^2+5x-2)-(x-1)(x^2+x+1) = 0 $
$\Leftrightarrow (x-1)[x^2+5x-2-(x^2+x+1)]= 0 $
$\Leftrightarrow (x-1)(4x-3) = 0 $
$\Leftrightarrow \left[
\begin{array}{l}
x-1=0 \\
4x-3 = 0
\end{array} \right.
\Leftrightarrow \left[
\begin{array}{l}
x=1 \\
x=\dfrac{3}{4}
\end{array} \right. $
Vậy $ S = \left \{ 1; \dfrac{3}{4} \right \} $

d/ $(x-3)^{2}=(2 x+7)^{2}$
$ \Leftrightarrow (x-3)^2 – (2x+7)^2 = 0 $
$\Leftrightarrow [(x-3)+(2x+7)][(x-3)-(2x+7)] = 0 $
$\Leftrightarrow (3x+4)(-x-10) = 0 $
$\Leftrightarrow \left[
\begin{array}{l}
3x+4 =0 \\
-x-10= 0
\end{array} \right.
\Leftrightarrow \left[
\begin{array}{l}
x= \dfrac{-4}{3} \\
x= -10
\end{array} \right. $
Vậy $ S = \left \{ \dfrac{-4}{3}; -10 \right \} $

Ví dụ 2: Giải các phương trình sau:

a/ $(2 x-5)^{2}-(x+2)^{2}=0$
b/ $\left(3 x^{2}+10 x-8\right)^{2}=\left(5 x^{2}-2 x+10\right)^{2}$
c/ $\left(x^{2}-2 x+1\right)-4=0$
d/ $\left(x^{2}-9\right)^{2}-9(x-3)^{2}=0$

Giải

a/ $(2 x-5)^{2}-(x+2)^{2}=0 $
$ \Leftrightarrow [(2x-5)+(x+2)][(2x-5)-(x+2)] = 0 $
$\Leftrightarrow (3x-3)(x-7) = 0 $
$\Leftrightarrow \left[
\begin{array}{l}
3x-3=0 \\
x-7=0
\end{array} \right.
\Leftrightarrow \left[
\begin{array}{l}
x=1 \\
x=7
\end{array} \right. $
Vậy $ S = \left \{ 1; 7 \right \} $

b/ $\left(3 x^{2}+10 x-8\right)^{2}=\left(5 x^{2}-2 x+10\right)^{2}$
$\Leftrightarrow \left(3 x^{2}+10 x-8\right)^{2}-\left(5 x^{2}-2 x+10\right)^{2} = 0 $
$ \Leftrightarrow [(3x^2+10x-8)+(5x^2-2x+10)][(3x^2+10x-8)-(5x^2-2x+10)] = 0 $
$\Leftrightarrow (8x^2+8x+2)(-2x^2+12x-18)= 0 $
$\Leftrightarrow -4(2x+1)^2(x-3)^2 = 0 $
$\Leftrightarrow \left[
\begin{array}{l}
2x+1 = 0 \\
x-3=0
\end{array} \right.
\Leftrightarrow \left[
\begin{array}{l}
x=\dfrac{-1}{2} \\
x=3
\end{array} \right. $
Vậy $ S = \left \{ \dfrac{-1}{2}; 3 \right \} $

c/ $\left(x^{2}-2 x+1\right)-4=0 $
$ \Leftrightarrow (x-1)^2-2^2 = 0 $
$\Leftrightarrow (x-1+2)(x-1-2) = 0 $
$\Leftrightarrow (x+1)(x-3) = 0 $
$\Leftrightarrow \left[
\begin{array}{l}
x+1 =0 \\
x-3=0
\end{array} \right.
\Leftrightarrow \left[
\begin{array}{l}
x=-1 \\
x=3
\end{array} \right. $
Vậy $ S = \left \{ -1; 3 \right \} $

d/ $\left(x^{2}-9\right)^{2}-9(x-3)^{2}=0$
$\Leftrightarrow [(x^2-9)+3(x-3)][(x^2-9)-3(x-3)] = 0 $
$\Leftrightarrow (x^2+3x-18)(x^2-3x) =0 $
$\Leftrightarrow (x+6)(x-3)x(x-3) = 0 $
$\Leftrightarrow x(x+6)(x-3)^2 = 0 $
$\Leftrightarrow \left[
\begin{array}{l}
x=0 \\
x+6=0\\
x-3=0
\end{array} \right.
\Leftrightarrow \left[
\begin{array}{l}
x=0 \\
x=-6 \\
x=3
\end{array} \right. $
Vậy $ S = \left \{ 0; -6; 3 \right \} $

Ví dụ 3: Giải các phương trình sau:

a/ $x^{2}-3 x+2=0$
b/ $x^{2}+7 x+12=0$
c/ $x^{2}-3 x-10=0$
d/ $x^{3}-3 x^{2}-3 x+9=0$

Giải

a/ $x^{2}-3 x+2=0$
$ \Leftrightarrow x^2-2x-x+2 =0$
$\Leftrightarrow x(x-2)-(x-2) = 0 $
$\Leftrightarrow (x-2)(x-1) = 0$
$\Leftrightarrow \left[
\begin{array}{l}
x-2 = 0 \\
x-1=0
\end{array} \right.
\Leftrightarrow \left[
\begin{array}{l}
x=2 \\
x=1
\end{array} \right. $
Vậy $ S = \left \{ 2; 1 \right \} $

b/ $x^{2}+7 x+12=0$
$\Leftrightarrow x^2+3x+4x+12 = 0 $
$\Leftrightarrow x(x+3)+4(x+3) = 0$
$\Leftrightarrow (x+3)(x+4) = 0 $
$\Leftrightarrow \left[
\begin{array}{l}
x+3=0\\
x+4=0
\end{array} \right.
\Leftrightarrow \left[
\begin{array}{l}
x=-3 \\
x=-4
\end{array} \right. $
Vậy $ S = \left \{ -3; -4 \right \} $

c/ $x^{2}-3 x-10=0$
$\Leftrightarrow x^2-5x+2x-10 = 0 $
$\Leftrightarrow x(x-5)+2(x-5)=0 $
$\Leftrightarrow (x-5)(x+2)=0 $
$\Leftrightarrow \left[
\begin{array}{l}
x-5=0\\
x+2=0
\end{array} \right.
\Leftrightarrow \left[
\begin{array}{l}
x=5 \\
x=-2
\end{array} \right. $
Vậy $ S = \left \{ -2; 5 \right \} $

d/ $x^{3}-3 x^{2}-3 x+9=0$
$\Leftrightarrow x^2(x-3)-3(x-3) =0 $
$\Leftrightarrow (x-3)(x^2-3) = 0 $
$\Leftrightarrow (x-3)(x+\sqrt{3})(x-\sqrt{3}) = 0 $
$\Leftrightarrow \left[
\begin{array}{l}
x-3=0\\
x+\sqrt{3}=0\\
x-\sqrt{3}=0
\end{array} \right.
\Leftrightarrow \left[
\begin{array}{l}
x=3 \\
x=-\sqrt{3} \\
x=\sqrt{3}
\end{array} \right. $
Vậy $ S = \left \{ 3; -\sqrt{3}; \sqrt{3} \right \} $

2. Bài tập tự luyện

Bài 1: Giải các phương trình sau:

a/ $9(x-3)^{2}=4(x+2)^{2}$
b/ $\left(4 x^{2}-3 x-18\right)^{2}=\left(4 x^{2}+3 x\right)^{2}$
c/ $(2 x-1)^{2}=49$
d/ $(5 x-3)^{2}-(4 x-7)^{2}=0$
e/ $(2 x+7)^{2}=9(x+2)^{2}$
f/ $4(2 x+7)^{2}=9(x+3)^{2}$

Bài 2: Giải các phương trình sau:

a/ $3 x^{2}+2 x-1=0$
b/ $x^{2}-5 x+6=0$
c/ $x^{2}-3 x+2=0$
d/ $2 x^{2}-6 x+1=0$
e/ $4 x^{2}-12 x+5=0$
f/ $2 x^{2}+5 x+3=0$

Bài 3: Giải các phương trình sau:

a/ $3 x^{2}+12 x-66=0$
b/ $9 x^{2}-30 x+25=0$
c/ $x^{2}+3 x-10=0$
d/ $3 x^{2}-7 x+1=0$
e/ $3 x^{2}-7 x+8=0$
f/ $4 x^{2}-12 x+9=0$

Bài 4: Giải các phương trình sau:

a/ $2 x^{2}-6 x+1=0$
b/ $3 x^{2}+4 x-4=0$
c/ $x^{3}-8 x^{2}+21 x-18=0$
d/ $x^{4}+x^{2}+6 x-8=0$
e/ $ x^4 +2x^3-4x^2-5x-6 = 0 $
f/ $x^4-10x^3+15x^2-50x+24 = 0 $

Phương trình tích

1. Kiến thức cần nhớ

Tính chất:  $ A(x) \cdot B(x) = 0 \Leftrightarrow \left[
\begin{array}{l}
A(x) = 0 \hfill \cr
B(x) = 0
\end{array} \right. $

Phương pháp: Các bước giải phương trình tích như sau:

  • Bước 1: Đưa phương trình đã cho về dạng tổng quát $ A(x) \cdot B(x) = 0 $ bằng cách chuyển tất cả các hạng tử của phương trình về vế trái, khi đó vế phải bằng $0$. Phân tích đa thức ở vế trái thành nhân tử.
  • Bước 2: Giải phương trình và kết luận.

2. Ví dụ

Ví dụ 1: Giải các phương trình sau:

a/ $ (4x+8)(3x-6) = 0 $
b/ $ (x-2)(4x-12) = 0 $

Giải

a/ $ (4x+8)(3x-6) = 0 $
$\Leftrightarrow \left[
\begin{array}{l}
4x+8 = 0 \\
3x-6 = 0
\end{array} \right.  \Leftrightarrow \left[
\begin{array}{l}
x = -2 \\
x = 2
\end{array} \right. $
Vậy $ S= \{-2;  2\} $

b/ $ (x-2)(4x-12) = 0 $
$ \Leftrightarrow \left[
\begin{array}{l}
x-2 = 0 \\
4x-12 = 0
\end{array} \right.  \Leftrightarrow \left[
\begin{array}{l}
x = 2 \\
x= 3
\end{array} \right. $
Vậy $ S= \{2; 3 \} $

Ví dụ 2: Giải các phương trình sau:

a/ $ (2x-6)(x+21)(12-3x) = 0 $
b/ $ (2x+7)(x-5)(5x-1) = 0 $

Giải

a/ $ (2x-6)(x+21)(12-3x) = 0 $
$ \Leftrightarrow \left[
\begin{array}{l}
2x-6 = 0 \\
x+21 = 0 \\
12-3x = 0
\end{array} \right.  \Leftrightarrow \left[
\begin{array}{l}
x = 3 \\
x=  -21 \\
x = 4
\end{array} \right. $
Vậy $ S= \{3;  -21;  4 \} $

b/ $ (2x+7)(x-5)(5x-1) = 0 $
$ \Leftrightarrow \left[
\begin{array}{l}
2x+7=0 \\
x-5=0 \\
5x-1 = 0
\end{array} \right.
\Leftrightarrow \left[
\begin{array}{l}
x = \dfrac{-7}{2} \\
x=5 \\
x=\dfrac{1}{5}
\end{array} \right. $
Vậy $ S= \left \{\dfrac{-7}{2}; 5 ; \dfrac{1}{5} \right \} $

3. Bài tập tự luyện

Bài 1: Giải các phương trình sau:

a/ $ (x+2)(x-3) = 0 $
b/ $ (2x+1)(2-3x) = 0 $
c/ $ (5x-4)(4x+6) = 0 $
d/ $(4 x+2)\left(x^{2}+1\right)=0$
e/ $(2 x+7)(x-5)(5 x+1)=0$
f/ $(x-1)(2 x+7)\left(x^{2}+2\right)=0$

Bài 2: Giải các phương trình sau:

a/ $(4 x-10)(24+5 x)=0$
b/ $ (x-5)(3-2x)(3x+4) = 0 $
c/ $ (2x+1)(x^2+2) = 0 $
d/ $ 2x(x-3)+5(x-3) = 0 $
e/ $ (x^2-4)(5x-4)(x^3+1) =0 $
f/ $(3 x-2)(4 x+5)=0$

Bài 3: Giải các phương trình sau:

a/ $(5 x+2)(x-7)=0$
b/ $15(x+9)(x-3)(x+21)=0$
c/ $\left(x^{2}+1\right)\left(x^{2}-4 x+4\right)=0$
d/ $(3 x-2)\left[\dfrac{2(x+3)}{7}-\dfrac{4 x-3}{5}\right]=0$

Phương trình bậc nhất

1. Phương trình một ẩn

Định nghĩa: Một phương trình với ẩn $x$ có dạng $A(x)=B(x)$, trong đó vế trái là $A(x)$ và vế phải là $B(x)$ là hai biểu thức của cùng một biến.

Ví dụ: $ 2(x+1)+6 = 4x$ là phương trình ẩn $x$.

Một phương trình có thể có một nghiệm, hai nghiệm, ba nghiệm,… nhưng cũng có thể không có nghiệm nào hoặc có vô số nghiệm. Phương trình không có nghiệm nào được gọi là phương trình vô nghiệm.

2. Phương trình tương đương

Định nghĩa: Hai phương trình tương đương là hai phương trình có cùng một tập nghiệm.

Ví dụ: $ x+3 = 0 \Leftrightarrow x=-3$

3. Phương trình bậc nhất một ẩn

Định nghĩa: Phương trình có dạng $ax+b=0$, với $a$ và $b$ là hai số đã cho và $a \ne 0$, được gọi là phương trình bậc nhất một ẩn.

Ví dụ: $2x+1=0$ là phương trình bậc nhất một ẩn.

4. Hai quy tắc biến đổi phương trình

  • Quy tắc chuyển vế: Trong một phương trình ta có thể chuyển một hạng tử từ vế này sang vế kia và đổi dấu hạng tử đó.
  • Quy tắc nhân với một số:
    • Trong cùng một phương trình, ta có thể nhân cả hai vế với cùng một số khác $0$.
    • Trong cùng một phương trình, ta có thể chia cả hai vế với cùng một số khác $0$.

5. Cách giải phương trình bậc nhất một ẩn $ax+b=0$
Phương trình bậc nhất một ẩn $ax+b=0$, được giải theo các bước sau:

  • Chuyển vế $ax=-b$
  • Chia hai vế cho $a$, ta được: $x=- \dfrac{b}{a}$
  • Kết luận nghiệm $S= \left \{ \dfrac{-b}{a} \right \}$

Tổng quát phương trình $ax+b=0$ $(a \ne 0)$ được giải theo các bước sau:

$ ax+b=0 $
$ \Leftrightarrow ax=-b $
$\Leftrightarrow a= \dfrac{-b}{a} $

Vậy $S= \left \{ \dfrac{-b}{a} \right \}$

6. Ví dụ

Ví dụ 1: Giải các phương trình sau:

a) $2x-1 =1$
b) $x-7 = 4 $
c) $7x-35=0$
d) $ 4x-x -18=0$

Giải

a) $2x-1 =1  \Leftrightarrow 2x=2  \Leftrightarrow x=1 $6
Vậy $ S= \{1 \}$

b) $x-7 = 4  \Leftrightarrow x=11 $
Vậy $ S= \{11 \}$

c) $7x-35=0  \Leftrightarrow 7x = 35  \Leftrightarrow x=5 $
Vậy $ S= \{5 \}$

d) $4x-x -18=0  \Leftrightarrow 3x = 18  \Leftrightarrow x = 6$
Vậy $ S= \{6 \}$

Ví dụ 2: Giải các phương trình sau:

a) $x-6=8-x$
b) $3x-2=2x-3$
c) $7-2x = 22-3x$
d) $x-12-4x=25+3x-1$
e) $2x-1+2(2+x)=1$
f) $2(x+3)=2(4-x)+14$

Giải

a) $x-6=8-x$
$\Leftrightarrow 2x=14$
$\Leftrightarrow x= 7 $
Vậy $ S = \{ 7 \}$

b) $3x-2=2x-3$
$\Leftrightarrow x = -1 $
Vậy $ S = \{ -1 \}$

c) $7-2x = 22-3x$
$\Leftrightarrow x = 15 $
Vậy $ S = \{ 15 \}$

d) $x-12-4x=25+3x-1$
$\Leftrightarrow -6x = 36$
$\Leftrightarrow x= -6 $
Vậy $ S = \{ -6 \}$

e) $2x-1+2(2+x)=-1$
$\Leftrightarrow 2x-1 +4+2x = 1$
$\Leftrightarrow \ 4x = -4$
$\Leftrightarrow x = -1 $
Vậy $ S = \{ -1 \}$

f) $2(x+3)=2(4-x)+14$
$\Leftrightarrow 2x+6 = 8-2x +14$
$\Leftrightarrow 4x = 16$
$\Leftrightarrow x= 4 $
Vậy $ S = \{ 4 \}$

Ví dụ 3:

a) Tìm giá trị của $m$ sao cho phương trình $2x-2m=x+9$ nhận $x=-5$ là nghiệm.
b) Tìm giá trị của $m$ sao cho phương trình $4x+m^2=24 $ nhận $x=5$ là nghiệm.
c) Giải và biện luận nghiệm của phương trình $2(mx+5)+4(x+m)=m$ theo $m$.

Giải

a) Tìm giá trị của $m$ sao cho phương trình $2x-2m=x+9$ nhận $x=-5$ là nghiệm.

Thay $x=-5$ vào phương trình, ta được:
$2(-5) -2m = -5 +9 $
$\Leftrightarrow -2m = 14$
$\Leftrightarrow m = -7 $
Vậy $m=-7$ là giá trị cần tìm.

b) Tìm giá trị của $m$ sao cho phương trình $4x+m^2=24$ nhận $x=5$ là nghiệm.

Thay $x=5$ vào phương trình, ta được:
$ 4 \cdot 5 +m^2 = 24$
$\Leftrightarrow m^2 = 4$
$\Leftrightarrow m = \pm 2 $
Vậy $m=2$ và $m=-2$ là giá trị cần tìm.

c) Giải và biện luận nghiệm của phương trình $2(mx+5)+4(x+m)=m$ theo $m$.

Ta có:
$2(mx+5)+4 (x+m)=m $
$\Leftrightarrow 2mx+10 +4x+4m = m $
$\Leftrightarrow (2m+4)x=-3m -10 $

Biện luận:

  • Nếu $2m+4 \ne 0 \Leftrightarrow m \ne -2 \Rightarrow $ Phương trình có nghiệm $ x=\dfrac{-3m-10}{2m+4}$
  • Nếu $2m+4 =0 \Leftrightarrow m = -2 \Rightarrow $ Phương trình có dạng $ 0x = -4 \Rightarrow $ Phương trình vô nghiệm.

Kết luận:

  • Với $m \ne -2$, phương trình có tập nghiệm $S=\left \{ \dfrac{-3m-10}{2m+4} \right \}$
  • Với $m=-2$, phương trình vô nghiệm hay $S = \{ \varnothing \}$

 

7. Bài tập tự luyện

Bài 1: Giải các phương trình sau:

a) $ 12-6x = 0$
b) $ 3x+3=-3$
c) $ 4x+6 = 14$
d) $ x-7x -18 = 6$
e) $ 3x+ 9 – 6x =27 $
f) $ 2x+x+120 = -3 $

Đ/A:
a) $x = 2$
b) $ =-2$
c) $ x= 2$
d) $x=-4 $
e) $ x= – 6$
f) $x=-41$

Bài 2: Giải các phương trình sau:

a) $x – 5 = 3 – x $
b) $ 7 – 3 x = 9 – x $
c) $ \frac{-5}{9} x + 1 = \frac{2}{3} x – 10 $
d) $ 2 (x + 1) = 6 – 2 x $
e) $ 11 – 8 x – 3 = 5 x – 20 + x $
f) $ 3 – 4 y + 24 + 6 y = y + 27 + 3 y $
g) $ x + 2 x + 3 x = 3 x + 9 $
h) $ 4 – 2 x + 15 = – (9 x + 1 – 2 x) $

Đ/A:
a) $ x = 4 $
b) $ x = -1 $
c) $ x = 9 $
d) $ x = 1 $
e) $ x = 2 $
f) $ x = 0 $
g) $ x = 3 $
h) $ x = -4 $

Bài 3: 

a) Tìm giá trị của $m$, biết rằng phương trình $5x+2m=22 $ nhận $ x = 2$ làm nghiệm.
b) Tìm $m$ để phương trình $(m^2-m)x=2x+m^2-1$ có nghiệm duy nhất.
c) Tìm $m$ để phương trình $m(4mx-3m+2)=x(m+3)$ có nghiệm duy nhất.
d) Tìm $m$ để phương trình $ m^2(x-m)=x-3m+2$ vô nghiệm.

Đ/A:
a) $ m = 6 $
b) $ m \ne -1 $ và $ne m \ne 2 $. Tập nghiệm $ S = \left \{ \dfrac{m-1}{m-2} \right \} $
c) $ m \ne 1 $ và $ m \ne \dfrac{-3}{4} $. Tập nghiệm $ S = \left \{ \dfrac{3m^2-2m}{4m^2-m-3} \right \} $
d) $ m = \pm 1 $

Bài 4: Giải và biện luận phương trình sau, với $m$ là tham số:

a) $ (2m-4)x+2-m=0$
b) $ (m+1)x=(3m^2-1)x+m-1$

Đ/A:
a)
Nếu $m = 2$ thì phương trình có vô số nghiệm
Nếu $ m \ne 2 $ thì phương trình có tập nghiệm $ S = \left \{\dfrac{1}{2} \right \} $
b)
Nếu $ m = 1 $, phương trình vô số nghiệm
Nếu $ m = \dfrac{-2}{3} $, phương trình vô nghiệm
Nếu $ m \ne 1 $ và $ m \ne \dfrac{-2}{3} $, phương trình có nghiệm duy nhất với tập nghiệm $ S = \left \{ \dfrac{-1}{3m+2} \right \} $

Phương trình vô tỉ – Phương pháp đặt ẩn phụ

1. Phương pháp đặt ẩn phụ

Phương pháp đặt ẩn phụ sử dụng khi phương trình chứa một biểu thức lặp đi lặp lại nhiều lần, việc đặt ẩn phụ đưa phương trình về một phương trình đơn giản hơn, hoặc là đưa về dạng phương trình đã biết cách giải. Có rất nhiều dạng đặt ẩn phụ với nhiều dạng toán khác nhau, ở đây chúng tôi chỉ trình bày những dạng bài tập phù hợp nhất với chương trình trung học cơ sở, không đi sâu quá vào các ẩn phụ mẹo mực khác.

Chú ý. Khi đặt ẩn phụ thì nhớ đặt điều kiện cho ẩn phụ để giảm được các trường hợp cần xét.

Ví dụ 1: Giải phương trình $\sqrt{x^2-x+3}-\sqrt{-x^2+x+2}=1$.

Giải

Đặt $t=\sqrt{-x^2+x+2}, t \ge 0$. Khi đó $t^2=-x^2+x+2 \Leftrightarrow x^2-x+3=5-t^2.$

Phương trình trở thành

$ \sqrt{5-t^2}-t=1$

$\Leftrightarrow \sqrt{5-t^2}=t+1$

$\Leftrightarrow 5-t^2 = (t+1)^2$

$\Leftrightarrow t^2+t-2=0$

$\Leftrightarrow t=1 \ \text{hoặc} \ t=-2(l)$

$\Leftrightarrow \sqrt{-x^2+x+2}=1$

$\Leftrightarrow x^2-x-1=0$

$\Leftrightarrow x=\dfrac{1 \pm \sqrt{5}}{2}.$

Vậy phương trình có nghiệm $x=\dfrac{1 \pm \sqrt{5}}{2}.$

Ví dụ 2: Giải phương trình $2x^2-6x+7=5\sqrt{x^2-3x+5}$.

Giải

Đặt $t=\sqrt{x^2-3x+5}, t \ge 0$.

Khi đó phương trình trở thành

$2t^2-3=5t$

$\Leftrightarrow 2t^2-5t-3=0$

$\Leftrightarrow t=3 \ \text{hoặc}\   t=-\dfrac{1}{2}(l)$

$\Leftrightarrow \sqrt{x^2-3x+5}=3$

$\Leftrightarrow x^2-3x-4=0$

$\Leftrightarrow x=-1 \ \text{hoặc} \ x=4. $

Vậy phương trình có hai nghiệm $x=-1$ hoặc $x=4.$

Ví dụ 3: Giải phương trình $(x-1)^2+2(x+1)\sqrt{\dfrac{x-3}{x+1}}=12$.

Giải

Điều kiện $\dfrac{x-3}{x+1} \ge 0 \Leftrightarrow x<-1$ hoặc $x \ge 3.$

Khi đó phương trình tương đương

$(x^2-2x-3)+2(x+1)\sqrt{\dfrac{x-3}{x+1}}=8$

$\Leftrightarrow (x+1)(x-3)+2(x+1)\sqrt{\dfrac{x-3}{x+1}}=8.$

Đặt $t=(x+1) \sqrt{\dfrac{x-3}{x+1}} \Rightarrow t^2=(x+1)(x-3)$.

Khi đó phương trình trở thành $t^2+2t-8=0 \Leftrightarrow t=2 \ \text{hoặc} \ t=-4.$

Trường hợp $t=2 \Leftrightarrow (x+1)\sqrt{\dfrac{x-3}{x+1}}=2$

$\Leftrightarrow \begin{cases} x \ge -1\\ (x+1)(x-3) =4 \end{cases}$

$\Leftrightarrow \begin{cases} x \ge -1\\ x^2-2x-7=0 \end{cases}$

$\Leftrightarrow x=1+2\sqrt{2}.$

Trường hợp $t=-4 \Leftrightarrow (x+1)\sqrt{\dfrac{x-3}{x+1}}=-4$

$\Leftrightarrow \begin{cases} x \le -1\\ (x+1)(x-3) =16 \end{cases}$

$\Leftrightarrow \begin{cases} x \le -1\\ x^2-2x-19=0 \end{cases}$

$\Leftrightarrow x=1-2\sqrt{5}.$

Thử lại ta nhận $x=1+2\sqrt{2}$ và $x=1-2\sqrt{5}$ là hai nghiệm của phương trình.

Trên đây là các phương trình mà ta thấy rõ được biểu thức $f(x)$ lặp đi lặp lại, trong một số trường hợp khác $f(x)$ không xuất hiện một cách tường mình, mà phải thông qua một số biến đổi thì mới xuất hiện. Ta xem các ví dụ sau:

Ví du 4: Giải phương trình $x^2+3x\sqrt{x-\dfrac{4}{x}}=10x+4$.

Giải

Điều kiện $x-\dfrac{4}{x} \ge 0 \Leftrightarrow -2 \le x <0 $ hoặc $x \ge 2.$

Khi đó phương trình

$x^2+3x\sqrt{x-\dfrac{4}{x}}=10x+4$

$\Leftrightarrow x+3\sqrt{x-\dfrac{4}{x}}=10+\dfrac{4}{x}$

$\Leftrightarrow x-\dfrac{4}{x}+3\sqrt{x-\dfrac{4}{x}}-10=0.$

Đặt $t=\sqrt{x-\dfrac{4}{x}}, t \ge 0$. Phương trình trở thành:

$ t^2+3t-10=0$

$\Leftrightarrow t=2 \ \text{hoặc} \ t=-5(l)$

$\Leftrightarrow \sqrt{x-\dfrac{4}{x}}=2$

$\Leftrightarrow x-\dfrac{4}{x}=4$

$\Leftrightarrow x^2-4x-4=0$

$\Leftrightarrow x=2\pm 2\sqrt{2}.$

So sánh với điều kiện ta được phương trình có hai nghiệm $x=2 \pm 2\sqrt{2}.$

Ví dụ 5: Giải phương trình $\sqrt{1+x}+2\sqrt{1-x}=3\sqrt[4]{1-x^2}$

Giải

Điều kiện $-1 \le x \le 1.$

Dễ thấy $x=1$ không là nghiệm của phương trình. Xét $x \ne 1.$

Khi đó phương trình tương đương $\sqrt{\dfrac{1+x}{1-x}}+2=3\sqrt[4]{\dfrac{1+x}{1-x}}.$

Đặt $t=\sqrt[4]{\dfrac{1+x}{1-x}}$, phương trình trở thành

$t^2-3t+2=0$

$\Leftrightarrow t=1 \ \text{hoặc} \ t=2.$

  • Trường hợp $t=1 \Leftrightarrow \sqrt[4]{\dfrac{1+x}{1-x}}=1 \Leftrightarrow \dfrac{1+x}{1-x}=1 \Leftrightarrow x=0.$
  • Trường hợp $t=2  \Leftrightarrow \sqrt[4]{\dfrac{1+x}{1-x}}=2 \Leftrightarrow \dfrac{1+x}{1-x}=16  \Leftrightarrow x=\dfrac{15}{17}.$

Vậy phương trình có nghiệm $x=0$ hoặc $x=\dfrac{15}{17}.$

Trong một số trường hợp phức tạp hơn, ta đặt ẩn phụ một biểu thức, và tính các biểu thức còn lại theo ẩn phụ. Ta xem ví dụ sau:

Ví dụ 6: Giải phương trình $\sqrt{11-x}+\sqrt{x+2}+2\sqrt{22+9x-x^2}=17$.

Giải

Điều kiện $-2 \le x \le 11.$

Đặt $t=\sqrt{11-x}+\sqrt{x+2}, t \ge 0$. Khi đó

$t^2=13+2\sqrt{(11-x)(x+2)}$

$\Rightarrow 2\sqrt{22+9x-x^2}=t^2-13.$

Phương trình trở thành

$t+t^2-13=17$

$\Leftrightarrow t^2+t-30=0$

$\Leftrightarrow t=5 \ \text{hoặc} \ t=-6(l).$

$\Leftrightarrow \sqrt{11-x}+\sqrt{x+2}=5$

$\Leftrightarrow \sqrt{22+9x-x^2}=6$

$\Leftrightarrow x^2-9x+14=0$

$\Leftrightarrow x=2 \ \text{hoặc} \ x=7.$

Vậy phương trình có nghiệm $x=2$ hoặc $x=7.$

Sau đây là cách đặt ẩn phụ để đưa phương trình thành một phương trình hai ẩn, từ đó giải ẩn này theo ẩn kia để thiết lập một phương trình đơn giản hơn phương trình đã cho.

Ví dụ 7: Giải phương trình $x^2+16x-16=(2x+1)\sqrt{3x^2+4}$.

Giải

Ta có $x^2+16x-16=(2x+1)\sqrt{3x^2+4}$

$\Leftrightarrow 4(2x+1)^2-5(3x^2+4)=(2x+1)\sqrt{3x^2+4}$

Đặt $\begin{cases} a=2x+1&\\ b=\sqrt{3x^2+4}, b \ge 2. \end{cases}$

Phương trình trở thành

$4a^2-5b^2=ab$

$\Leftrightarrow 4a^2-ab-5b^2=0$

$\Leftrightarrow a=-b \ \text{hoặc} \ a=\dfrac{5}{4}b.$

  • Trường hợp $a=-b$ ta có:

$ \sqrt{3x^2+4}=-(2x+1)$

$\Leftrightarrow \begin{cases} x \le -\dfrac{1}{2}&\\ x^2+4x-3=0 \end{cases}$

$\Leftrightarrow x=-2-\sqrt{7}$

  • Trường hợp $a=\dfrac{5}{4}b$ ta có:

$5\sqrt{3x^2+4}=4(2x+1)$

$\Leftrightarrow \begin{cases} x \ge -\dfrac{1}{2}&\\ 11x^2-64x+84=0 \end{cases}$

$\Leftrightarrow x=\dfrac{42}{11} \ \text{hoặc} \ x=2.$

Vậy phương trình có các nghiệm $x=-2-\sqrt{7}, x=\dfrac{42}{11}$ hoặc $x=2.$

Ví dụ 8: Giải phương trình $\sqrt{x^2+1}+2\sqrt{x^2+2x+3}=3\sqrt{x^2+4x+5}$.

Giải

Ta có  $\sqrt{x^2+1}+2\sqrt{x^2+2x+3}=3\sqrt{x^2+4x+5}$

$\Leftrightarrow \sqrt{x^2+1}+2\sqrt{x^2+2x+3}=3\sqrt{-(x^2+1)+2(x^2+2x+3)}.$

Đặt $\begin{cases} a=\sqrt{x^2+1}, a \ge 1&\\ b=\sqrt{x^2+2x+3}, b \ge \sqrt{2}. \end{cases}$.

Phương trình trở thành:

$a+2b=3\sqrt{-a^2+2b^2}$

$\Leftrightarrow (a+2b)^2=9(-a^2+2b^2)$

$\Leftrightarrow 5a^2+2ab-7b^2=0$

$\Leftrightarrow (a-b)(5a+7b)=0$

$\Leftrightarrow a=b$.

Khi đó ta có

$\sqrt{x^2+1}=\sqrt{x^2+2x+3}$

$\Leftrightarrow x^2+1=x^2+2x+3$

$\Leftrightarrow x=-1$.$

Vậy nghiệm của phương trình là $x=-1.$

Ví dụ 9: Giải phương trình $\sqrt{1+x}-2\sqrt{1-x}-3\sqrt{1-x^2}=x-3$.

Giải

Điều kiện $-1 \le x \le 1$.

Đặt $\begin{cases} a=\sqrt{x+1}, a \ge 1&\\b=\sqrt{1-x}, b \ge 0 \end{cases}$.

Khi đó $x-3=-a^2-2b^2$ và phương trình trở thành

$a-2b-3ab=-a^2-2b^2$

$\Leftrightarrow (a^2-3ab+2b^2)+(a-2b)=0$

$\Leftrightarrow (a-2b)(a-b)+(a-2b)=0$

$\Leftrightarrow (a-2b)(a-b+1)=0$

$\Leftrightarrow a=2b \ \text{hoặc} \ b=a+1.$

  • Trường hợp $a=2b$ ta có:

$\sqrt{1+x}=2\sqrt{1-x}$

$\Leftrightarrow \begin{cases} -1 \le x \le 1&\\ 1+x=4(1-x) \end{cases}$

$\Leftrightarrow x=\dfrac{3}{5}.$

  • Trường hợp $b=a+1$ ta có:

$ \sqrt{1-x}=\sqrt{1+x}+1$

$\Leftrightarrow 1-x=x+2+2\sqrt{1+x}$

$\Leftrightarrow 2\sqrt{1+x}=-2x-1$

$\Leftrightarrow \begin{cases} -1 \le x \le -\dfrac{1}{2}&\\ 4(1+x)=(2x+1)^2 \end{cases}$

$\Leftrightarrow \begin{cases} -1 \le x \le \dfrac{1}{2}&\\ x^2=\dfrac{3}{4} \end{cases}$

$\Leftrightarrow x=-\dfrac{\sqrt{3}}{2}.$

Vậy phương trình có hai nghiệm $x=\dfrac{3}{5}$ hoặc $x=-\dfrac{\sqrt{3}}{2}.$

Ví dụ 10: Giải phươg trình $x^2+5x-3=2(2x+3)\sqrt{x-1}$.

Giải

Điều kiện $x \ge 1.$

Khi đó $x^2+5x-3=2(2x+3)\sqrt{x-1}$

$\Leftrightarrow 3(x-1)-2(2x+3)\sqrt{x-1}+x^2+2x=0$

Đặt $t=\sqrt{x-1}, t \ge 0$. Ta được $3t^2-2(2x+3)t+x^2+2x=0.$

Đặt $\Delta’=(2x+3)^2-3(x^2+2x)=(x+3)^2.$

Do đó phương trình trên có hai nghiệm $t=x+2$ hoặc $t=\dfrac{x}{3}$.

  • Trường hợp $t=x+2$

$\Leftrightarrow \sqrt{x-1}=x+2$

$\Leftrightarrow \begin{cases} x \ge 1&\\ x^2+3x+5=0 \end{cases} \ \text{(vô nghiệm)}.$

  • Trường hợp $t=\dfrac{x}{3}$

$\Leftrightarrow 3\sqrt{x-1}=x$

$\Leftrightarrow \begin{cases} x \ge 1&\\ x^2-9x+9=0 \end{cases}$

$\Leftrightarrow x=\dfrac{9 \pm 3\sqrt{5}}{2}.$

Vậy phương trình có nghiệm $x=\dfrac{9 \pm 3\sqrt{5}}{3}.$

Ngoài ra còn có cách đặt ẩn phụ đưa về hệ phương trình, ta xét ví dụ sau:

Ví dụ 11: Giải phương trình: $\sqrt[3]{7+x} – \sqrt{2-x}=1$

Giải

Phương trình có nhiều dấu căn bậc khác nhau, và biểu thức trong căn lại có mối liên hệ khá rõ ràng.

Ta đặt $u = \sqrt[3]{7+x}, v = \sqrt{2-x}$ ta có hệ $\left\{ \begin{array}{l} u – v = 1\\ u^3 + v^2 = 9 \end{array} \right. $.

Sử dụng phương pháp thế ta có $\left\{ \begin{array}{l} v = u-1\\ u^3 + (u-1)^2 – 9 = 0 \end{array}\right.  \Leftrightarrow \left\{ \begin{array}{l} v=u-1\\ u^3+u^2-2u-8 = 0 \end{array}\right.  \Leftrightarrow \left\{ \begin{array}{l} u = 2\\ v = 1\end{array}\right. $.

Từ đó giải ra $x = 1$ là nghiệm.

2. Bài tập rèn luyện

Bài 1: Giải các phương trình sau

a) $\sqrt{2x^2-4x+8} + \sqrt{2x^2-4x+3} = 5$

b) $(x+5)(2-x)=3 \sqrt{x^2+3x}$

c) $(x+4)(x+1)-3\sqrt{x^2+5x+2}=6$

d) $4x^2+10x+9=5\sqrt{2x^2+5x+3}$

Bài 2: Giải các phương trình sau:

a) $1+\dfrac{2}{3} \sqrt{x-x^2}=\sqrt{x}+\sqrt{1-x}$

b) $\sqrt{2x+3}+\sqrt{x+1}=3x+2\sqrt{2x^2+5x+3}-16$

c) $\sqrt{3x-2}+\sqrt{x-1}=4x-9+2\sqrt{3x^2-5x+2}$

d)$\sqrt{2x+3}+\sqrt{x+1}=3x+2\sqrt{2x^2+5x+3}-16$.

Bài 3: Giải các phương trình sau

a) $\sqrt{3x^2-2x+15}+\sqrt{3x^2-2x+8}=7$

b) $\dfrac{4x-1}{\sqrt{4x-3}}+\dfrac{11-2x}{\sqrt{5-x}}=\dfrac{15}{2}$

c) $\dfrac{3-x}{\sqrt{13-6x}}+\dfrac{3+x}{\sqrt{13+6x}}=2$

Bài 4: Giải các phương trình sau:

a) $2x^2+5x-1=7 \sqrt{x^3-1}$

b) $2(x^2+2)=5 \sqrt{x^3+1}$

c) $\sqrt{5x^2+14x+9}-\sqrt{x^2-x+20}=5 \sqrt{x+1}$

d) $(x^2-6x+11) \sqrt{x^2-x+1}=2(x^2-4x+7) \sqrt{x-2}$

Bài 5: Giải các phương trình sau:

a) $2 \sqrt{\dfrac{3x-1}{x}}=\dfrac{x}{3x-1}+1$

b) $(x+5)(2-x)=3 \sqrt{x^2+3x}$

c) $2(1-x)\sqrt{x^2+2x-1}=x^2-2x-1$

d) $(x+4)(x+1)-3 \sqrt{x^2+5x+6}+4=0$

e) $(x-1)(x+2)+2(x-1) \sqrt{\dfrac{x+2}{x-1}}=8$

f) $\sqrt[3]{\dfrac{2x}{x+1}}+\sqrt[3]{\dfrac{1}{2}+\dfrac{1}{2x}}=2$.

Phương trình vô tỉ – Phương pháp lũy thừa

Phương trình vô tỉ (phương trình chứa căn thức) là một trong những nội dung quan trọng nhất của đại số 9, xuất hiện trong hầu hết các đề thi học sinh giỏi cũng như đề thi tuyển sinh. Kĩ năng giải phương trình cũng là một trong kĩ năng quan trọng của học sinh chuyên toán. Có rất nhiều dạng phương trình và nhiều phương pháp giải khác nhau cho phương trình vô tỉ, tựu chung lại cũng là phương pháp hữu tỉ hóa các phương trình, tức là đưa về phương trình dạng đa thức đã biết cách giải ở lớp 8.Trong chương này đưa ra một vài dạng phương trình vô tỉ cùng với đó là các phương pháp cơ bản nhất, không đi sâu quá nhiều vào các kĩ thuật và các dạng khó.

1. Lý thuyết

Nếu $A(x)$, $B(x)$ là các biểu thức chứa $x$, khi đó ta có các phương trình dạng $\sqrt{A} = \sqrt{B}$ và $\sqrt{A}=B$ là các phương trình vô tỉ cơ bản nhất, được giải bởi các tính chất sau.

  • Tính chất 1.  $\sqrt{A} = \sqrt{B} \Leftrightarrow \left\{\begin{array}{l}A \geq 0 \\ A = B\end{array} \right.$
  • Tính chất 2. $\sqrt{A} = B \Leftrightarrow \left\{\begin{array}{l}B \geq 0\\ A = B^2\end{array}\right.$

2. Phương pháp lũy thừa

Phương pháp lũy thừa là phương pháp tự nhiên nhất và kinh điển nhất để giải phương trình vô tỉ, nhằm mục đích đưa phương trình đã cho về dạng cơ bản hoặc đưa về phương trình hữu tỉ, việc lũy thừa đòi hỏi sự khéo léo để không làm cho bậc của biểu thức quá cao, và trong quá trình lũy thừa ta chú ý là tạo ra phương trình mới tương đương phương trình đã cho hay chỉ là hệ quả của phương trình đã cho, nếu là hệ quả thì phải có bước thử lại nghiệm.

Chú ý: $A = B \Leftrightarrow A^2 = B^2$ đúng khi và chỉ khi $A, B$ cùng dấu.

Còn $A = B\ (1) \Rightarrow A^2 = B^2\ (2)$ thì phương trình $(2)$ là phương trình hệ quả của phương trình $(1)$.

Ví dụ 1: Giải phương trình:

a) $\sqrt{-x^2+4x-3}=2x-5$

b) $\sqrt{x+1}+\sqrt{x-2} = \sqrt{3x}$

Giải

a) Ta có $ \sqrt{-x^2+4x-3} =2x-5  \Leftrightarrow \left\{ \begin{array}{l} 2x-5 \ge 0\\ -x^2+4x-3=(2x-5)^2 \end{array}\right. $

$\Leftrightarrow \left\{ \begin{array}{l} x \ge \dfrac{5}{2}\\ 5x^2-24x+28=0 \end{array}\right.$  $  \Leftrightarrow \left\{ \begin{array}{l} x \ge \dfrac{5}{2} \\ x=2 \ \text{hoặc} \ x=\dfrac{14}{5} \end{array}\right. $  $\Leftrightarrow x=\dfrac{14}{5}$

Vậy phương trình có nghiệm $x=\dfrac{14}{5}$.

b) Điều kiện $x \geq 2$. Phương trình tương đương với

$x+1+2\sqrt{(x+1)(x-2)}+x-2 = 3x$

$\Leftrightarrow 2\sqrt{x^2-x-2} = x + 1$

$\Leftrightarrow 4(x^2-x-2) = x^2+2x+1$

$\Leftrightarrow 3x^2 – 6x – 9 = 0 $

$\Leftrightarrow \left[\begin{array}{l}x = 3\ \text{ (nhận) }\\ x=-1 \ \text{ (loại) } \end{array}\right.$

Vậy phương trình có nghiệm $x = 3$.

Ví dụ 2: Giải phương trình $\sqrt{7-x^2+x\sqrt{x+5}}=\sqrt{3-2x-x^2}.$

Giải
  • Ta có $\sqrt{7-x^2+x\sqrt{x+5}}=\sqrt{3-2x-x^2}$

$\Leftrightarrow \left\{ \begin{array}{l} 3-2x-x^2 \ge 0\\ 7-x^2+x\sqrt{x+5}=3-2x-x^2 \ (2)\end{array}\right. $

  •  $(2) \Leftrightarrow x\sqrt{x+5} = -2x -4$

Nhận thấy $x=0$ không là nghiệm của $(2)$. Ta xét $x\ne 0$, khi đó phương trình tương đương

$\sqrt{x+5} = -\dfrac{2x+4}{x}$ $\Leftrightarrow \left\{ \begin{array}{l} -\dfrac{2x+4}{x} \ge 0\\ x+5 = \dfrac{(2x+4)^2}{x^2} \ (3) \end{array}\right. $

  •  $(3) \Leftrightarrow  x^2(x+5) = (2x+4)^2$

$\Leftrightarrow  x^3 +x^2 -16x -16 =0 \Leftrightarrow  \left[ \begin{array}{l} x=4 \ \text{ (loại) }\\ x=-1\ \text{ (nhận) }\\ x=-4 \ \text{ (loại) } \end{array}\right. $

  •  Vậy phương trình có nghiệm $x = -1$.

Ví dụ 3: Giải phương trình $\sqrt{x+1}-1=\sqrt{x-\sqrt{x+8}}$.

Giải
  •  Điều kiện $\left\{ \begin{array}{l} x \ge -1\\ \sqrt{x+1}-1 \ge 0\\ x-\sqrt{x+8} \ge 0 \end{array}\right.  (*)$.
  •  Khi đó phương trình tương đương:

$\sqrt{x+1}=1+\sqrt{x-\sqrt{x+8}}$

$\Leftrightarrow x+1=1+x-\sqrt{x+8}+2\sqrt{x-\sqrt{x+8}}$

$\Leftrightarrow \sqrt{x+8}=2\sqrt{x-\sqrt{x+8}}$

$\Leftrightarrow x+8=4(x-\sqrt{x+8})$

$\Leftrightarrow 4\sqrt{x+8}=3x-8$

$\Leftrightarrow  \left\{ \begin{array}{l} x \ge \dfrac{8}{3} \\ 16(x+8)=(3x-8)^2 \end{array}\right. $

$\Leftrightarrow \left\{ \begin{array}{l} x \ge \dfrac{8}{3}\\ 9x^2-64x-64=0 \end{array}\right. $

$\Leftrightarrow x=8.$

  •  Vậy phương trình có nghiệm duy nhất $x=8.$

Ví dụ 4: Giải phương trình $\sqrt{x(x-1)}+\sqrt{x(x+2)}=2\sqrt{x^2}.$

Giải
  •  Điều kiện $\left\{ \begin{array}{l} x(x-1) \ge 0\\ x(x+2) \ge 0\\  x \ge 0 \end{array}\right.  \Leftrightarrow x=0 \ \text{ hoặc } \ x \ge 1.$
  •  Dễ thấy $x=0$ là một nghiệm của phương trình.
  •  Xét $x \ge 1.$ Khi đó phương trình tương đương
  •  $\sqrt{x-1}+\sqrt{x+2}=2\sqrt{x}$

$\Leftrightarrow x-1+x+2+2\sqrt{(x-1)(x+2)}=4x$

$\Leftrightarrow \sqrt{(x-1)(x+2)}=x-\dfrac{1}{2}$

$\Leftrightarrow \left\{ \begin{array}{l} x \ge \dfrac{1}{2}\\ x^2+x-2=x^2-x+\dfrac{1}{4} \end{array}\right. $

$\Leftrightarrow \left\{ \begin{array}{l} x \ge \dfrac{1}{2}\\ x=\dfrac{9}{8} \end{array}\right. $

$\Leftrightarrow x=\dfrac{9}{8}$

  •  Vậy phương trình có nghiệm $x=\dfrac{9}{8}$ hoặc $x=0$.

Ví dụ 5: Giải phương trình $\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\dfrac{x+3}{2}$.

Giải
  •  Điều kiện $x \ge 1.$
  •  Khi đó phương trình tương đương

$\sqrt{(\sqrt{x-1})^2+2\sqrt{x-1}+1}+\sqrt{(\sqrt{x-1})^2-2\sqrt{x-1}+1}=\dfrac{x+3}{2}$

$\Leftrightarrow \sqrt{(\sqrt{x-1}+1)^2}+\sqrt{(\sqrt{x-1}-1)^2}=\dfrac{x+3}{2}$

$\Leftrightarrow |\sqrt{x-1}+1|+|\sqrt{x-1}-1|=\dfrac{x+3}{2}$

  •  Với $1 \le x \le 2$ thì phương trình tương đương

$\sqrt{x-1}+1+1-\sqrt{x-1}=\dfrac{x+3}{2} \Leftrightarrow x=1.$

  •  Với $x>2$ thì phương trình tương đương

$\sqrt{x-1}+1+\sqrt{x-1}-1=\dfrac{x+3}{2}$

$\Leftrightarrow 4\sqrt{x-1}=x+3$

$\Leftrightarrow \left\{ \begin{array}{l} x \ge -3\\ 16x-16=x^2+6x+9 \end{array}\right.   \Leftrightarrow x=5.$

  •  Vậy phương trình có nghiệm $x=1$ hoặc $x=5$.

 

Ví dụ 6: Giải phương trình $\sqrt{x+3}+\sqrt{3x+1}=2\sqrt{x}+\sqrt{2x+2}$.

Giải
  •  Điều kiện $\begin{cases} x+3 \ge 0&\\ 3x+1 \ge 0&\\ x \ge 0&\\ 2x+1 \ge 0 \end{cases} \Leftrightarrow x \ge 0.$

 Phương trình trở thành

 $\sqrt{3x+1}-\sqrt{2x+2}=\sqrt{4x}-\sqrt{x+3}$

$\Rightarrow 3x+1+2x+2-2\sqrt{(3x+1)(2x+2)}=4x+x+3-2\sqrt{4x(x+3)}$

$\Rightarrow \sqrt{(3x+1)(2x+2)}=\sqrt{4x(x+3)}$

$\Rightarrow 6x^2+8x+2=4x^2+12x$

$\Rightarrow x=1.$

  •  Thử lại ta thấy $x=1$ là nghiệm của phương trình.
  •  Vậy phương trình có nghiệm duy nhất $x=1.$
  • Chú ý: Trong ví dụ trên, ta dùng dấu “$\Rightarrow$” thay cho “$\Leftrightarrow$”, tức là phương trình sau chỉ là hệ quả của phương trình trước chứ không phải là tương đương. Do đó khi giải ra nghiệm ta phải thử lại phương trình ban đầu để nhận hay loại nghiệm.

Ví dụ 7: Giải phương trình $\sqrt[3]{x+5}+\sqrt[3]{x+6}=\sqrt[3]{2x+11}$.

Giải
  •  Sử dụng hằng đẳng thức $(a+b)^3=a^3+b^3+3ab(a+b)$. Ta được

$ \sqrt[3]{x+5}+\sqrt[3]{x+6}=\sqrt[3]{2x+11}$

$\Leftrightarrow 2x+11+3\sqrt[3]{x+5}.\sqrt[3]{x+6}(\sqrt[3]{x+5}+\sqrt[3]{x+6})=2x+11$

$\Rightarrow 3\sqrt[3]{x+5}.\sqrt[3]{x+6}.\sqrt[3]{2x+11}=0$

$\Leftrightarrow x=-6 \ \text{hoặc} -5 \ \text{hoặc} \ x=-\dfrac{11}{2}.$

  •  Thử lại ta thấy tất cả đều là nghiệm của phương trình.
  •  Vậy phương trình có ba nghiệm $x=-6$ hoặc $x=-5$ hoặc $x=-\dfrac{11}{2}.$

3. Bài tập rèn luyện

Bài 1. Giải các phương trình sau;

a) $\sqrt{x^2+3x+4}-3x=1$

b) $1+\sqrt{x-1}=\sqrt{6-x}$

c) $\sqrt{-x^2+4x-3}=2x-5$

d) $x-\sqrt{4-x^2}=0$

Bài 2. Giải các phương trình sau:

a) $\sqrt{2x+3}+\sqrt{2x+2}=1$

b) $\sqrt{5x-1}-\sqrt{x-1}=\sqrt{2x-4}$

c) $x^2-2x+4(x-3) \sqrt{\dfrac{x+1}{x-3}}=0$.

d) $\sqrt{x-1-2\sqrt{x-2}}+\sqrt{x+2+4\sqrt{x-2}}+3=0$

Bài 3. Giải các phương trình sau:

a) $\dfrac{x^2}{\sqrt{3x-2}}-\sqrt{3x-2}=1-x$

b) $\sqrt{x}+\sqrt{x+1}-\sqrt{x^2+x}=1$

c) $\sqrt{x(x+1)}+\sqrt{x(x+2)}=2\sqrt{x^2}$

d) $\sqrt{2x^2+8x+6}+\sqrt{x^2-1}=2x+2$

Bài 4. Giải các phương trình sau

a) $\sqrt[3]{x+1}+\sqrt[3]{3x+1}=\sqrt[3]{x-1}$

b) $\sqrt[3]{2x-5}+\sqrt[3]{3x+7}=\sqrt[3]{5x+2}$

Bài 5. Giải các phương trình sau:

a) $\sqrt{x^2 – 3x + 4} + 1 – x – \sqrt{3 – x}=0$

b) $\sqrt{x^2+3x+4}+1+x-\sqrt{3+x}=0$

c) $\sqrt{x^2-3x+3}+1-x-\sqrt{2-x}=0$

d) $\sqrt{4x^2-10x+7}+2-2x-\sqrt{3-2x}=0$

Toán đố – P2

Tiếp theo phần 1, phần này tôi xin đưa ra những ví dụ phức tạp hơn, đòi hỏi cao hơn trong việc đưa ra phương trình, hoặc việc giải phương trình hệ phương trình ở mức khó hơn.

Ví dụ 1. Tổng kết học kì 2, trường trung học cơ sở N có 60 học sinh không đạt học sinh giỏi, trong đó có 6 em từng đạt học sinh giỏi học kì 1, số học sinh giỏi của học kì 2 bằng $\dfrac{40}{37}$ số học sinh giỏi của học kì 1 và có $8 \% $ số học sinh của trường không đạt học sinh giỏi học kì 1 nhưng đạt học sinh giỏi học kì 2. Tìm số học sinh giỏi học kì 2 của trường biết rằng số học sinh của trường không thay đổi trong suốt năm học.

Lời  giải. 

Nhận xét: Bài toán có sự thay đổi về số học sinh giỏi của học kì 2 so với học kì 1, đó là số học sinh mới được và số học sinh bị rớt danh hiệu.

Ta có lời giải như sau:

Gọi $x$ $(x>0)$ là số học sinh giỏi học kì $2$ của trường.

Tổng số học sinh của trường là: $x+60$ (học sinh).

Số học sinh giỏi học kì $1$ là: $\dfrac{37}{40}x$ (học sinh).

$8\%$ số học sinh toàn trường không đạt giỏi học kì $1$ nhưng đạt giỏi học kì $2$: $(x+60).8\%=\dfrac{2x}{25}+\dfrac{24}{5}$ (học sinh).

Theo đề bài ta có phương trình $x = \dfrac{37}{40} x + \dfrac{2x}{25} + \dfrac{24}{5} – 6$.

Giải ra được $x = 240$.
Vậy số học sinh giỏi học kì $2$ của trường là $240$ học sinh.

Ví dụ 2. Bạn An dự định trong khoảng thời gian từ ngày 1/3 đến ngày 30/4 mỗi ngày sẽ giải 3 bài toán. Thực hiện đúng kế hoạch một thời gian, vào khoảng cuối tháng 3 (tháng 3 có 31 ngày) thì A bị bệnh, phải nghỉ giải toán nhiều ngày liên tiếp. Khi hồi phục, trong tuần đầu An giải 16 bài toán; sau đó, A cố gắng giải 4 bài một ngày và đến 30/4 thì A cũng hoàn thành kế hoạch đã định. Hỏi bạn An đã nghỉ giải toán ít nhất bao nhiêu ngày?

Lời giải. 

Gọi $x$  là số ngày làm được 3 bài giai đoạn 1 ($x \leq 31)$ và $y$ là số ngày nghỉ.

Khi đó tổng số bài làm theo thực tế là: $3x + 16 + 4(61-x-y-7) = 232 -x-4y$.

Số bài thực tế bằng số bài dự định bằng $61 \times 3 = 183$.

Ta có phương trình $232-4y-x = 183 \Leftrightarrow 4y + x = 49 \Rightarrow y \geq \dfrac{18}{4} $.

Mà $y \in \mathbb{N}$ nên $y \geq 5$, giá trị nhỏ nhất của $y$ là 5, khi $x = 29$.

Ví dụ 3. Lớp $9A$ có 28 học sinh đăng ký dự thi vào các lớp chuyên Toán, Lý, Hóa của trường Phổ thông Năng khiếu. Trong đó: không có học sinh nào chỉ chọn thi vào lớp Lý hoặc chỉ chọn thi vào lớp Hóa; có ít nhất 3 học sinh chọn thi vào cả ba lớp Toán, Lý và Hóa; số học sinh chọn thi vào lớp Toán và Lý bằng số học sinh chỉ chọn thi vào lớp Toán; có 6 học sinh chọn thi vào lớp Toán và Hóa; số học sinh chọn thi vào lớp Lý và Hóa gấp 5 lần số học sinh chọn thi vào cả ba lớp Toán, Lý và Hóa. Hỏi số học sinh chọn thi vào từng lớp là bao nhiêu?

Lời giải.

Gọi $x$  là số ngày làm được 3 bài giai đoạn 1 ($x \leq 31)$ và $y$ là số ngày nghỉ.

Khi đó tổng số bài làm theo thực tế là: $3x + 16 + 4(61-x-y-7) = 232 -x-4y$.

Số bài thực tế bằng số bài dự định bằng $61 \times 3 = 183$.

Ta có phương trình $232-4y-x = 183 \Leftrightarrow 4y + x = 49 \Rightarrow y \geq \dfrac{18}{4} $.

Mà $y \in \mathbb{N}$ nên $y \geq 5$, giá trị nhỏ nhất của $y$ là 5, khi $x = 29$.

Bài tập rèn luyện.

Bài 1. Một khu đất hình chữ nhật $ABCD$ ($AB<AD$) có chu vi 240 mét được chia thành hai phần gồm khu đất hình chữ nhật $ABNM$ làm chuồng trại và phần còn lại làm vườn thả để nuôi gà ($M$, $N$ lần lượt thuộc các cạnh $AD$, $BC$). Theo quy hoạch trang trại nuôi được 2400 con gà, bình quân mỗi con gà cần một mét vuông của diện tích vườn thả và diện tích vườn thả gấp ba lần diện tích chuồng trại. Tính chu vi của khu đất làm vườn thả.

Bài 2. Nam kể với Bình rằng ông của Nam có một mảnh đất hình vuông $ABCD$ được chia thành bốn phần; hai phần (gồm các hình vuông $AMIQ$ và $INCP$ với $M$, $N$, $P$, $Q$ lần lượt thuộc $AB$, $BC$, $CD$, $DA$) để trồng các loại rau sạch, các phần còn lại trồng hoa. Diện tích phần trồng rau sạch là $1200 \; m^2$ và phần để trồng hoa là $1300 \; m^2$. Bình nói: “Chắc chắn bạn bị nhầm rồi!”. Nam: “Bạn nhanh thật! Mình đã nói nhầm phần diện tích. Chính xác là phần trồng rau sạch có diện tích $1300 \; m^2$, còn lại $1200 \; m^2 $ trồng hoa”. Hãy tính cạnh hình vuông $AMIQ$ (biết $AM < MB$) và giải thích vì sao Bình lại biết Nam bị nhầm ?

Bài 3. Một hồ nước được cung cấp nước bỏi ba vòi nước. Biết rằng nếu từng vòi nước cung cấp nước cho hồ thì vòi nước thứ nhất sẽ làm đầy hồ nhanh hơn vòi nước thứ hai $5$ giờ, vòi nước thứ ba lại làm đầy hồ nhanh hơn vòi nước thứ nhất $4$ giờ; còn nếu vòi nước thứ nhất và thứ hai cùng cung cấp nước cho hồ thì chúng làm đầy hồ bằng với thời gian vòi nước thứ ba làm đầy hồ. Hỏi nếu cả ba vòi nước cùng cung cấp nước cho hồ thì chúng sẽ làm đầy hồ trong bao lâu?

Bài 4. Hai thị trấn $A$ và $B$ cùng nằm trên một dòng sông, cách nhau $D$ $km$. Thị trấn $B$ có địa thế cao hơn nên dòng nước luôn chảy từ $B$ đến $A$ với vận tốc $d$ $(km/h)$ không đổi. Nếu nước không chảy, tàu \textit{Hi vọng} có vận tốc $x$ $(km/h)$ không đổi, tàu \textit{Tương lai} có vận tốc $y$ $(km/h)$ không đổi. Vào lúc 8 giờ sáng, tàu \textit{Hi vọng} xuất phát từ $A$ đi về hướng $B$ và tàu \textit{Tương lai} xuất phát từ $B$ đi về hướng $A$. Vào lúc 12 giờ trưa hai tàu gặp nhau lần đầu tiên tại một điểm cách $A$ một khoảng cách là $\dfrac{1}{3}D$. Khi đến $A$ tàu \textit{Tương lai} nghỉ nửa giờ rồi quay về $B$; tương tự khi đến $B$ tàu \textit{Hi vọng} cũng nghỉ nửa giờ rồi quay về $A$. Hai tàu gặp nhau lần thứ hai tại một điểm cách $B$ một khoảng cách là $\dfrac{5}{27}D$. Hãy tìm vận tốc của các tàu \textit{Hi vọng} và \textit{Tương lai} biết rằng nếu ngay từ đầu, mỗi tàu tăng vận tốc thêm $7,5km/h$ thì hai tàu sẽ gặp nhau lần đầu vào lúc 11 giờ trưa.