Bài 1. Giải các phương trình sau:
a) $\sqrt{7x+2} = 1 + \sqrt{4x+1}$
b) $\left| x^2-x-1 \right|+3= 2x$
Bài 2. Tìm $a$, $b$, $c$ biết parabol $(P):y= ax^2 + bx +c$ đi qua điểm $A(1;-1)$ và có đỉnh $I(-1; -5)$.
Bài 3. Tìm $m$ để phương trình $(x-1)\left( \sqrt{x+m}-1 \right) =0$ có hai nghiệm là độ dài các cạnh góc vuông của một tam giác vuông với cạnh huyền có độ dài bằng 3.
Bài 4. Cho hệ phương trình
$$\left\{ \begin{array}{l}
(1-2m)x +4y = 4m^2 + 4m +3 \
mx + 2(m-1)y=-m-2
\end{array} \right. \quad (I) $$
Chứng minh khi $m$ nhận giá trị bất kì trên $\mathbb{R}$, hệ $(I)$ luôn có nghiệm duy nhất. Giả sử $(x_0, 1)$ là nghiệm của hệ $(I)$. Tìm $x_0$.
Bài 5. Cho góc $\alpha$ thỏa $\tan \left( \alpha + \dfrac{\pi}{3} \right) = -\dfrac{ 3\sqrt{3}}{5}$. Tính giá trị của biểu thức:
$$ P=\dfrac{\cos ^3 \alpha + 2\sin \alpha \cdot \cos ^2 \alpha}{\sin ^2 \alpha \cdot \cos \alpha + \sqrt{3} \sin ^3 \alpha }$$
Bài 6. Cho tam giác $ABC$ có $AB=3a$, $AC=6a$, $BC=7a$.
a) Tính $\overrightarrow{AB} \cdot \overrightarrow{AC}$ và $\cos A$.
b) Gọi $M$, $N$ là hai điểm được xác định bởi $\overrightarrow{AM} = \dfrac{2}{3} \overrightarrow{AB}$, $\overrightarrow{AN} = -\dfrac{3}{2} \overrightarrow{AC}$, tính $MN$ theo $a$.
Bài 7. Trong mặt phẳng $Oxy$, cho tam giác $ABC$ có $A(1;3)$, $B(6;-2)$.
a) Tìm tọa độ điểm $C$ sao cho $G(1;1)$ là trọng tâm của tam giác $ABC$.
b) Tìm tọa độ chân đường vuông góc kẻ từ $M(4;3)$ đến đường thẳng $AB$.
Category Archives: Đề thi
Đề thi Học kì 1 Toán 10 PTNK năm 2017 (CS2)
Đề và lời giải: Thầy Nguyễn Tấn Phát
Bài 1. Giải các phương trình sau:
a) $(x+2)\sqrt{x^2-5}=x^2-4$
b) $x^2+8x+|x+4|+14=0$
Bài 2. Tìm $a$, $b$, $c$ biết hàm số $y=ax^2+bx+c$ có đồ thị được cho như hình sau.

Bài 3. Tìm $m$ để phương trình $(m-1)^2x^2 – 4(m+1)x+3=0$ có hai nghiệm, trong đó có một nghiệm gấp 3 lần nghiệm còn lại.
Bài 4. Tìm số nguyên $m$ sao cho hệ $\left{ \begin{array}{l}
mx-y=1 \
x+4(m+1)y=4m
\end{array} \right. $ có nghiệm duy nhất và là nghiệm nguyên.
Bài 5. Tính giá trị của biểu thức $P=\dfrac{16\cos ^3 a – \sin ^3 a + 5\cos a}{9\cos a + \sin ^3 a}$ khi $\tan a =3$.
Bài 6. Cho ba vectơ $\overrightarrow{a}$, $\overrightarrow{b}$, $\overrightarrow{c}$ bất kì. Xét tính đúng, sai của các mệnh đề sau:
a) $\left[ \left( \overrightarrow{a} \cdot \overrightarrow{b} \right) \overrightarrow{c} – \left( \overrightarrow{a} \cdot \overrightarrow{c} \right) \overrightarrow{b} \right] $ vuông góc với $\overrightarrow{a}$
b) $\left( \overrightarrow{a}\cdot \overrightarrow{b} \right) \overrightarrow{c} = \left( \overrightarrow{b} \cdot \overrightarrow{c} \right) \overrightarrow{a}$
Bài 7. Cho $\overrightarrow{u}= (1;-2)$, $\overrightarrow{v} = (x;y)$. Tìm $x$, $y$ sao cho $\overrightarrow{u}$, $\overrightarrow{v}$ cùng phương và $\overrightarrow{u} \cdot \overrightarrow{v}=-\dfrac{13}{2}$. Tính $|\overrightarrow{v}|$.
Bài 8. Cho tam giác $ABC$ với $A(-3;6)$, $B(1;-2)$, $C(6;3)$. Tìm tọa độ tâm $I$ và bán kính đường tròn ngoại tiếp của tam giác $ABC$.
Bài 9. Cho các điểm $M(-1;2m+3)$, $N(-4; 5m)$ và $P(-3; 3m+2)$. Tìm điều kiện cần và đủ của $m$ để $M$, $N$, $P$ là ba đỉnh của một tam giác. Khi đó chứng minh $\angle NMP$ là góc nhọn.
Đề thi Học kì 1 Toán 10 PTNK năm 2016 (CS1)
Đề và lời giải: Thầy Nguyễn Tấn Phát
Bài 1. (1 điểm) Tìm m để phương trình $\dfrac{(x-1)(x-3m)}{\sqrt{x-2}+1}=0$ vô nghiệm
Bài 2. (1 điểm) Gọi $(P)$ là đồ thị của hàm số: $y= x^2 + bx + c \, \, (b,c \in \mathbb{R} )$. Biết các điểm $A(1;-4)$, $B(2;-3)$, thuộc $(P)$. \
Tìm tọa độ giao điểm của $(P)$ và $(P’)$, với $(P’)$ là đồ thị của hàm số $y= (2x-1)^2 -4$
Bài 3. (1 điểm) Cho hệ phương trình: $\left\{ \begin{array}{l}
x+\dfrac{1}{m} \sqrt{y} =4 \
\dfrac{1}{m} x + \sqrt{y} = \dfrac{2}{m} + 2
\end{array} \right.$, với m là tham số và $m \ne 0$. Định m để hệ phương trình có nghiệm duy nhất.
Bài 4. (2 điểm) Giải các phương trình sau:
a) $\sqrt{2x+1}+\sqrt{x-3}=4$
b) $x+ \dfrac{3x}{\sqrt{x^2-9}}=\dfrac{35}{4}$
Bài 5. (1 điểm) Chứng minh đẳng thức: $\tan^2 a – \tan^2 b = \dfrac{\sin(a+b).\sin(a-b)}{\cos^2a.\cos^2b}$
Bài 6. (1 điểm) Cho tam giác $ABC$ có các đỉnh $A(-1;3)$, $B(-3;-3)$, $C(2;2)$. Chứng minh tam giác $ABC$ là tam giác vuông và tìm trực tâm tam giác $ABC$.
Bài 7. (3 điểm) Cho hình bình hành $ABCD$ với $AB=6a$, $AD=3a$, $\angle ABC =60^0$. Gọi $M,N$ thỏa: $\overrightarrow{MA}+2 \overrightarrow{MB}=\overrightarrow{0}$, $3 \overrightarrow{ND}+2 \overrightarrow{NC}=\overrightarrow{0}$.
a) Tính $\overrightarrow{AM}. \overrightarrow{AD}$.
b) Tính độ dài cạnh $AN$ theo $a$.
c) Gọi $G$ là trọng tâm tam giác $AMN$. Tìm $x$ và $y$ thỏa: $\overrightarrow{BG}= x \overrightarrow{BA} + y \overrightarrow{BD}$.
Đề thi Học kì 1 Toán 10 PTNK năm 2019 (CS1)
Đề và lời giải: Thầy Nguyễn Tấn Phát
Bài 1. (1 điểm) Tìm $m$ để phương trình $\dfrac{m^2x+m}{x-1}=1$ có đúng một nghiệm.
Bài 2. (2 điểm) Giải các phương trình sau:
a) $4x-\left| 3x-2 \right| =x^2$
b) $\left( x^2 +x-2 \right) \left( \sqrt{5x-1}-7+2x \right) =0$
Bài 3. (1 điểm) Cho parabol $(P): y=ax^2+bx+c$. Tìm $a$, $b$, $c$ biết điểm $B(-1;4)$ thuộc $(P)$ và $S(0;3)$ là đỉnh của parabol.
Bài 4. (1,5 điểm) Cho hệ phương trình $\left\{ \begin{array}{l}
2mx-(m+1)y=m+1 \
(m-2)x-\dfrac{m}{2}y=-\dfrac{m}{2}-2
\end{array} \right. $
a) Tìm $m$ để hệ phương trình có nghiệm.
b) Tìm nghiệm $\left( x_0; y_0 \right) $ của hệ thỏa $x_0-y_0=-2$
Bài 5. (0,5 điểm) Rút gọn: $P=\dfrac{\sin \left( x+ \dfrac{\pi}{2} \right) + 2\cos (x+ \pi)}{\cos (\pi -x )}$.
Bài 6. (2 điểm) Hình bình hành $ABCD$ có $AB=a$, $AD=a\sqrt{3}$ và $\angle BAD = 30^\circ $
a) Tính $\overrightarrow{AB} \cdot \overrightarrow{AD}$ và độ dài đoạn $AC$.
b) Gọi $DE$ là đường cao của tam giác $ABD$ ($E$ thuộc đường thẳng $AB$). Tính $\overrightarrow{AB}\cdot \overrightarrow{AE}$ và độ dài đoạn $DE$.
Bài 7. (2 điểm) Trong mặt phẳng $Oxy$, cho $A(6;-2)$, $B(3;-1)$, $C(9;7)$.
a) Chứng minh $ABC$ là tam giác vuông và tìm $I$ thuộc trục tung sao cho $\overrightarrow{IB} \cdot \overrightarrow{AB} =10$.
b) Tính độ dài đoạn $AG$ với $G$ là trọng tâm tam giác $ABC$. Tìm điểm $K$ thuộc đường thẳng $d: y=x$ sao cho $\left| \overrightarrow{KB} + \overrightarrow{KC} \right| = 2\sqrt{5}$
Đề thi Học kì 1 Toán 10 PTNK năm 2020 (CS2)
Bài 1. (2 điểm) Giải các phương trình:
a) $\dfrac{x^2 – 3x -4}{\sqrt{3-x}}=0$
b) $\sqrt{x+2}= \sqrt{2x+5} – \sqrt{3-x}$
Bài 2. (1 điểm) Tìm tọa độ đỉnh $I$ của parabol $(P): y= ax^2 + bx+ c \ (a \ne 0)$, biết parabol $(P)$ cắt trục hoành tại hai điểm có hoành độ lần lượt bằng 2 và 8, cắt trục tung tại điểm có tung độ bằng 8.
Bài 3. (1 điểm) Tìm $m$ để phương trình $\dfrac{x(2-x)}{\sqrt{2-x}} = \left( m^2 +1 \right) \sqrt{2-x}$ có nghiệm.
Bài 4. (1 điểm) Tìm $m$ để hệ phương trình $\left\{ \begin{array}{l}
(m+1)x-2y =m-1 \
m^2x-y = m^2 + 2m
\end{array} \right. $ có nghiệm duy nhất $\left( x_0; y_0 \right) $. Xác định một hệ thức liên hệ giữa $x_0$ và $y_0$ mà không phụ thuộc vào $m$.
Bài 5. (1 điểm) Cho góc $a$ thỏa $\tan \left( a + \dfrac{\pi}{2} \right) = -\sqrt{3}$. Tính giá trị của biểu thức:
$$P=\dfrac{\sin ^6 a + \cos ^6 a + 2\sin ^3 a \cdot \cos ^3 a}{\sin ^5 a \cdot \cos ^3 a + \sin ^3 a \cdot \cos ^5 a}$$
Bài 6. (2 điểm) Cho tam giác $ABC$ nhọn có độ dài cạnh $AB=5$. Gọi $H$ là chân đường cao hạ từ $A$ và $BH=3$, $CH=6$.
a) Tính $\overrightarrow{BA} \cdot \overrightarrow{BC}$ và độ dài $AC$.
b) Gọi $M$ là trung điểm của $AH$. Tính $\overrightarrow{MB} \cdot \overrightarrow{MC}$.
Bài 7. (2 điểm) Trong mặt phẳng $Oxy$, cho tam giác $ABC$ có $A(1;2)$, $B(-1;5)$, $C(3;2)$.
a) Tìm tọa độ trọng tâm $G$ và điểm $I$ thỏa $2\overrightarrow{IA} + 3\overrightarrow{IB} = 4\overrightarrow{IC}$.
b) Tìm tọa độ điểm $D$ biết $ABCD$ là hình thang có đáy $AB = \dfrac{3}{8}CD$.
Đề thi Học kì 1 Toán 10 PTNK năm 2020 (CS1)
Đề thi và đáp án HK1 môn toán 10 trường PTNK (CS1)
Năm học 2020 – 2021
Thực hiện: Thầy Nguyễn Tấn Phát – GV PTNK
Bài 1. (2 điểm) Giải các phương trình:
a) $\dfrac{{{x^4} – 10{x^2} + 9}}{{\sqrt {x – 2} }} = 0$
b) $x\sqrt {{x^2} – x + 3} = x\left( {x – 6} \right)$
Bài 2. (1 điểm) Tìm $m$ để phương trình $\dfrac{1}{x} + \dfrac{{m + x}}{{x – 1}} = 1$ có nghiệm duy nhất.
Bài 3. (1 điểm) Chứng minh
$$\left[ {\cos 2\pi – \cos \left( {2\pi + x} \right)} \right]\left[ {1 + {{\tan }^2}\left( {\frac{\pi }{2} – x} \right)} \right] = \frac{1}{{1 + \cos x}}$$
Bài 4. (1 điểm) Cho hệ phương trình $\left\{ \begin{array}{l}
mx – \left( {m + 1} \right)y = 1\
\left( {2 – m} \right)x + \left( {m – 3} \right)y = 3 – 2m
\end{array} \right.$ ($m$ là tham số).
a) Tìm $m$ để hệ có nghiệm duy nhất $\left( x_0; y_0 \right) $.
b) Chứng minh $x_0^2 – y_0^2 – 2{x_0} = – 1$
Bài 5. (1 điểm) Gọi $(P)$ là đồ thị của hàm số $y = {x^2} + 2x – m$. Biết $(P)$ cắt trục tung tại điểm có tung độ là 4. Tìm m và tọa độ đỉnh của $(P)$.
Bài 6. (2 điểm) Cho hình bình hành ABCD có $AD = a$, $AB = 2a$ và $\widehat {DAB} = 120^\circ $.
a) Tính $\overrightarrow{DA} \cdot \overrightarrow{AB}$. Chứng minh $AB^2 – AD^2 = \overrightarrow {AC} \cdot \overrightarrow {DB} $
b) Gọi $H$ là hình chiếu vuông góc của $A$ trên $DB$. Tính $\overrightarrow{DH} \cdot \overrightarrow{DA}$.
Bài 7. (2 điểm) Trong mặt phẳng $Oxy$, cho tam giác $ABC$ có $A(1;6)$, $B(6;5)$, $C(6;1)$.
a) Tìm tọa độ $M$ sao cho $\overrightarrow {CM} = \overrightarrow {CA} – \overrightarrow {CB} $
b) Đường tròn ngoại tiếp tam giác $ABC$ cắt trục tung tại hai điểm phân biệt $E$, $F$. Tìm tọa độ tâm đường tròn ngoại tiếp tam giác $ABC$. Tìm toạ độ $E$ và $F$.
Đáp án đề thi chọn đội dự tuyển lớp 10 năm 2016 – 2017
Bài 1: Cho $x,y,z$ là các số thực dương thoả mãn $x+y+z=1$. Chứng minh rằng:
$$\dfrac{x^4}{x^3+y^2+z^2}+\dfrac{y^4}{y^3+z^2+x^2}+\dfrac{z^4}{z^3+x^2+y^2}\ge \dfrac{1}{7}.$$
Bài 2: Tìm tất cả các hàm số $f:\mathbb N^* \rightarrow \mathbb N^*$ thoả mãn đồng thời các điều kiện:
i/ $f(mn)=f(m)f(n)\ \forall m,n \in \mathbb N^*$.
ii/ $f(m)+f(n)$ chia hết cho $m+n$ $\forall m,n \in \mathbb N^*$.
iii/ $f(2017)=2017^3$.
Bài 3. Cho đường tròn $(O)$ và dây cung $AB$ cố định. $C$ là một điểm thay đổi trên cung lớn $AB$ sao cho tam giác $ABC$ nhọn. Gọi $I,I_a,I_b$ lần lượt là tâm đường tròn nội tiếp, tâm đường tròn bàng tiếp $\angle BAC$ và $\angle ABC$ của tam giác $ABC$.
a/ Gọi $M$ đối xứng với $I$ qua $O$. Chứng minh rằng tam giác $MI_{a}I_{b}$ cân.
b/ Gọi $H,K$ lần lượt là hình chiếu của $I_a,I_b$ trên $OI$. Đường thẳng qua $H$ vuông góc với $BI_a$ và đường thẳng qua $K$ vuông góc với $AI_b$ cắt nhau tại $P$. Chứng minh rằng $P$ thuộc một đường cố định khi $C$ thay đổi.
Bài 4. Cho $S$ là tập hợp khác rỗng và $A_1,A_2,\ldots,A_m\ (m\ge 2)$ là $m$ tập con của $S$. Gọi $\mathcal T$ là tập hợp gồm tất cả các tập hợp $A_i\Delta A_j\ (1\le i,j \le m$). Chứng minh rằng $|\mathcal T| \ge m$.
(Ký hiệu $A\Delta B=(A\backslash B)\cup (B\backslash A)$ là hiệu đối xứng của hai tập hợp $A,B$).
Đề thi và đáp án chọn đội tuyển toán trường PTNK năm 2021
Ngày thi thứ nhất.
Bài 1. Tìm hàm số $f: \mathbb{R} \rightarrow \mathbb{R}$ thỏa $f(x f(y)+f(x))=f(x)+x y+x+1, \forall x, y \in \mathbb{R} .$
Bài 2. Cho dãy số $\left(u_{n}\right)$ thỏa $u_{1}=2, u_{2}=1$ và $u_{n+1}=\sqrt{\dfrac{u_{n} u_{n-1}}{n}}$ với mọi $n \geq 2$.
Xét dãy số $\left(v_{n}\right)$ xác định bởi $v_{n}:=u_{1}+u_{2}+\ldots+u_{n}, \forall n \geq 1$. Chứng minh dãy $\left(v_{n}\right)$ hội tụ.
Bài 3. Cho $p$ là số nguyên tố, $n$ là số nguyên dương thỏa $2<p<n$. Gọi $\mathrm{A}$ là tập hợp các đa thức $P(x)=x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$ có tất cả các hệ số thuộc tập ${1 ; 2 ; \ldots ; n !}$ và $P(m)$ chia hết cho $p$ với mọi số nguyên dương $m$.
a) Chứng minh tổng $a_{1}+a_{p}+a_{2 p-1}+\ldots+a_{1+k(p-1)}$ chia hết cho $p$ với mọi $k=\left[\dfrac{n-1}{p-1}\right]$ (xem $a_{n}=1$ ), kí hiệu $[x]$ là phần nguyên của $x$.
b) Tính số phần tử của $\mathrm{A}$ theo $\mathrm{n}$ và $\mathrm{p}$.
Bài 4. Cho tam giác $\mathrm{ABC}$ có (I) là đường tròn nội tiếp. Một đường thẳng qua $\mathrm{A}$ cắt $(\mathrm{I})$ tại $\mathrm{M}, \mathrm{N}$. Gọi $\mathrm{T}$ là giao điểm của các tiếp tuyến với (I) tại $\mathrm{M}, \mathrm{N}$.
b) Chứng minh rằng nếu $\mathrm{AT} \parallel \mathrm{BC}$ thì $\mathrm{MN}$ đi qua trung điểm $\mathrm{K}$ của $\mathrm{BC}$.
c) Gọi $\mathrm{D}$ là tiếp điểm của (I) với $\mathrm{AB}$ và $\mathrm{E}$ là giao điểm của $\mathrm{DM}$ với $\mathrm{AC}$. Trên $\mathrm{EN}$ lấy điểm $\mathrm{F}$ thoả $\mathrm{TF}$ vuông góc $\mathrm{AI}$. Chứng minh rằng khi đường thẳng $\mathrm{AMN}$ thay đổi, giao điểm $\mathrm{P}$ của $\mathrm{MF}$ và $\mathrm{DN}$ thuộc một đường thẳng cố định.
Ngày thi thứ hai
Bài 5. Cho $n$ số thực $x_{1}, x_{2}, \ldots, x_{n}$ thỏa hiệu giữa số lớn nhất và số nhỏ nhất của chúng là 1 . Ta xây dựng
$$
y_{1}=x_{1}, y_{2}=\frac{x_{1}+x_{2}}{2}, \ldots, y_{n}=\frac{x_{1}+x_{2}+\ldots+x_{n}}{n}
$$
Gọi $M, m$ lần lượt là số lớn nhất và nhỏ nhất trong các số $y_1, y_2,\cdots,y_n$. \
Tìm giá trị lớn nhất của $M-n$.
Bài 6. Cho tập $\mathrm{X}={1 ; 2 ; \ldots ; 20}$. Tập con $\mathrm{A}$ của $\mathrm{X}$ được gọi là tập “tránh 2 ” nếu với mọi $\mathrm{x}, \mathrm{y}$ thuộc $\mathrm{A}$ thì $|x-y|$ khác 2 . Tìm số các tập con “tránh 2 ” của $\mathrm{X}$ có 5 phần tử.
Bài 7. Cho tam giác $\mathrm{ABC}$ và điểm $\mathrm{D}$ trên cạnh $\mathrm{BC}$. Các đường tròn ( $\mathrm{ABD}$ ), ( $\mathrm{ACD}$ ) lần lượt cắt $\mathrm{AC}, \mathrm{AB}$ tại $\mathrm{E}, \mathrm{F}$. Gọi $\mathrm{I}$ là tâm đường tròn $(\mathrm{AEF})$.
a) Chứng minh ID vuông góc BC.
b) Gọi $\mathrm{H}$ là giao điểm của $\mathrm{ID}$ với $\mathrm{EF}$ và $\mathrm{K}$ là điểm thoả mãn $H B K=H C K=90^{\circ}$. Các đường tròn (IBK), (ICK) lần lượt cắt IC, IB tại M, N. Chứng minh tâm J của đường tròn (IMN) thuộc trung trực BC.
Bài 8. Cho $p$ là số nguyên tố. Với mọi số nguyên a, đặt
$$
q:=1+a+a^{2}+\ldots+a^{p-1} .
$$
Chứng minh $(1-a)\left(1-a^{2}\right) \ldots\left(1-a^{p-1}\right)-p$ chia hết cho $q$.
Đáp án sẽ được đăng trong Tập san Star education số 7/2022
Đáp án đề thi chọn đội tuyển trường PTNK năm 2020
Ngày thi thứ nhất.
Bài 1. Với mỗi số nguyên dương $n$, tìm số thực $M_{n}$ lớn nhất sao cho với mọi số thực dương $x_{1}, x_{2}, \ldots, x_{n}$ thì ta đều có
$$
\sum_{k=1}^{n} \frac{1}{x_{k}^{2}}+\frac{1}{\left(\sum_{k=1}^{n} x_{k}\right)^{2}} \geq M_{n}\left(\sum_{k=1}^{n} \frac{1}{x_{k}}+\frac{1}{\sum_{k=1}^{n} x_{k}}\right)^{2}
$$
Bài 2. Cho 2021 số nguyên khác 0 . Biết rằng tổng của một số bất kỳ trong chúng với tích của tất cả 2020 số còn lại luôn âm.
(a) Chứng minh rằng với mọi cách chia 2021 số này thành hai nhóm và nhân các số cùng nhóm lại với nhau thì tổng của hai tích cũng luôn âm.
(b) Một bộ số thỏa mãn đề bài thì có thể có nhiều nhất mấy số âm?
Bài 3. Cho hai hàm số $f: \mathbb{R} \rightarrow \mathbb{R}$ và $g: \mathbb{R} \rightarrow \mathbb{R}$ thỏa mãn $g(2020)>0$ và với mọi $x, y \in \mathbb{R}$ thì $\left\{\begin{array}{l}f(x-g(y))=f(-x+2 g(y))+x g(y)-6 \\ g(y)=g(2 f(x)-y)\end{array}\right.$
(a) Chứng minh rằng $g$ là hàm hằng.
(b) Chứng minh rằng đồ thị $h(x)=f(x)-x$ nhận $x=1$ là trục đối xứng.
Bài 4. Cho tam giác $A B C$ nhọn, nội tiếp trong đường tròn $(O)$ có trực tâm $H$ và $A H, B H, C H$ cắt cạnh đối diện lần lượt tại $D, E, F$. Gọi $I, M, N$ lần lượt là trung điểm các cạnh $B C, H B, H C$ và $B H, C H$ cắt lại $(O)$ theo thứ tự tại các diểm $L, K$. Giả sử $K L$ cắt $M N$ ở $G$.
(a) Trên $E F$, lấy điểm $T$ sao cho $A T$ vuông góc với $H I$. Chứng minh rằng $G T$ vuông góc với $O H$.
(b) Gọi $P, Q$ lần lượt là giao điểm của $D E, D F$ và $M N$. Gọi $S$ là giao điểm của $B Q, C P$. Chứng minh rằng $H S$ di qua trung điểm của $E F$.
Ngày thi thứ hai.
Bài 5. Cho số nguyên dương $n>1$. Chứng minh rằng với mọi số thực $a \in\left(0 ; \frac{1}{n}\right)$ và mọi đa thức $P(x)$ có bậc $2 n-1$ thỏa mãn điều kiện $P(0)=P(1)=0$, luôn tồn tại các số thực $x_{1}, x_{2}$ thuộc $[0 ; 1]$ sao cho $P\left(x_{1}\right)=P\left(x_{2}\right)$ và $x_{2}-x_{1}=a$.
Bài 6. Giải phương trình sau trên $\mathbb{Z}^{+}:\left(x^{2}+3\right)^{3^{x+1}}\left[\left(x^{2}+3\right)^{3^{x+1}}+1\right]+x^{2}+y=x^{2} y$.
Bài 7 . Cho các số nguyên $n>k>t>0$ và $X={1,2, \ldots, n}$. Gọi $\mathcal{F}$ là họ các tập con có $k$ phần tử của tập hợp $X$ sao cho với mọi $F, F^{\prime} \in \mathcal{F}$ thì $\left|F \cap F^{\prime}\right| \geq t$. Giả sử không có tập con có $t$ phần tử nào chứa trong tất cả các tập $F \in \mathcal{F}$.
(a) Chứng minh rằng tồn tại một tập hợp $B \subset X$ sao cho $|B|<3 k$ và $|B \cap F| \geq t+1$ với mọi $F \in \mathcal{F}$.
(b) Chứng minh rằng $|\mathcal{F}|<C_{3 k}^{t+1} C_{n}^{k-t-1}$.
Bài 8. Cho tam giác $A B C$ nội tiếp trong $(O)$ với $B, C$ cố định và $A$ thay đổi trên cung lớn $B C$. Dựng hình bình hành $A B D C$ và $A D$ cắt lại $(B C D)$ ở $K$.
(a) Gọi $R_{1}, R_{2}$ lần lượt là bán kính đường tròn ngoại tiếp $(K A B),(K A C)$. Chứng minh rằng tích $R_{1} R_{2}$ không đổi.
(b) Ký hiệu $(T),\left(T^{\prime}\right)$ lần lượt là các đường tròn cùng đi qua $K$, tiếp xúc với $B D$ ở $B$ và tiếp xúc với $C D$ ở $C$. Giả sử $(T),\left(T^{\prime}\right)$ cắt nhau ở $L \neq K$. Chứng minh rằng $A L$ luôn đi qua một điểm cố định.
Hết
Đề thi và đáp án kì thi chọn đội tuyển thi Quốc gia trường Phổ thông Năng khiếu năm học 2016 -2017
Đề thi
Ngày thi thứ nhất
Bài 1. Tìm tất cả $a$ để dãy số $(u_n)$ hội tụ, biết $u_1=a$ và $\forall n\in \mathbb{N}^*$ thì:
$$u_{n+1}=\left\{\begin{array}{l}
2u_n-1\ \text{nếu $u_n>0$,}\\
-1\ \text{nếu $-1\le u_n\le 0$,}\\
u_n^2+4u_n+2\ \text{nếu $u_n<-1$.}
\end{array} \right.$$
Bài 2. Tìm số nguyên dương $k$ nhỏ nhất để bất đẳng thức $$x^ky^kz^k(x^3+y^3+z^3)\le 3$$
luôn đúng với mọi số thực dương $x,y,z$ thoả mãn điều kiện $x+y+z=3$.
Bài 3. Cho hàm số $f:\mathbb N^* \rightarrow \mathbb N^*$ thoả mãn hai điều kiện sau:
i) $f$ là hàm tăng thật sự trên $\mathbb N^*$.
ii) $f(2n)=2f(n)\ \forall n\in \mathbb N^*$.
a) Giả sử $f(1)=3$ và $p>3$ là số nguyên tố. Chứng minh rằng tồn tại số nguyên dương $n$ sao cho $f(n)$ chia hết cho $p$.
b) Cho $q$ là số nguyên tố lẻ. Hãy xây dựng một hàm $f$ thoả mãn các điều kiện của bài toán mà $f(n)$ không chia hết cho $q$ với mọi $n$ nguyên dương.
Bài 4. Cho tam giác $ABC$ có góc $\angle BAC$ tù và $AH\perp BC$ ($H$ nằm trên $BC$). Điểm $M$ thay đổi trên cạnh $AB$. Dựng điểm $N$ sao cho $\Delta BMN\sim \Delta HCA$, với $H$ và $N$ nằm khác phía đối với đường thẳng $AB$.
a) Gọi $CM$ cắt đường tròn ngoại tiếp tam giác $BMN$ tại $K$. Chứng minh rằng $NK$ luôn đi qua một điểm cố định.
b) Gọi $NH$ cắt $AC$ tại $P$. Dựng điểm $Q$ sao cho $\triangle HPQ\sim \Delta HNM$, với $Q$ và $M$ nằm khác phía đối với đường thẳng $NP$. Chứng minh rằng $Q$ luôn thuộc một đường thẳng cố định.
Ngày thi thứ hai
Bài 5. Với mỗi số nguyên dương $n$, tồn tại duy nhất số tự nhiên $a$ thoả mãn điều kiện $a^2\le n<(a+1)^2$. Đặt $\Delta_n=n-a^2$.
a) Tìm giá trị nhỏ nhất của $\Delta_n$ khi $n$ thay đổi và luôn thoả mãn $n=15m^2$ với $m$ là số nguyên dương.
b) Cho $p,q$ là các số nguyên dương và $d=5(4p+3)q^2$. Chứng minh rằng $\Delta_d\ge 5$.
Bài 6. Với các số nguyên $a,b,c,d$ thoả mãn $1\le a<b<c<d$, ký hiệu:
$$T(a,b,c,d)={{x,y,z,t}\subset \mathbb{N}^*\mid 1\le x<y<z<t,\ x\le a,y\le b,z\le c,t\le d}$$
a) Tình số phần tử của $T(1,4,6,7)$.
b) Cho $a=1$ và $b\ge 4$. Gọi $d_1$ là số phần tử của $T(a,b,c,d)$ chứa $1$ và không chứa $2$; $d_2$ là số phần tử chứa $1,2$ và không chứa $3$; $d_3$ là số phần tử chứa $1,2,3$ và không chứa $4$. Chứng minh rằng $d_1\ge 2d_2-d_3$. Đẳng thức xảy ra khi nào ?
Bài 7. Trong một hệ thống máy tính, một máy tính bất kỳ có kết nối trực tiếp với ít nhất $30\%$ máy tính khác của hệ thống. Hệ thống này có một chương trình cảnh báo và ngăn chặn khá tốt, do đó khi một máy tính bị virus, nó chỉ có đủ thời gian lây cho các máy tính được kết nối trực tiếp với nó. Chứng minh rằng dù vậy, kẻ tấn công vẫn có thể chọn hai máy tính của hệ thống mà nếu thả virus vào hai máy đó, ít nhất $50\%$ máy tính của hệ thống sẽ bị nhiễm virus.
Bài 8. Cho tam giác $ABC$ nhọn. Đường tròn $(I)$ có tâm $I$ thuộc cạnh $BC$ và tiếp xúc với các cạnh $AB,AC$ lần lượt tại $E,F$. Lấy $M,N$ bên trong tứ giác $BCEF$ sao cho $EFNM$ nội tiếp $(I)$ và các đường thẳng $MN,EF,BC$ đồng quy. Gọi $MF$ cắt $NE$ tại $P$, $AP$ cắt $BC$ tại $D$.
a) Chứng minh rằng $A,D,E,F$ cùng thuộc một đường tròn.
b) Lấy trên các đường thẳng $BN,CM$ các điểm $H,K$ sao cho $\angle ACH=\angle ABK=90^\circ$. Gọi $T$ là trung điểm $HK$. Chứng minh rằng $TB=TC$.
Hết
Lời giải


