Category Archives: Thi vào 10

Đề thi thử Tuyển sinh 10 TPHCM

ĐỀ THI THỬ TUYỂN SINH 10 LẦN 2

Môn: Toán (Không chuyên)

Thời gian: 120 phút

Bài 1. (1 điểm) Cho parabol $(P):y=kx^2$ $(k\in \mathbb{R})$ và đường thẳng $(d):y=ax-6$ $(a \in \mathbb{R})$

a) Tìm $k$ và $a$ biết $(P)$ và $(d)$ cùng đi qua điểm $A$ có tọa độ $(2;4)$.

Vẽ $(P)$ và $(d)$ trên cùng một hệ trục tọa độ.

b) Tìm tọa độ giao điểm $B$ còn lại của $(P)$ và $(d)$ bằng phép tính.

Bài 2. (1 điểm) Tính giá trị của các biểu thức sau:

a) $\left( 1+ \dfrac{3+\sqrt{3}}{\sqrt{3}+1} \right) \cdot \left( 1- \dfrac{3-\sqrt{3}}{\sqrt{3}-1} \right) $

b) $\dfrac{\sqrt{2+\sqrt{3}}}{2} : \left( \dfrac{\sqrt{2+\sqrt{3}}}{2} -\dfrac{2}{\sqrt{6}}+ \dfrac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}} \right) $

Bài 3. (1 điểm) Cho phương trình $x^2-2(m+1)x+m^2+1 =0$ (1)

a) Tìm $m$ để phương trình $(1)$ có nghiệm kép. Tìm nghiệm của $(1)$ lúc đó.

b) Tìm $m$ để phương trình $(1)$ luôn có hai nghiệm phân biệt $x_1$, $x_2$.

Với $m=2$, không giải phương trình, tính giá trị biểu thức: $P=\dfrac{x_1}{x_2} + \dfrac{x_2}{x_1}$

Bài 4. (1 điểm) Công ty đồ chơi Superview Odoriko vừa cho ra đời một đồ chơi tàu điện điều khiển từ xa. Trong điều kiện phòng thí nghiệm, quãng đường $s$ (cm) đi được của đoàn tàu đồ chơi là một hàm số theo thời gian $t$ (giây), hàm số đó là $s=5t+11$. Trong điều kiện thực tế, hàm số biểu diễn $s$ theo $t$ là một hàm số bậc nhất và người ta thấy rằng nếu đồ chơi di chuyển được 15 cm thì mất 3 giây và có thể đi được quãng đường 64 cm trong 10 giây.

a) Trong điều kiện thí nghiệm, sau bao nhiêu giây thì tàu đồ chơi này di chuyển được quãng đường là $66 \, cm$?

b) Ba bé Bình mua đồ chơi này về cho bé chơi, ba ngồi cách bé $3 \,m$. Hỏi cần bao nhiêu giây đề chiếc tàu đồ chơi này di chuyển từ chỗ bé đến ba?

Bài 5. (1 điểm) Một bè $A$ ở giữa hồ nước, anh Phúc muốn ra chiếc bè này thì cần phải dùng hai chiếc thuyền $B$ hoặc $C$ đang ở bờ. Biết rằng 2 chiếc thuyền $B$ và $C$ cách nhau 450 mét. Biết rằng góc nhìn từ $B$ và $C$ đến chiếc bè $A$ theo thứ tự vào khoảng $40^\circ$ và $35^\circ$. Lượng dầu của thuyền $B$ chạy được khoảng 250 mét và lượng dầu của thuyền $C$ chạy được khoảng 300 mét. Vậy anh Phúc nên lấy thuyền nào để đến bè $A$?

Bài 6. (1 điểm) Một cửa hàng giày dép bán đồng giá 675 000 đồng/đôi. Nhưng vì ảnh hưởng của dịch cúm Covid 19 nên khách đã đến mua ít lại. Chủ cửa hàng đã giảm giá hai lần và mỗi lần là $x\%$ so với giá tại thời điểm giảm nên đã có giá mới là 546 750 đồng.

a) Hãy tìm $x$.

b) Biết rằng giá nhập về một đôi giày là 565 000 đồng và cửa hàng đã bán được 100 đôi sau khi giảm lần đầu và 150 đôi sau khi giảm lần thứ hai. Vậy cửa hàng này đã lời hay lỗ là bao nhiêu tiền?

Bài 7. (1 điểm) Để tạo một mô hình kim tự tháp có hình chóp tứ giác đều (là hình có đáy là hình vuông và các mặt bên là các tam giác cân có chung đỉnh), bạn An đã cắt tấm bìa ra thành hình bên và dán đỉnh lại. Hãy tính diện tích toàn phần của hình chóp và thể tích hình chóp được tạo thành. Biết rằng đáy hình vuông có cạnh là 5 cm, chiều cao của các tam giác cân hạ từ đỉnh cân là 6 cm, thể tích hình chóp là $V=\dfrac{1}{3}Sh$ với $S$ là diện tích đáy hình vuông và $h$ là khoảng cách từ đỉnh $S$ đến đáy $ABCD$ và bằng $SH$ với $H$ là giao điểm của $AC$ và $BD$.

Bài 8. (3 điểm) Cho tam giác $ABC$ nhọn có $AB<AC$ và nội tiếp đường tròn $\left( O;\, R\right) $. Vẽ đường kính $AD$. Tiếp tuyến tại $D$ của $(O)$ cắt $AC$ tại $E$ và $BC$ tại $F$.

a) Chứng minh $AC\cdot AE=4R^2$ và $FB\cdot FC=FD^2$.

b) Vẽ $DH\bot OF$ với $H$ thuộc $OF$. Chứng minh $OBCH$ nội tiếp và $\angle BHC=2\angle BAC$.

c) Chứng minh đường tròn ngoại tiếp các tam giác $AOH$ và $FEC$ cùng cắt nhau tại một điểm $P$ thuộc $(O)$ và $A$, $P$, $F$ thẳng hàng.

Đề thi thử vào lớp 10: Tiếng Anh không chuyên

ĐỀ THI GỒM HAI PHẦN. PHẦN TRẮC NGHIỆM LÀM TRÊN MÁY VÀ PHẦN TỰ LUẬN LÀM TRÊN GIẤY NỘP LẠI.

I. PHẦN TRẮC NGHIỆM

[WpProQuiz 34]

II. PHẦN TỰ LUẬN

Phần này làm vào giấy nộp.

Email về : hocthemstar20192020@gmail.com

 

Rewrite the sentences with the words given. Do not change the words. You must use between two and five words.

 

  1. Please don’t touch the exhibits. RATHER

I………………………………………………………………….touch the exhibits.

  1. It’s a good thing you gave me a lift or I would have been late for my interview. GIVEN

I would have been late for my interview………………………………………………….me a lift.

  1. Please do not drop litter in the park. REQUESTED

You…………………………………………………………….drop litter in the park.

  1. He doesn’t get on with his colleagues. TERMS

He is not…………………………………………………………………..with his colleagues.

  1. Light travels faster than sound. TRAVEL

Sound………………………………………………………………………as light.

  1. He could not explain why he was always late for work. ACCOUNT

He could not………………………………………………………………..late for work.

  1. Our boss wouldn’t let us go home until we had done our work. MADE

Our boss …………………………………………………………….our work before we went home.

  1. I had never been to a theme park before. FIRST

It…………………………………………………………………….had ever been to a theme park.

  1. How long was your drive from Edinburgh to London? TAKE

How long……………………………………………………drive from Edinburgh to London.

  1. I haven’t been to the theater since I was in Paris. LAST

The ………………………………………………………….was when I was in Paris.

 

[WpProQuiz_toplist 34]

Đề thi và đáp án tuyển sinh vào lớp 10 TPHCM 2016

I. ĐỀ 

Bài 1. Giải các phương trình và hệ phương trình sau:
a) $x^2-2\sqrt{5}x+5=0$
b) $4x^4-5x^2-9=0$
c) $2x+5y=-1$ và $3x-2y=8 $
d) $x(x+3)=15-(3x-1)$.

Bài 2.
a) Vẽ đồ thị (P) của hàm số $y = \dfrac{-x^2}{4}$ và đường thẳng (D): $y = \dfrac{x}{2}-2$ trên cùng một hệ trục tọa độ.
b) Tìm tọa độ giao điểm của (P) và (D) ở câu trên bằng phép tính.
Bài 3.
a) Thu gọn biểu thức $A = \dfrac{2-\sqrt{3}}{1+\sqrt{4+2\sqrt{3}}} + \dfrac{2+\sqrt{3}}{1-\sqrt{4-2\sqrt{3}}}$
b) Ông Sáu gửi một số tiến vào ngân hàng theo mức lãi suất tiết kiệm với kù hạn 1 năm là 6$\%$. Tuy nhiên sau thời hạn một năm ông Sáu không đến nhận tiền lãi mà để thêm một năm nữa mới lãnh. Khi đó số tiền lãi có được sau năm đầu tiên sẽ được ngân ghàng cộng dồn vào số tiền gửi ban đầu để thành số tiền gửi cho năm kế tiếp với mức lãi suất cũ. Sau 2 năm ông Sáu nhận được số tiền là 112.360.000 đồng kể cả gốc lẫn lãi. Hỏi ban đầu ông Sáu đã gửi bao nhiêu tiền?
Bài 4. Cho phương trình $x^2 – 2mx + m – 2= 0 $(1) ($x$ là ẩn số.)

a) Chứng minh phương trình (1) luôn có 2 nghiệm phân biệt với mọi giá trị $m$.
b) Định $m$ để hai nghiệm $x_1, x_2$ của phương trình (1) thỏa mãn : $(1+x_1)(2-x_2) + (1+x_2)(2-x_1) = x_1^2+x_2^2+2 $
Bài 5. Cho tam giác $ABC$ $(AB < AC) $ có ba góc nhọn. Đường trong tâm $O$ đường kính $BC$ cắt các cạnh $AC, AB$ lần lượt tại $D, E$.
Gọi $H$ là giao điểm của $BD$ và $CE$; $F$ là giao điểm của $AH$ và $BC$.
a) Chứng minh $AF \bot BC$ và $\angle AFD = \angle ACE$.
b) Gọi $M$ là trung điểm của $AH$. Chứng minh $BD \bot OD$ và 5 điểm $M, D, O, F, E$ cùng thuộc một đường tròn.
c) Gọi $K$ là giao điểm của $AH$ và $DE$. Chứng minh $MD^2 = MK.MF$ và $K$ là trực tâm của tam giác $MBC$.
d) Chứng minh $\dfrac{2}{FK} = \dfrac{1}{FH} + \dfrac{1}{FA}$.

II. ĐÁP ÁN

Bài 1. Giải các phương trình và hệ phương trình sau:
a) $x^2 – 2\sqrt{5}x + 5=0$
$\Delta ‘= 0
x_1=x_2 = \sqrt{5}$.
b) $4x^4 – 5x^2 -9 =0$
Đặt $t=x^2 \ge 0$
Phương trình trở thành: $4t^2 – 5t -9=0$
$a-b+c =0$.
$\Rightarrow t_1 =-1$ (loại) và $t_2 = \dfrac{9}{4}$ (nhận)
Với $t=\dfrac{9}{4} \Rightarrow x= \pm \dfrac{3}{2}$
c) $2x + 5y =-1 $ và $3x-2y=8$
$ \Leftrightarrow 4x+ 10y =-2 $ và $15x -10y =40 $
$ \Leftrightarrow x=2$ và $y=-1$.
d) $x(x+3) = 15 – (3x-1) $
$\Leftrightarrow x^2 + 6x -16 =0$
$\Leftrightarrow x_1 =2$; $x_2 = -8$.

Bài 2.
a) Lưu ý: $(P)$ đi qua $O(0;0)$, $( \pm 2 ;-1)$, $\pm 4; -4 )$
$(D)$ đi qua $(2;-1)$, $(0;-2)$

Đồ thị:
b) Phương trình hoành độ giao điểm của $(P)$ và $(D)$ là:
$-\dfrac{x^2}{4}= \dfrac{x}{2}-2 $
$\Leftrightarrow x^2 + 2x -8 =0 $
$\Leftrightarrow x=-4$ hoặc $x=2$

$y(-4) = -4$, $y(2) = -1$
Vậy tọa độ giao điểm của $(P)$ và $(D)$ là $(-4;-4)$, $(2;-1)$.
Bài 3.
a) $A=\dfrac{2-\sqrt{3}}{1+\sqrt{4+2\sqrt{3}}}+ \dfrac{2+\sqrt{3}}{1-\sqrt{4-2\sqrt{3}}} $
$= \dfrac{2-\sqrt{3}}{1+ \left( 1+ \sqrt{3} \right) } + \dfrac{2+\sqrt{3}}{1- \left( \sqrt{3}-1 \right) } $
$= \dfrac{\left( 2+ \sqrt{3} \right) ^2 + \left( 2- \sqrt{3} \right) ^2}{\left( 2+\sqrt{3} \right) \left( 2- \sqrt{3}\right) } $
$=14$

b) Gọi số tiền ban đầu ông Sáu gửi là: $x$ (đồng)
Số tiền vốn và lãi sau năm thứ nhất là: $x+x \cdot 6 \% = 1,06 x$
Số tiền vốn và lãi sau năm thứ hai là: $1,06x + 1,06x \cdot 6\% = 1,06^2 \cdot x$
Theo đề ta được phương trình:\ $1,06^2 \cdot x = 112.360.000 \Rightarrow x= 100.000.000$ (đồng)
Bài 4.

a) $x^2 -2mx +m-2 =0$
$\Delta ‘= m^2 -m+2 = \left( m- \dfrac{1}{2} \right) ^2 + \dfrac{7}{4} >0, \; \forall m$
Do đó phương trình luôn có hai nghiệm phân biệt.
b) Theo Viet, ta có:

$S= x_1+ x_2 = 2m $ và  $P = x_1 \cdot x_2 = m-2$

$\left( 1+ x_1 \right) \left( 2-x_2 \right) + \left( 1+ x_2 \right) \left( 2- x_1 \right) = x_1^2 + x_2^2 +2 $
$\Leftrightarrow 2+ x_1 + x_2 = \left( x_1 + x_2 \right) ^2 $
$\Leftrightarrow 2+ 2m = 4m^2 $
$\Leftrightarrow m=1 $ hoặc $m= \dfrac{-1}{2}$
Bài 5.


a)

  • $\angle BEC = \angle BDC = 90^\circ $
    $\Rightarrow $ $CE$ và $BD$ là hai đường cao của tam giác $ABC$
    $\Leftrightarrow $ $H$ là trực tâm của tam giác $ABC$
    $\Rightarrow $ $AH$ là đường cao của tam giác $ABC$
    $\Rightarrow AF \bot BC$.
  • Tứ giác $HFCD$ nội tiếp ($\angle HFC + \angle HDC = 180^\circ$)
    $\Rightarrow \angle AFD = \angle ACE$

b)

  • $\angle MAD = \angle MDA$ và $\angle ODC = \angle OCD $
    Mà $\angle FAC + \angle FCA = 90^\circ
    \Rightarrow \angle MDA + \angle ODC = 90^\circ
    \Rightarrow \angle MDO = 90^\circ \Rightarrow MD \bot OD $
  • Chứng minh tương tự: $ME \bot OE$
  •  3 điểm $E$, $F$, $D$ cùng nhìn $MO$ dưới 1 góc $90^\circ$
    $\Rightarrow $ 5 điểm $M$, $D$, $O$, $F$, $E$ cùng thuộc đường tròn đường kính $MO$

c)

  • $MD$ là tiếp tuyến của đường tròn tâm $O$
    $\Rightarrow \angle MDE = \angle DCE$
    mà $\angle AFD = \angle ACE$ nên $\angle MDK = \angle MFD$
    Vậy $\triangle MDK \backsim \triangle MFD \Rightarrow MD^2 = MK \cdot MF$
  •  $MC$ cắt $(O)$ tại $L$
  • $\triangle MDL \backsim \triangle MCD \Rightarrow MD^2 = ML \cdot MC
    \Rightarrow MK \cdot MF = ML \cdot MC
    \Rightarrow \triangle MLK \backsim \triangle MFC
    \Rightarrow \angle KLM = \angle MFC =90^\circ
    \Rightarrow KL \bot MC$
    Mà $BL \bot MC$ (góc nội tiếp chắn nửa đường tròn)
    $\Rightarrow $ $B$, $K$, $L$ thẳng hàng
    $\Rightarrow$ $K$ là trực tâm $\triangle MBC$.

d)

  • $FH \cdot FA = FB \cdot FC$ ($\triangle BFH \backsim \triangle AFC$)
  • $FK \cdot FM = FB \cdot FC$ ($\triangle BFK \backsim \triangle MFC$)
    $\Rightarrow FH \cdot FA = FK \cdot FM
    \Rightarrow 2FH \cdot FA = 2 FK \cdot FM = FK ( FA + FH )
    \Rightarrow \dfrac{2}{FK} = \dfrac{1}{FH} + \dfrac{1}{FA}$.

Đề thi và đáp án tuyển sinh vào lớp 10 TPHCM 2015

I. ĐỀ tuyển sinh vào lớp 10 TPHCM 2015

Bài 1. Giải các phương trình và hệ phương trình sau:
a)  $x^2 – 8x+15=0$.
b)  $2x^2 – \sqrt{2}x -2 =0$.
c)  $x^4 -5 x^2 -6=0$.
d) $2x+ 5y = -3$ và $3x-y =4$

Bài 2.

a) Vẽ đồ thị (P) của hàm số $y = x^2$ và đường thẳng (D): $y = x + 2$ trên cùng một hệ trục tọa độ.
b) Tìm tọa độ giao điểm của (P) và (D) ở câu trên bằng phép tính.

Bài 3. Thu gọn các biểu thức sau:
a) $A = \dfrac{{\sqrt x }}{{\sqrt x – 2}} + \dfrac{{\sqrt x – 1}}{{\sqrt x + 2}} + \dfrac{{\sqrt x – 10}}{{x – 4}}\left( {x \ge 0,x \ne 4} \right)$
b) $B = (13-4\sqrt{3})(7+4\sqrt{3})-8\sqrt{20+2\sqrt{43+24\sqrt{3}}}$.
Bài 4. Cho phương trình $x^2 – mx+m-2=0$ (1) ($x$ là ẩn số).

a) Chứng minh phương trình (1) luôn có 2 nghiệm phân biệt với mọi giá trị $m$.
b) Định $m$ để hai nghiệm $x_1, x_2$ của (1) thỏa $\dfrac{x_1^2-2}{x_1-1}.\dfrac{x_2^2-2}{x_2-1} = 4$.
Bài 5. Cho tam giác $ABC$ có $AB < AC$ có ba góc nhọn. Đường tròn tâm $O$ đường kính $BC$ cắt các cạnh $AC, AB$ lần lượt là tại $E, F$. Gọi $H$ là giao điểm của $BE$ và $CF$. D là giao điểm của $AH$ và $BC$.
a) Chứng minh $AD \bot BC$ và $AH.AD = AE.AC$.
b) Chứng minh $EFDO$ là tứ giác nội tiếp.
c) Trên tia đối của tia $DE$ lấy điểm $L$ sao cho $DL = DF$. Tính số đo góc $BLC$.
d) Gọi $R, S$ lần lượt là hình chiếu của $B, C$ lên $EF$. Chứng minh $DE + DF = RS$.

II. ĐÁP ÁN

Bài 1. Giải các phương trình và hệ phương trình sau:
a) $x^2 -8x +15 =0$
$\Delta ‘ =1 $
Hai nghiệm của phương trình là $x_1 = 3$; $x_2 =5$
b)  $2x^2 – \sqrt{2}x -2 =0$
$\Delta =18$
Hai nghiệm của phương trình là $x_1 = \sqrt{2}$; $x_2 = \dfrac{-\sqrt{2}}{2}$
c) $x^4 – 5x^2 -6 =0 $
Đặt $t= x^2 \ge 0$
Phương trình trở thành $t^2 -5t -6=0$
$\Delta = 49$
$t_1 = -1$ (loại) và $t_2 = 6$ (nhận)
Với $t=6 \Rightarrow x= \pm \sqrt{6}$
d) $2x+ 5y =-3 \;\; (1)$ và $3x-y =4 \;\; (2)$
$\Leftrightarrow  2x+5y = -3 \;\; (1) $ và $17x = 17 \;\; ((1) + 5\cdot (2))$
$ \Leftrightarrow  x=1 $ và $y= -1$.

Bài 2.

a) Lưu ý: $(P)$ đi qua $O(0;0)$, $( \pm 1 ;1)$, $\pm 2; 4 )$
$(D)$ đi qua $(1;3)$, $(0;2)$

Đồ thị:
b) Phương trình hoành độ giao điểm của $(P)$ và $(D)$ là:
$x^2 = x + 2 \Leftrightarrow x^2 -x-2=0 $

$\Leftrightarrow  x=-1$ và $x=2$
$y(-1) = 1$, $y(2)=4$
Vậy tọa độ giao điểm của $(P)$ và $(D)$ là $(2;4)$, $(-1;1)$.

Bài 3.
a) $A=\dfrac{\sqrt{x}}{\sqrt{x}-2}+ \dfrac{\sqrt{x}-1}{\sqrt{x}+2}+ \dfrac{\sqrt{x}-10}{x-4} $
$= \dfrac{\sqrt{x} \left( \sqrt{x}+2 \right) + \left( \sqrt{x} -1 \right) \left( \sqrt{x}-2 \right) + \sqrt{x}-10}{x-4} $
$= \dfrac{x+2\sqrt{x}+x – 2\sqrt{x}-\sqrt{x}+2+ \sqrt{x}-10}{x-4}
= \dfrac{2x-8}{x-4} =2$
b) $B=\left( 13- 4\sqrt{3} \right) \left( 7+ 4\sqrt{3} \right) – 8\sqrt{20 + 2\sqrt{43 + 24\sqrt{3}}} $
$= 43 + 24\sqrt{3} – 8 \sqrt{20 + 2\sqrt{\left( 13-4\sqrt{3} \right) \left( 7+4\sqrt{3} \right) }} $
$= 43 + 24\sqrt{3} – 8\sqrt{\left( \sqrt{13-4\sqrt{3}} + \sqrt{7+ 4\sqrt{3}} \right) ^2} $
$= 43 + 24\sqrt{3} -8 \left( \sqrt{\left( 2\sqrt{3}-1 \right) ^2} + \sqrt{\left( 2+ \sqrt{3} \right) ^2 } \right) $
$= 43 + 24\sqrt{3} – 8 \left( 3\sqrt{3}+1 \right) $
$=35$.
Bài 4.

a) $x^2 – mx +m-2 =0$ $(1)$
$\Delta = m^2 -4m +8 = (m-2)^2 + 4 >0, \; \forall m$
Do đó phương trình $(1)$ luôn có hai nghiệm phân biệt.
b) Theo Viet, ta có:

$S= x_1 + x_2 = m $ và $P = x_1 \cdot x_2 = m-2$
$\dfrac{x_1^2 -2}{x_1-1} \cdot \dfrac{x_2^2-2}{x_2-1} =4 $
$\Leftrightarrow x_1^2x_2^2 – 2\left( x_1^2 + x_2^2 \right) + 4 = 4x_1x_2 – 4 \left( x_1 + x_2 \right) +4 $
$\Leftrightarrow P^2 -2 \left( S^2 -2P \right) -4P + 4S =0 $
$\Leftrightarrow P^2 -2S^2 + 4S =0 $
$\Leftrightarrow (m-2)^2 -2m^2 + 4m =0 $
$\Leftrightarrow -m^2 +4 =0 $
$\Leftrightarrow m= \pm 2$
Cách khác:
$x_1$, $x_2$ là hai nghiệm của phương trình nên:
$x_1^2 -mx_1 +m -2=0 \Rightarrow m= \dfrac{x_1^2-2}{x_1-1}$
$x_2^2 -mx_2 +m-2 =0 \Rightarrow m= \dfrac{x_2^2-2}{x_2-1}$
$\dfrac{x_1^2-2}{x_1-1} \cdot \dfrac{x_2^2 -2 }{x_2-1} =4
\Leftrightarrow m^2 =4 \Leftrightarrow m= \pm 2$.
Bài 5.


a) $\angle BEC = \angle BFC =90 ^\circ $
$H$ là trực tâm của $\triangle ABC \Rightarrow$ $AD$ là đường cao của $\triangle ABC \Rightarrow AD \bot BC$.
$\triangle ADC \backsim \triangle AEH \Rightarrow AH \cdot AD = AE \cdot AC$.
b) $\angle EOC = 2\angle EFC $
Tứ giác $HFBD$ nội tiếp $\Rightarrow \angle CFD = \angle EBC$ mà $\angle EBC = \angle CFE$
$\Rightarrow \angle CFD = \angle CFE \Rightarrow \angle DFE = 2\angle CFE$
Suy ra: $\angle EOC = \angle DFE \Rightarrow$ tứ giác $EFDO$ nội tiếp.
c) $EFDO$ nội tiếp $\Rightarrow \angle EDF = \angle EOF = 2\angle FCE$ (1)
Tam giác $DFL$ cân tại $D$ $\Rightarrow \angle EDF = 2\angle FLE$ (2)
Từ (1) và (2) $\Rightarrow \angle FCE = \angle FLE$
$\Rightarrow$ $EFLC$ nội tiếp $\Rightarrow L \in (O) \Rightarrow \angle BLC =90^\circ $
d) $\angle BIC =90^\circ \Rightarrow $ $SRBI$ là hình chữ nhật $\Rightarrow RS= BI$ (3)
$DF = DL$ và $OF = OL \Rightarrow $ $OD$ là trung trực của $FL$
$\Rightarrow \angle BIL = \angle BEF$ (vì cung $BL$ và $BF$ bằng nhau)
Mà $\angle BEF = \angle EBI$ nên $\angle BIL = \angle EBI \Rightarrow BE // LI$
$\Rightarrow $ $BEIL$ là hình thang cân $\Rightarrow EL = BI$ (4)
Từ (3) và (4) $\Rightarrow EL = RS$ hay $DE + DF = RS$.

 

 

Đề thi và đáp án thi vào lớp 10 TPHCM 2014

I. ĐỀ thi vào lớp 10 TPHCM 2014

Bài 1. Giải các phương trình và hệ phương trình sau:
a) $x^2-7x+12 = 0$
b) $x^2-(\sqrt{2}+1)x+\sqrt{2} = 0$
c) $x^4-9x^2+20=0$
d) $3x-2y=4$ và $ 4x-3y=5. $

Bài 2.
a) Vẽ đồ thị (P) của hàm số $y = x^2$ và đường thẳng $(D):y=2x+3$ trên cùng một hệ trục tọa độ.
b) Tìm tọa độ giao điểm của (P) và (D) ở câu trên bằng phép tính.
Bài 3. Thu gọn các biểu thức sau:
a) $A = \frac{{5 + \sqrt 5 }}{{\sqrt 5 + 2}} + \frac{{\sqrt 5 }}{{\sqrt 5 – 1}} – \frac{{3\sqrt 5 }}{{3 + \sqrt 5 }}$
b) $B = \left( {\frac{x}{{x + 3\sqrt x }} + \frac{1}{{\sqrt x + 3}}} \right):\left( {1 – \frac{2}{{\sqrt x }} + \frac{6}{{x + 3\sqrt x }}} \right)$ với $x > 0$.
Bài 4. Cho phương trình $x^2-mx-1=0$ (1) ($x$ là ẩn).

a) Chứng minh phương trình (1) luôn có hai nghiệm trái dấu.
b) Gọi $x_1, x_2$ là các nghiệm của phương trình (1). Tính giá trị của biểu thức $P = \dfrac{x_1^2+x_1-1}{x_1} – \dfrac{x_2^2+x_2-1}{x_2}$.
Bài 5. Cho tam giác $ABC$ có ba góc nhọn, nội tiếp đường tròn tâm $O$ $(AB < AC)$. Các đường cao $AD$ và $CF$ của tam giác $ABC$ cắt nhau tại $H$.
a) Chứng minh tứ giác $BFHD$ nội tiếp. Suy ra $\angle AHC = 180^o – \angle ABC$.
b) Gọi $M$ là điểm bất kì trên cung nhỏ $BC$ của đường tròn $(O)$. ($M$ khác $B$ và $C$) và $N$ là điểm đối xứng của $M$ qua $AC$. Chứng minh tứ giác $AHCN$ nội tiếp.
c) Gọi $I$ là giao điểm của $AM$ và $HC$. $J$ là giao điểm của $AC$ và $HN$. Chứng minh $\angle AJI = \angle ANC$.
d) Chứng minh rằng $OA$ vuông góc với $IJ$.

II. ĐÁP ÁN

Bài 1.
a) $x^2 – 7x +12 =0$
$\Delta =1 $
Hai nghiệm của phương trình là $x_1 = 3$; $x_2 =4$
b)  $x^2 – \left( \sqrt{2}+1 \right) + \sqrt{2} = 0 $
Phương trình có $a+b+c = 0$ nên hai nghiệm là $x_1=1$; $x_2 = \sqrt{2}$
c)  $x^4 – 9x^2 +20 =0$
Đặt $t= x^2 \ge 0$
Phương trình trở thành: $t^2 -9t +20 =0$
$\Delta =1 $
$t_1 =4$ (nhận) và $t_2 =5$ (nhận)
Với $t=4 \Rightarrow x= \pm 2$; với $t=5 \Rightarrow x= \pm \sqrt{5}$
d)  $3x-2y=4  (1) $ và $4x-3y =5  (2)$
$\Leftrightarrow  3x-2y=4  (1) $ và  $x= 2  (3\cdot (1) – 2 \cdot (2))$
$\Leftrightarrow  x=2$ và $y=1$.

Bài 2.
a) Đồ thị:

Lưu ý: $(P)$ đi qua $O(0;0)$, $( \pm 1 ;1)$, $\pm 2; 4 )$
$(D)$ đi qua $(-1;1)$, $(0;3)$
b) Phương trình hoành độ giao điểm của $(P)$ và $(D)$ là:
$x^2 = 2x+3 \Leftrightarrow x^2 -2x -3 =0$

$\Leftrightarrow  x = -1$ và $x= 3$
$y(-1) = 1$; $y(3) =9 $
Vậy tọa độ giao điểm của $(P)$ và $(D)$ là $(-1;1)$, $(3;9)$.
Bài 3.
a) $A= \dfrac{5+ \sqrt{5}}{\sqrt{5}+2} + \dfrac{\sqrt{5}}{\sqrt{5}-1}- \dfrac{3\sqrt{5}}{3+ \sqrt{5}} $
$= \dfrac{\left( 5+ \sqrt{5} \right) \left( \sqrt{5}-2 \right) }{1} + \dfrac{\sqrt{5}\left( \sqrt{5}+1 \right) }{4} – \dfrac{3\sqrt{5}\left( 3- \sqrt{5} \right) }{4} $
$= 3\sqrt{5}-5 + \dfrac{5+ \sqrt{5}-9\sqrt{5}+15}{4} $
$=3\sqrt{5}-5 + 5 -2\sqrt{5} = \sqrt{5}$.
b) $B=\left( \dfrac{x}{x+ 3\sqrt{x}}+ \dfrac{1}{\sqrt{x}+3} \right) : \left( 1- \dfrac{2}{\sqrt{x}} + \dfrac{6}{x+ 3\sqrt{x}} \right) \hspace{1.5cm} (x > 0) $
$= \left( \dfrac{\sqrt{x}}{\sqrt{x}+3} + \dfrac{1}{\sqrt{x}+3} \right) : \left( \dfrac{x+ 3\sqrt{x}- 2 \left( \sqrt{x} + 3 \right) + 6}{\sqrt{x} \left( \sqrt{x}+ 3 \right) } \right) $
$= \left( \dfrac{\sqrt{x}+ 1}{\sqrt{x} + 3} \right) : \left( \dfrac{\sqrt{x}+ 1}{\sqrt{x}+3} \right) =1$
Bài 4.

a) $x^2 – mx -1 =0$ $(1)$
$\Delta = m^2 + 4 >0$
Do đó phương trình luôn có hai nghiệm phân biệt với mọi $m$.
Theo Viet, ta có: $P = x_1 \cdot x_2 = \dfrac{c}{a} = -1 <0 $
Vậy phương trình luôn có hai nghiệm trái dấu.
b) Theo Viet, ta có:

$S= x_1 + x_2 = m $ và  $P = x_1 \cdot x_2 = -1$
$P = \dfrac{x_1^2 + x_1 -1}{x_1} – \dfrac{x_2^2 + x_2 -1}{x_2} $
$= \dfrac{x_1^2 + x_1 + x_1 x_2}{x_1} – \dfrac{x_2^2 + x_2 + x_1 x_2 }{x_2} $
$= x_1 + 1 + x_2 – x_2 -1 -x_1 =0$
Bài 5.


a) Ta có:
$\angle BFC = \angle BDA = 90^ \circ$ ($AD$, $CF$ là các đường cao)
$\Rightarrow \angle BFC + \angle BDA =180^ \circ \Rightarrow $ tứ giác $BFHD$ nội tiếp
$\Rightarrow \angle ABC + \angle DHF =180 ^\circ $
$\angle ABC + \angle AHC = 180 ^\circ $
$\angle AHC = 180 ^\circ – \angle ABC$.
b) Ta có $\angle AMC = \angle ABC$ ( cùng chắn cung $AC$)
$\angle AMC = \angle ANC$ (tính chất đối xứng)
$\Rightarrow \angle ANC = \angle ABC$
Mà $\angle AHC + \angle ABC = 180 ^\circ$
$\Rightarrow \angle AHC + \angle ANC = 180 ^\circ$
$\Rightarrow $ $AHCN$ nội tiếp.
c) Ta có $\angle MAC = \angle NAC$ ( tính chất đối xứng)
$\angle NAC = \angle NHC $ (cùng chắn cung $NC$)
$\Rightarrow \angle MAC = \angle NHC$ hay $\angle IAJ = \angle IHJ $
$\Rightarrow $ $AHIJ$ nội tiếp (2 đỉnh kề cùng nhìn cạnh dưới góc bằng nhau)
$\Rightarrow \angle AJI = 180 ^\circ \angle AHC = \angle ANC$.
d) Vẽ tiếp tuyến $xy$ của $(O)$ tại $A$ $\Rightarrow OA \bot xy$
$\angle AJI = \angle ANC = \angle AMC = \angle yAC \Rightarrow IJ // xy $
$\Rightarrow OA \bot IJ$.

Đề thi và đáp án thi vào lớp 10 TPHCM 2013

I. Đề thi vào lớp 10 TPHCM 2013

Bài 1. Giải các phương trình và hệ phương trình sau:
a) $x^2-5x+6 = 0$.
b) $x^2-2x-1=0$
c) $x^4+3x^2-4=0$
d) $2x-y=3$ và $ x+2y=-1 $

Bài 2.
a) Vẽ đồ thị (P) của hàm số $y = x^2$ và đường thẳng $(D): y = -x+2$ trên cùng một hệ trục tọa độ.
b) Tìm tọa độ các giao điểm của $(P)$ và $(D)$ ở câu trên bằng phép tính.
Bài 3. Thu gọn các biểu thức sau:
a) $A = \left( {\dfrac{{\sqrt x }}{{\sqrt x + 3}} + \dfrac{3}{{\sqrt x – 3}}} \right).\dfrac{{\sqrt x + 3}}{{x + 9}}$ với $x \ge 0,x \ne 9$
b) $B = 21{\left( {\sqrt {2 + \sqrt 3 } + \sqrt {3 – \sqrt 5 } } \right)^2} – 6{\left( {\sqrt {2 – \sqrt 3 } + \sqrt {3 + \sqrt 5 } } \right)^2} – 15\sqrt {15} $
Bài 4. Cho phương trình $8x^2-8x+m^2+1=0$ (1) ($x$ là ẩn số).

a) Định $m$ để phương trình (1) có nghiệm $x = \dfrac{1}{2}$.
b) Định $m$ để phương trình (1) có hai nghiệm $x_1, x_2$ thỏa điều kiện $x_1^4 -x_2^4 =x_1^3- x_2^3$.
Bài 5. Cho tam giác $ABC$ không có góc tù $(AB < AC)$, nội tiếp đường tròn $(O;R)$. $B, C$ cố định, $A$ di động trên cung lớn $BC$). Các tiếp tuyến tại $B$ và $C$ cắt nhau tại điểm $M$. Từ $M$ kẻ đường thẳng song song với $AB$, đường thẳng này cắt $(O)$ tại $D$ và $E$ ($D$ thuộc cung nhỏ $BC$), cắt $BC$ tại $F$, cắt $AC$ tại $I$.
a) Chứng minh $\angle MBC = \angle BAC$. Từ đó suy ra $MBIC$ nội tiếp.
b) Chứng minh $FI.FM = FD.FE$.
c) Đường thẳng $OI$ cắt $(O)$ tại $P$ và $Q$ với $P$ thuộc cung nhỏ $AB$. Đường thẳng $QF$ cắt $(O)$ tại $T$ khác $Q$. Chứng minh ba điểm $P, T, M$ thẳng hàng.
d) Tìm vị trí điểm $A$ trên cung lớn $BC$ sao cho tam giác $IBC$ có diện tích lớn nhất.

II. ĐÁP ÁN

Bài 1.
a) $x^2 – 5x+6=0$
$\Delta = 25-24 =1 $
$\Leftrightarrow  x=\dfrac{5-1}{2}=2 $ hoặc $x=\dfrac{5+1}{2} =3 $
b)  $x^2 -2x -1 =0 $
$\Delta ‘ = 1+1 =2 $
$\Leftrightarrow x= 1- \sqrt{2}  hoặc x=1+ \sqrt{2}  $
c) Đặt $u= x^2 \ge 0$ phương trình trở thành:
$u^2 +3u-4=0$

$\Leftrightarrow u=1  hoặc u=-4  (l)$
Do đó phương trình $\Leftrightarrow x^2 =1 \Leftrightarrow x= \pm 1 $
Cách khác:
Phương trình tương đương: $\left( x^2 -1 \right) \cdot \left( x^2 + 4 \right) =0$

$\Leftrightarrow x^2 -1 =0 \Leftrightarrow x= \pm 1$
d)  $2x-y=3  (1)$  và   $x+ 2y = -1  (2)$
$\Leftrightarrow  2x-y=3  (1) và   5x=5 (3)\left( (2)+2(1) \right) $
$\Leftrightarrow  x=1 $ và   $y=-1$.

Bài 2.
a) Đồ thị:

Lưu ý: $(P)$ đi qua $O(0;0)$, $( \pm 1 ;1)$, $( \pm 2; 4 )$
$(D)$ đi qua $(1;1)$, $(0;2)$
b) Phương trình hoành độ giao điểm của $(P)$ và $(D)$ là:
$x^2 = -x + 2 \Leftrightarrow x^2 +x-2=0 $

$\Leftrightarrow  x=1 hoặc x=-2$
$y(1) = 1$, $y(-2)=4$
Vậy tọa độ giao điểm của $(P)$ và $(D)$ là $(-2;4)$, $(1;1)$.
Bài 3. Thu gọn các biểu thức sau:
a) Với $x \ge 0;  x\ne 9$
$A=\left( \dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{3}{\sqrt{x}-3} \right) \cdot \dfrac{\sqrt{x}+3}{x+9}$
$A= \dfrac{x-3\sqrt{x}+3\sqrt{x}+9}{\left( \sqrt{x}+3 \right) \cdot \left( \sqrt{x}-3 \right) } \cdot \dfrac{\sqrt{x}+3}{x+9} $
$=\dfrac{1}{\sqrt{x}-3}$

b) $B=21 \left( \sqrt{2+ \sqrt{3}} + \sqrt{3- \sqrt{5}} \right) ^2 -6 \left( \sqrt{2-\sqrt{3}} + \sqrt{3+\sqrt{5}} \right) ^2 -15\sqrt{15}$
$= \dfrac{21}{2}\left( \sqrt{4+2\sqrt{3}} + \sqrt{6-2\sqrt{5}} \right) ^2 -3 \left( \sqrt{4-2\sqrt{3}} + \sqrt{6+2\sqrt{5}} \right) ^2 – 15\sqrt{15} $
$=\dfrac{21}{2} \left( \sqrt{3}+1+\sqrt{5}-1 \right) ^2 -3 \left( \sqrt{3} -1 + \sqrt{5}+1 \right) ^2 – 15\sqrt{15} $
$= \dfrac{15}{2}\left( \sqrt{3}+\sqrt{5}\right) ^2 – 15 \sqrt{15}=60$
Bài 4.

a) Phương trình (*) có nghiệm $x=\dfrac{1}{2} \Leftrightarrow 2-4+m^2+1=0$

$\Leftrightarrow m^2=1 \Leftrightarrow m= \pm 1$
b) $\Delta ‘ = 16-8m^2 -8 = 8 \left( 1-m^2 \right) $
Khi $m= \pm 1$ thì ta có $\Delta ‘ =0 $ tức là: $x_1=x_2$ khi đó $x_1^4 – x_2^4 = x_1^3 -x_2^3$ (thỏa điều kiện).
Để phương trình có hai nghiệm phân biệt thì $m^2 <1 \Leftrightarrow -1 < m < 1$.
Khi đó ta có:
$x_1^4 – x_2^4 = x_1^3-x_2^3 $

$\Leftrightarrow \left( x_1^2 -x_2 ^2 \right) \left( x_1 ^2 + x_2 ^2 \right) = \left( x_1 -x_2 \right) \left( x_1 ^2 + x_2 ^2 +x_1 x_2 \right) $

$\Leftrightarrow \left( x_1 + x_2 \right) \left( x_1 ^2 + x_2 ^2 \right) = \left( x_1 ^2 + x_2 ^2 + x_1 x_2 \right) \;\; \left( \text{Do } x_1 \text{ khác } x_2 \right) $
$\Leftrightarrow \left( x_1 + x_2 \right) \left[ \left( x_1 + x_2 \right) ^2 – 2x_1 x_2 \right] = \left( x_1 + x_2 \right) ^2 – x_1 x_2 $
$\Leftrightarrow S\left( S^2 -2P \right) = S^2 – P $
$\Leftrightarrow 1 \left( 1^2 -2P \right) = 1^2 – P  \left( Vì  S=1 \right) $
$\Leftrightarrow P=0 \Leftrightarrow m^2 + 1 =0  (VN)$

Vậy $m= \pm 1 $
Cách khác
Khi $\Delta \ge 0$ ta có:
$x_1 + x_2 =1$ và $x_1 x_2 =\dfrac{m^2+1}{8}$
$x_1 ^4 – x_2 ^4 = x_1 ^3 – x_2 ^3 \Leftrightarrow x_1 ^3 \cdot \left( x_1 -1 \right) – x_2 ^3 \left( x_2 -1 \right) =0 $
$\Leftrightarrow -x_1 ^3x_2 + x_1 x_2 ^3 =0 \;\; \left( \text{thế } x_1 -1 = -x_2 \text{ và } x_2 -1 = – x_1 \right) $
$\Leftrightarrow x_1 x_2 \left( x_1 ^2 – x_2 ^2 \right) =0$
$\Leftrightarrow \left( x_1 + x_2 \right) \left( x_1 – x_2 \right) =0 \;\; \left( \text{vì } x_1 x_2 \ne 0 \right)$
$\Leftrightarrow x_1 = x_2 \;\; \left( \text{vì } x_1 + x_2 =1 \ne 0 \right) $
$\Leftrightarrow m= \pm 1$
Bài 5.


a) Ta có $\angle BAC = \angle MBC$ do cùng chắn cung $BC$
Và $\angle BAC = \angle MIC$ do $AB // MI$
Vậy $\angle MBC = \angle MIC$, nên bốn điểm $I$, $C$, $M$, $B$ cùng nằm trên đường tròn đường kính $OM$. (vì 2 điểm $B$, $C$ cùng nhìn $OM$ dưới một góc vuông)
b) Do 2 tam giác $FBD$ và $FEC$ đồng dạng nên $FB \cdot FC = FE \cdot FD$.
Và 2 tam giác $FBM$ và $FIC$ đồng dạng nên $FB \cdot FC = FI \cdot FM $.
Từ đó suy ra: $FI \cdot FM = FD \cdot FE$
c) Ta có $\angle PTQ = 90^ \circ$
$\triangle FIQ \backsim \triangle FTM$ ($\angle IFQ = \angle TFM$ và $\dfrac{FI}{FQ}= \dfrac{FT}{FM}$ vì $FI\cdot FM = FD \cdot FE = FT \cdot FQ$)
Nên $\angle FIQ = \angle FTM$ mà $\angle FIQ = \angle OIM = 90^ \circ $
Do đo $P$, $T$, $M$ thẳng hàng.
d) Ta có $BC$ không đổi nên $S_{IBC}$ lớn nhất khi và chỉ khi khoảng cách từ $I$ đến $BC$ lớn nhất.
Do đo $I$ trùng với $O$ thỏa yêu cầu bài toán vì $I$ nằm trên cung $BC$ của đường tròn đường kính $OM$. Khi $I$ trùng $O$ thì $\triangle ABC$ vuông tại $B$.
Vậy diện tích tam giác $IBC$ lớn nhất khi và chỉ khi $AC$ là đường kính của đường tròn $(O;R)$.

 

Đề thi và đáp án vào lớp 10 TPHCM 2017

I. ĐỀ

Câu 1.
a) Giải các phương trình: $x^2=(x-1)(3x-2)$.
b) Một miếng đất hình chữ nhật có chu vi $100m$. Tính chiều dài và chiều rộng của miếng đất biết rằng 5 lần chiều rộng hơn 2 lần chiều dài $40m$.

Câu 2. Trong mặt phẳng tọa độ $Oxy$:
a) Vẽ đồ thị $(P)$ của hàm số $y=\dfrac{1}{4}x^2$.
b) Cho đường thẳng $(D):y=\dfrac{3}{2}x+m$ đi qua điểm $C(6;7)$. Tìm tọa độ giao điểm $(D)$ và $(P)$.
Câu 3.
a) Thu gọn biểu thức $A=(\sqrt{3}+1)\sqrt{\dfrac{14-6\sqrt{3}}{5+\sqrt{3}}}$.
b) Lúc 6 giờ sáng , bạn An đi xe đạp từ nhà (điểm $A$) đến trường (điểm $B$) phải leo lên và xuống một con dốc (như hình bên dưới). Cho biết đoạn thằng $AB$ dài $762m$, góc $A=6^\circ$, góc $B=4^\circ$.

  1. Tính chiều cao $h$ của con dốc.
  2. Hỏi bạn An đến trường lúc mấy giờ? Biết rằng tốc độ trung bình lên dốc là $4km/h$ và tốc độ trung bình xuống dốc là $19km/h$.

Câu 4. Cho phương trình: $x^2-(2m-1)x+m^2-1=0\,(1)$ ($x$ là ẩn số).

a) Tìm điều kiện của $m$ để phương trình $(1)$ có 2 nghiệm phân biệt.
b) Định $m$ để hai nghiệm $x_1$, $x_2$ của phương trình $(1)$ thỏa mãn:
$$(x_1-x_2)^2=x_1-3x_2$$
Câu 5. Cho tam giác $ABC$ vuông tại $A$. Đường tròn tâm $O$ đường kính $AB$ cắt các đoạn $BC$ và $OC$ lần lượt tại $D$ và $I$. Gọi $H$ là hình chiếu của $A$ lên $OC$; $AH$ cắt $BC$ tại $M$.
a) Chứng minh tứ giác $ACDH$ nội tiếp và $\angle{CHD}=\angle{ABC}$.
b) Chứng minh hai tam giác $OHB$ và $OBC$ đồng dạng và $HM$ là tia phân giác của góc $BHD$.
c) Gọi $K$ là trung điểm $BD$. Chứng minh $MD.BC=MB.CD$ và $MB\cdot MD=MK\cdot MC$.
d) Gọi $E$ là giao điểm của $AM$ và $OK$; $J$ là giao điểm của $IM$ và $(O)$ ($J$ khác $I$). Chứng minh hai đường thẳng $OC$ và $EJ$ cắt nhau tại một điểm nằm trên $(O)$.

II. ĐÁP ÁN

Câu 1.
a) $x^2 = (x-1)(3x-2) $
$\Leftrightarrow x^2= 3x^2 – 5x + 2 $
$\Leftrightarrow 2x^2 – 5x+2=0 $
$\Leftrightarrow 2x^2 – 4x -x +2 =0 $
$\Leftrightarrow 2x(x-2)-(x-2) =0 $
$\Leftrightarrow (x-2)\left( 2x-1 \right) =0 $

$\Leftrightarrow  x=2$ hoặc $x=\dfrac{1}{2} $
b) Gọi $a$, $b$ (m) lần lượt là chiều dài và chiều rộng của hình chữ nhật. ($a,b >0$)
Ta có hệ phương trình:
$2(a+b) = 100$ và  $5b-2a=40$
$\Leftrightarrow a=30$ và $b= 20$
Vậy chiều dài và chiều rộng của hình chữ nhật lần lượt là 30m và 20m.

Câu 2. Trong mặt phẳng tọa độ $Oxy$:
a) Đồ thị:

Đồ thị $(P)$ đi qua điểm $(2; 1)$, $(-2;1)$ và $O(0;0)$
b) Đường thẳng $(D)$ đi qua điểm $C(6;7)$ nên
$7=\dfrac{3}{2}.6+m \Rightarrow m= -2$
Do đó phương trình đường thẳng $(D)$ là $(D):y=\dfrac{3}{2}x-2$.
Phương trình hoành độ giao điểm của $(D)$ và $(P)$ là:

$\dfrac{3}{2}x-2= \dfrac{1}{4}x^2 $
$\Leftrightarrow x^2 – 6x+8 =0 $
$\Leftrightarrow x= 4 \Rightarrow y= 4 $ hoặc $x=2 \Rightarrow y= 1$
Vậy các giao điểm của $(D)$ và $(P)$ có tọa độ là $(4;4)$ và $(2,1)$
Câu 3.
a) $\left( \sqrt{3}+1 \right) \sqrt{\dfrac{14-6\sqrt{3}}{5+\sqrt{3}}} = \left( \sqrt{3}+1 \right) \sqrt{\dfrac{20+4\sqrt{3}-10\sqrt{3}-6}{5+\sqrt{3}}} $
$= \left( \sqrt{3}+1 \right) \sqrt{\dfrac{\left( 4-2\sqrt{3}\right) \left( 5+ \sqrt{3} \right) }{5 + \sqrt{3}}} = \left( \sqrt{3}+1 \right) \sqrt{\left( \sqrt{3}-1 \right) ^2} $
$= \left( \sqrt{3}+ 1 \right) \left( \sqrt{3}-1 \right) =3-1 =2$
b)

  1. Ta có:
    $AH = h.cotg \angle CAH= h.cotg \; 6^\circ $
    $BH = h.cotg \angle CBH= h.cotg \; 4^\circ$
    Mà $AH + BH = AB$ nên
    $h.cotg \; 6^\circ + h.cotg \; 4^\circ = 762 $
    $\Leftrightarrow h= \dfrac{762}{cotg \; 6^\circ + cotg \; 4^\circ } $ $\Leftrightarrow h \approx 32$
    Vậy chiều cao của con dốc là $h \approx 32m$
  2.  $AC= \dfrac{h}{\sin \angle CAH} \approx \dfrac{32}{\sin 6^\circ }$
    Vận tốc An lên dốc là $4\; km/h = 4000 \; m /h$
    Thời gian An lên dốc là $\dfrac{\dfrac{32}{\sin 6^\circ }}{4000}$ (giờ)
    $BC= \dfrac{h}{\sin \angle CBH} \approx \dfrac{32}{\sin 4^\circ }$
    Vận tốc An xuống dốc là $19 \; km/h = 19000 \; m/h$
    Thời gian An xuống dốc là $\dfrac{\dfrac{32}{\sin 4^\circ }}{19000}$ (giờ)
    Thời gian để An đến trường là $\dfrac{\dfrac{32}{\sin 6^\circ }}{4000} + \dfrac{\dfrac{32}{\sin 4^\circ }}{19000} \approx 0.1$ (giờ) $\approx 6$ (phút)
    Vậy An đến trường lúc 6 giờ 6 phút.

Câu 4. $x^2 – (2m-1)x + m^2 -1 =0$ (1)

a) Để phương trình (1) có hai nghiệm phân biệt thì
$a=1 \ne 0$ và $\Delta >0 $
$\Leftrightarrow (2m-1)^2 – 4 \left( m^2 -1 \right) >0$
$\Leftrightarrow 4m^2 – 4m +1 – 4m^2 + 4 >0 \Leftrightarrow m < \dfrac{5}{4}$
b) Để phương trình có hai nghiệm $x_1$, $x_2$ thì $a=1 \ne 0$ và $\Delta \ge 0 $ $\Rightarrow m \le \dfrac{5}{4}$
Theo Viet, ta có: $S= 2m-1 $, $P= m^2 -1$
$\left( x_1 -x_2 \right) ^2 = x_1 – 3x_2 $
$\Leftrightarrow \left( x_1 + x_2 \right) ^2 = x_1 + x_2 + 4x_1x_2 -4x_2 $
$\Leftrightarrow (2m-1)^2 = 2m-1 + 4m^2 – 4 – 4x_2 $
$\Leftrightarrow 4m^2 -4m +1 = 2m -1 + 4m^2 -4 – 4x_2 $
$\Leftrightarrow 4x_2 = 6m-6 \Leftrightarrow x_2 = \dfrac{3}{2}m – \dfrac{3}{2}$
$S= x_1 + x_2 = 2m -1 \Rightarrow x_1 = \dfrac{1}{2}m+ \dfrac{1}{2}$
$P = x_1x_2 = m^2 -1 $
$\Rightarrow \left( \dfrac{1}{2}m + \dfrac{1}{2} \right) \left( \dfrac{3}{2}m – \dfrac{3}{2} \right) = m^2 -1 \Leftrightarrow m^2 -1 =0 \Leftrightarrow
m =1 (n)$ hay
m= -1 (n)
Vậy $m=1$ hoặc $m=-1$

Câu 5.

Cho tam giác $ABC$ vuông tại $A$. Đường tròn tâm $O$ đường kính $AB$ cắt các đoạn $BC$ và $OC$ lần lượt tại $D$ và $I$. Gọi $H$ là hình chiếu của $A$ lên $OC$; $AH$ cắt $BC$ tại $M$.
a) $\angle ADB = 90^\circ $ (góc nội tiếp chắn nửa đường tròn)
$\Rightarrow \angle AHC = \angle ADC = 90^\circ \Rightarrow ACDH$ là tứ giác nội tiếp.
$\Rightarrow \angle CAD= \angle CHD$.
Mà $\angle CAD= \angle ABC$ (cùng phụ với $\angle ACB$) nên $\angle CHD = \angle ABC$.
b) Theo câu a), ta có: $\angle CHD = \angle ABC \Rightarrow OBDH$ là tứ giác nội tiếp.
$\Rightarrow \angle OHB = \angle ODB$.
Mà $\angle ODB = \angle OBD$ nên $\angle OHB = \angle OBD \Rightarrow \triangle OHB \backsim \triangle OBC$
$\angle OHB = \angle OBD = \angle CHD \Rightarrow 90^\circ – \angle OHB = 90^\circ – \angle CHD \Rightarrow \angle BHM = \angle DHM$.
Do đó $HM$ là tia phân giác của $\angle BHD$
c) $HM$ là phân giác $\angle BHD$ mà $HM \bot HC$ nên $HC$ là phân giác ngoài của $\angle BHD$.
Do đó ta có $\dfrac{MB}{MD}= \dfrac{HB}{HD}= \dfrac{CB}{CD} \Rightarrow MD.BC= MB.CD$
Tiếp tuyến tại $B$ của $(O)$ cắt $AM$ tại $E$.
$\Rightarrow \angle OBE =90 ^\circ \Rightarrow OBEH$ là tứ giác nội tiếp. $\Rightarrow \angle BOE = \angle BHE$, mà $\angle BHE = \angle DHE$ nên $\angle BOE = \angle DHE$ (1)
Lại có $OBDH$ nội tiếp (cmt) nên 5 điểm $O$, $B$, $E$, $D$, $H$ cùng nằm trên một đường tròn.
$\Rightarrow OHDE$ nội tiếp $\Rightarrow \angle DHE = \angle DOE$ (2)
Từ (1) và (2) suy ra $\angle BOE = \angle DOE \Rightarrow OE$ là phân giác $\angle BOD$.
Do đó $O$, $K$, $E$ thẳng hàng.
$\Rightarrow EK \bot BC $
$\angle EKC = \angle EHC =90^\circ \Rightarrow EKHC$ nội tiếp $\Rightarrow MK.MC = MH.ME$.
$BHDE$ nội tiếp nên $MB.MD = MH.ME$.
Vậy $MB.MD = MK.MC$
d) Gọi $F$ là giao điểm của $EJ$ và $OC$.
Ta có $MH.ME = MB.MD$, $MB.MD = MI.MJ$ nên $MH.ME= MI.MJ \ \Rightarrow \triangle MJE \backsim \triangle MHI \Rightarrow \angle MJE = \angle MHI = 90^\circ \Rightarrow \angle IJF = 90^\circ
\Rightarrow \angle IJF$ là góc nội tiếp chắn nửa đường tròn $(O)$.
Do đó $F$ nằm trên đường tròn $(O)$.
Vậy $EJ$ và $OC$ cắt nhau tại điểm $F$ nằm trên đường tròn.