Category Archives: Hệ thức lượng trong tam giác vuông

Tỉ số lượng giác – P3

Bài 1. Cho tam giác $ABC$ vuông tại $A$ có $AB = 3, BC= 5$.
Tính $\sin ABC, \cos ABC, \tan ABC, \cot ABC$.
Lời giải.
Ta có $AC = \sqrt{BC^2-AB^2} = \sqrt{5^2-3^2} = 4$.
Khi đó $\sin ABC = \dfrac{AC}{BC} = \dfrac{4}{5}$
Và $\cos ABC = \dfrac{AB}{BC} = \dfrac{3}{5}$;
$\tan ABC = \dfrac{AC}{AB} = \dfrac{4}{3}$;
$\cot ABC = \dfrac{AB}{AC} = \dfrac{3}{4}$.

Bài 2. 
Cho tam giác $ABC$ cân tại $A$ có $AB = 10, BC = 12$.
a) Tính $\sin ABC$.
b) Vẽ đường cao $BK$. Tính $BK$ và $\sin BAC$.

Lời giải.
a) Gọi $M$ là trung điểm cạnh $BC$, ta có $AM \bot BC$.
$MB = \dfrac{1}{2}BC = 6$, suy ra $AM = \sqrt{AB^2-BM^2} = 8$.
$\sin ABC = \dfrac{AM}{AB} = \dfrac{8}{10} = \dfrac{4}{5}$.
b)
Vẽ đường cao $BK$.
Ta có $\triangle CKB \backsim \triangle CMA$, suy ra $\dfrac{BK}{AM} = \dfrac{CB}{AC} \Rightarrow BK = \dfrac{AM\cdot BC}{AC} = \dfrac{48}{5}$.
Khi đó $\sin BAC = \dfrac{BK}{AB} =\dfrac{48}{50} = \dfrac{24}{25}$.

Bài 3. 
Cho tam giác $ABC$ vuông tại $A$ có $AC = 2, \sin ABC = \dfrac{1}{3}$. Tính $AB$.
Lời giải.
Ta có $\sin ABC = \dfrac{AC}{BC} = \dfrac{1}{3}$, suy ra $BC = 3AC = 6$.\
Từ đó $AB = \sqrt{BC^2-AC^2} =\sqrt{6^2-2^2} =4\sqrt{2}$.
\end{multicols}

Bài 4. 
Cho tam giác $ABC$ có $AB = 1, AC = \sqrt{3}, BC = 2$. Tính số đo các góc của tam giác $ABC$.

Lời giải.

Ta có $AB^2 +AC^2 = 1 +3 = 4 = BC^2$, suy tam giác $ABC$ vuông tại $A$, vậy $\angle BAC = 90^\circ$.\
Ta có $\sin ABC = \dfrac{AC}{BC}= \dfrac{\sqrt{3}}{2}$, suy ra $\angle ABC = 60^\circ$.\
Và $\angle ACB = 180^\circ – \angle BAC – \angle ABC = 30^\circ$.

Bài 5. 
Cho tam giác $ABC$ có $\angle ABC = 60^\circ, \angle ACB = 45^\circ$, đường cao $AH = \sqrt{3}$.

a)Tính độ dài các cạnh của tam giác $ABC$.
b) Dựng đường cao $BK$. Tính $BK$ và $\sin BAC$.

Lời giải. 
a)  $AB .\sin ABC = AH \Leftrightarrow AB \sin 60^\circ = \sqrt{3} \Leftrightarrow AB \dfrac{\sqrt{3}}{2} = \sqrt{3}$, suy ra $AB = 2$.
Tam giác $AHC$ vuông cân, suy ra $AC = \sqrt{2}AH = \sqrt{6}$.
$BH = \sqrt{AB^2-AH^2} = 1, CH = AH = \sqrt{3}$.
Suy ra $BC = 1 + \sqrt{3}$.
b) a có $BK = BC\cdot \sin BCK = (1+\sqrt{3})\sin 45^\circ = \dfrac{1+\sqrt{3}}{\sqrt{2}} = \dfrac{\sqrt{6}+\sqrt{2}}{2}$.
Suy ra $\sin BAC = \dfrac{BK}{AB} = \dfrac{1+\sqrt{3}}{2\sqrt{2}} = \dfrac{\sqrt{2}+\sqrt{6}}{4}$.

Bài 6. Cho hình thoi $ABCD$ có cạnh $AB = 5$, biết $\cot ABD = \dfrac{3}{4}$.

a) Tính $\dfrac{{AC}}{{BD}}$;
b) Tính $AC, BD$.

Lời giải.

a) $\tan ABD=\dfrac{AO}{BO}=\dfrac{4}{3} \Rightarrow AO=\dfrac{4}{3}BO$.
Áp dụng định lí Pitago trong tam giác vuông $AOB$:$AO^2+BO^2=AB^2=5^2=25$.
Khi đó ta có hệ: $AO=\dfrac{4}{3}BO; AO^2+BO^2=25$

$\Leftrightarrow \left\{ \begin{array}{l}
AO=\dfrac{4}{3}BO\\
\left( \dfrac{4}{3}BO\right)^2+BO^2=25\
\end{array} \right.$
$\Leftrightarrow \left\{ \begin{array}{l}
AO=\dfrac{4}{3}BO\\
BO^2=9
\end{array} \right.$
$\Leftrightarrow \left\{ \begin{array}{l}
AO=4\\
BO=3
\end{array} \right.$
Vậy $\dfrac{AC}{BD}=\dfrac{2AO}{2BO}=\dfrac{4}{3}$
b) $AC=2AO=2\cdot 4=8 \quad \text{và} \quad BD=2BO=2\cdot 3=6$.

Bài 7. Cho hình thang $ABCD$ cân có $AB$ là đáy nhỏ và $\angle ADC = 60^\circ$. Đặt $AD = a, AB = b$. Vẽ đường cao $AH$.

a) Tính $AH, DH$ theo $a$.
b) Tìm $a, b$ biết chu vi hình thang bằng 10 và diện tích bằng $3\sqrt 3 $.

Lời giải.

a) $\cos\angle ADH=\dfrac{DH}{AD} \Rightarrow DH=AD.\cos\angle ADH =a.\cos60^\circ=\dfrac{a}{2}$
$\sin \angle ADH=\dfrac{AH}{AD} \Rightarrow AH=AD.\sin \angle ADH=a.\sin 60^\circ=\dfrac{a\sqrt{3}}{2}$
b) Kẻ dường cao $BE$
Do $ABCD$ là hình thang cân nên $AD=BC=a$. $ABEH$ là hình chữ nhật nên $AB=EH=b$
Tính tương tự câu a) ta có $BE=\dfrac{a\sqrt{3}}{2}$ và $EC=\dfrac{a}{2}$
Khi đó $DC=DH+HE+EC=a+b$
Dựa vào chu vi và diện tích hình thang ta có hệ phương trình sau:
$\left\{ \begin{array}{l}
b+a+\left(a+b\right)+a=10\\
\dfrac{1}{2}.\dfrac{a\sqrt{3}}{2}.\left(b+a+b\right)=3\sqrt{3}
\end{array} \right.$
$\Leftrightarrow
\left\{ \begin{array}{l}
3a+2b=10\\
a\left( a+2b \right)=12
\end{array} \right.$
$\Leftrightarrow
\left\{ \begin{array}{l}
2b=10-3a\\
a\left( a+10-3a \right)=12
\end{array} \right.$
$\Leftrightarrow
\left\{ \begin{array}{l}
2b=10-3a\\
-2a^2+10a-12=0
\end{array} \right.$
$\Leftrightarrow
\left\{ \begin{array}{l}
2b=10-3a\\
a=2 \quad \text{hay} \quad a=3
\end{array} \right.$
Vậy $(a;b)$ là $(2;2)$ và $(3; \dfrac{1}{2})$.

 

Hệ thức lượng trong tam giác vuông – Chứng minh đẳng thức P2

Bài 1. Cho tam giác $ABC$ vuông tại $A$ có $BC = 3\sqrt{5}$, hình vuông $ADEF$ có $D$ thuộc $AB$, $E$ thuộc $BC$ và $F$ thuộc $AC$. Biết hình vuông có cạnh 2, tính độ dài các cạnh $AB, AC$ (giả sử $AB < AC$).
Lời giải. Đặt $BD = x, CF = y$, vì $AB < AC$ nên $x < y$.
Ta có $\triangle BDE \backsim \triangle EFC \Rightarrow BD \cdot CF = ED \cdot EF = 4$.
Mặt khác $AB^2 + AC^2 = BC^2 \Rightarrow (x+2)^2+(y+2)^2 = 45 \Rightarrow (x+y)^2 + 4(x+y) -45 = 0 \Rightarrow x+y = 5$.
Suy ra $x(5-x) = 4$, giải ra được $x = 1, y = 4$.
Từ đó suy ra $AB = 3, AC = 6$.

Bài 2. Cho tam giác $ABC$ nhọn trung tuyến $AM$. \begin{enumerate}
a) Chứng minh rằng $4AM^2 + BC^2=2(AB^2+AC^2)$.
b) Vẽ trung tuyến $BN$. Tìm điều kiện về độ dài các cạnh của tam giác $ABC$ để $AM \bot AN$.
Lời giải.
a) Gọi $H$ là chân đường cao kẻ từ $A$, giả sử $H$ nằm giữa $B$ và $M$. Ta có:

$AB^2 + AC^2 = 2AH^2 + BH^2 + CH^2$
$= 2AH^2 + (BM – HM)^2 + (CM + HM)^2 $
$= 2AH^2 + 2HM^2 + 2BM^2 = 2AM^2 + \dfrac{BC^2}{2}$

b) Gọi $G$ là trọng tâm tam giác: $GM=\dfrac{1}{3}AM,GB=\dfrac{2}{3}BN$. Ta có $AM\perp BN$ khi và chỉ khi:\

$GM^2 + GB^2 = BM^2$
$\Leftrightarrow \dfrac{1}{9}AM^2 + \dfrac{4}{9}BN^2 = \dfrac{1}{4}BC^2$
$\Leftrightarrow \dfrac{1}{9} \left( \dfrac{AB^2 + AC^2}{2} – \dfrac{BC^2}{4} \right) + \dfrac{4}{9}\left(\dfrac{AB^2 + BC^2}{2} – \dfrac{AC^2}{4}\right) = \dfrac{BC^2}{4}$
$\Leftrightarrow 5AB^2 = AC^2 + BC^2$

Bài 3. Cho tam giác $ABC$, hai đường phân giác $BD$ và $CE$ cắt nhau tại $I$ thỏa mãn $BD\cdot CE = 2\cdot BI\cdot CI$. Tam giác $ABC$ là tam giác gì? vì sao?
Lời giải.

Đặt $ BC = a, CA = b, AB = c $. Ta có, $ AI $ là phân giác trong $ \triangle ABD $\
Suy ra:
$ \dfrac{BI}{c} = \dfrac{DI}{AD} = \dfrac{BD}{c + AD} \Rightarrow \dfrac{BI}{BD} = \dfrac{c}{c+ AD} $
Chứng minh tương tự
$ \dfrac{CD}{CE} = \dfrac{b}{b + AE} $
Như vậy điều cần chứng minh tương đương với

$\dfrac{BI}{BD} \cdot \dfrac{CI}{CE} = \dfrac{1}{2} \Leftrightarrow \dfrac{bc}{(c + AD)(b + AE)} = \dfrac{1}{2}$
$\Leftrightarrow bc = AD\cdot b + AE\cdot c + AD\cdot AE \qquad (*)$

Mặt khác, trong tam giác $ ABC $ ta có
$ BD $ là phân giác $ \angle ABC$ ta có $\dfrac{AD}{c} = \dfrac{CD}{a} = \dfrac{b}{a + c} \Rightarrow AD = \dfrac{bc}{a + c}$
$ CD $ là phân giác $ \angle ACB$ ta có \dfrac{AE}{b} = \dfrac{BE}{a} = \dfrac{c}{a + b} \Rightarrow AE = \dfrac{bc}{a + b}$
Do đó (*) tương đương với

$bc = \dfrac{b^2c}{a + c} + \dfrac{bc^2}{a + b} + \dfrac{b^2c^2}{(a+b)(a+c)}$
$\Leftrightarrow a^2 = b^2 + c^2$

Vậy tam giác $ ABC$ vuông tại $ A $.

Bài 4. Cho tam giác $ABC$ đều cạnh $a$. $M$ là một điểm thay đổi bên trong tam giác. Gọi $D, E, F$ lần lượt là hình chiếu vuông góc của $M$ trên các cạnh $BC, AC, AB$. Tìm giá trị nhỏ nhất của biểu thức: $P = AF^2 + BD^2 + CE^2$.
Lời giải.
Ta có $AM^2 = AF^2 + MF^2 = AE^2 + ME^2$. Suy ra $AF^2 – AE^2 = ME^2 – MF^2$.
Tương tự $BD^2 – BF^2 = MF^2 – MD^2, CE^2 – CD^2 = MD^2 -MD^2$.
Khi đó $AF^2 -AE^2 + BD^2 – BF^2 + CE^2-CE^2 = 0 \Leftrightarrow AF^2 +DB^2 + CE^2 = AE^2+BF^2+CE^2$.
Mặt khác $AF^2 + BF^2 \geq \dfrac{(AF+BF)^2}{2} = \dfrac{a^2}{4}$.
Tương tự thì $BD^2 +CD^2 \geq \dfrac{a^2}{2}$ và $CE^2+AE^2 \geq \dfrac{a^2}{2}$.
Do đó $P =AF^2 + BD^2 + CE^2 \geq \dfrac{3a^2}{4}$.
Đẳng thức xảy ra khi $D, E, F$ lần là trung điểm của $BC, AC, AB$.
Vậy $P_{min} = \dfrac{3a^2}{4}$.

Bài 5. Cho hình vuông $ABCD$ cạnh $a$. Các điểm $M, N$ lần lượt thay đổi trên cạnh $BC, CD$ sao cho $\angle MAN = 45^\circ$. Chứng minh chu vi tam giác $CMN$ không đổi và tìm giá trị lớn nhất của diện tích tam giác $CMN$.

Trên tia đối của tia $DC$ lấy điểm $K$ sao cho $\angle KAN = \angle MAN = 45^\circ$.
Do $\angle KAD+\angle DAN =45^\circ \quad \text{và} \quad \angle DAN+\angle MAB =45^\circ \quad \text{nên} \quad \angle KAD =\angle MAB$
$\Rightarrow \triangle KAD =\triangle MBA$(ch-cgv) $\Rightarrow AK=AM \quad \text{và} \quad KD=BM$
Khi đó $\triangle KAN=\triangle MAN$(c-g-c) $\Rightarrow MN=KN$
Ta có:
$P_{\triangle CMN}=MN+MC+NC=KN+MC+NC
=KD+DN+NC+MC=BM+MC+NC+ND=DC+CB=2a$.
Vậy chu vi của $\triangle CMN$ luôn không đổi và bằng $2a$
Đặt $MC=x,NC=y$
$P_{\triangle CMN}=MN+MC+NC=x+y+\sqrt{x^2+y^2}=2a$
Áp dụng bất đẳng thức Cauchy:
$2a=x+y+\sqrt{x^2+y^2}\ge 2\sqrt{xy}+ \sqrt{2xy}=\left(\sqrt{2}+2\right)\sqrt{xy} \Rightarrow xy\le \dfrac{4a^2}{(\sqrt{2}+2)^2}$
$S_{\triangle CMN}=\dfrac{1}{2}xy\le \dfrac{1}{2}.\dfrac{4a^2}{6+4\sqrt{2}}=\dfrac{a^2}{\sqrt{2}+3}$

Bài 6. Cho $\triangle A B C$ vuông ờ $A, A H \perp B C, H \in B C . H E \perp A C$,
$H F \perp A B$
\begin{enumerate}
a) Chứng minh rằng $H A^{3}=B F \cdot C E \cdot B C$.
b) Chứng minh rằng $\sqrt[3]{B F^{2}}+\sqrt[3]{C E^{2}}=\sqrt[3]{B C^{2}}$.
c) Gọi $M, N$ là hình chiếu của $E, F$ lên $B C$.
Chứng minh rằng $\sqrt{M C}+\sqrt{N B}=\sqrt{B C}$.
d) Chứng minh rằng $\sqrt[3]{N B \cdot N F}+\sqrt[3]{M C \cdot M E}=\sqrt[3]{A B \cdot A C}$.

Bài 7. Cho tam giác $ABC$ vuông tại $A$, $M$ là điểm thuộc cạnh $BC$ thỏa $MA^2 = MB \cdot MC$. Chứng minh rằng $M$ là trung điểm của $BC$ hoặc $M$ là chân đường cao từ $A$ đến $BC$.

Hệ thức lượng trong tam giác – Chứng minh đẳng thức

Dạng 2. Chứng minh đẳng thức hình học

Ví dụ 1. Cho hình thoi $ABCD$ có $\angle A = 120^\circ$. Tia $Ax$ tạo với $AB$ một góc $\angle BAx = 15^\circ$ và cắt cạnh $BC$ tại $M$, cắt đường thẳng $CD$ tại $N$.
Chứng minh rằng $$\dfrac{1}{AM^2}+\dfrac{1}{AN^2}=\dfrac{4}{3AB^2}$$
Lời giải.

Vẽ tia $Ay$ vuông góc với $AM$,$Ay$ cắt cạnh $CD$ tại $P$. Suy ra $\angle PAD= 15^\circ$.
Ta có $\triangle ADP=\triangle ABM$(g-c-g), suy ra $AP=AM$.
Vẽ đường cao $AH$ của tam giác $PAN$. Áp dụng hệ thức lượng trong tam giác vuông $PAN$:
$$\dfrac{1}{AP^2}+\dfrac{1}{AN^2}=\dfrac{1}{AH^2}$$
Khi đó $\dfrac{1}{AM^2}+\dfrac{1}{AN^2}=\dfrac{1}{AP^2}+\dfrac{1}{AN^2}=\dfrac{1}{AH^2}$. (1)
Mặt khác trong tam giác vuông $ADH$:\
$\dfrac{AH}{AD}=\sin D\Rightarrow AH=AD\cdot \sin D=AB\cdot \sin60^\circ=\dfrac{\sqrt{3}}{2}AB.$ (2)
Từ (1) và (2) ta có được $\dfrac{1}{AM^2}+\dfrac{1}{AN^2}=\dfrac{4}{3AB^2}$.

Ví dụ 2. Qua điểm $D$ trên cạnh huyền $BC$ của tam giác vuông $ABC$ ta kẻ các đường vuông góc $DH$ và $DK$ lần lượt xuống các cạnh $AB$ và $AC$.\ Chứng minh hệ thức: $DB\cdot DC = HA\cdot HB + KA\cdot KC$.

Lời giải.

Ta có $AHDK$ là hình chữ nhật nên $AH = DK, AK = DH$.
Ta có $BC^2 = AB^2 + AC^2 \Leftrightarrow (DB + DC)^2 = (AH+BH)^2 + (AK + CK)^2 \Leftrightarrow DB^2 + DC^2 + 2DC \cdot DB = AH^2 + BH^2 + 2 AH \cdot BH + AK^2 + CK^2 + 2AK \cdot CK$. (1)
Mà $DB^2 = BH^2 + HD^2 = BH^2 + AK^2$ và $DC^2 = DK^2 + CK^2 = AH^2 + CK^2$. (2)
Từ (1) và (2) ta có $DB \cdot DC = AH \cdot HB + AK \cdot KC$.

Ví dụ 3. Cho tam giác $ABC$ vuông tại $A$, đường cao $AH$. Gọi $E, F$ lần lượt là hình chiếu vuông góc của $H$ trên $AB, AC$. Chứng minh rằng:

a) $AH^3 = BC\cdot BE\cdot CF$.
b) $\sqrt[3]{BE^2} + \sqrt[3]{CF^2} = \sqrt[3]{BC^2}$.
Lời giải.


a) Áp dụng hệ thức lượng trong tam giác vuông $BHA$ và $AHC$:
$$BH^2=BE\cdot AB \quad \text{và} \quad HC^2=CF\cdot AC$$
Nhân hai vế đẳng thức với nhau ta được:
$BH^2\cdot HC^2=BE\cdot CF\cdot AB\cdot AC
\Rightarrow \left(HB\cdot HC\right)^2=BE\cdot CF\cdot AB\cdot AC \quad (1)$.
Áp dụng hệ thức lượng trong tam giác vuông $ABC$:
$HB\cdot HC=AH^2 \quad \text{và} \quad AB\cdot AC=AH\cdot BC$.
Khi đó (1) trở thành:$AH^4=BE\cdot CF\cdot AH\cdot BC$ hay $AH^3=BE\cdot CF\cdot BC$(đpcm)
b) Áp dụng hệ thức lượng trong tam giác vuông $ABH$ ta có $BE\cdot AB=HB^2$ hay $BE=\dfrac{BH^2}{AB}$, do đó:
$$\dfrac{BE^2}{BC^2}=\dfrac{BH^4}{AB^2\cdot BC^2}=\dfrac{BH^4}{\left(BH\cdot BC\right)\cdot BC^2}=\left(\frac{BH}{BC}\right)^3$$
Lấy căn bậc ba hai vế ta được $\sqrt[3]{\dfrac{BE^2}{BC^2}}=\dfrac{BH}{BC}\quad (1)$
Chứng minh tương tự ta được $\sqrt[3]{\dfrac{CF^2}{BC^2}}=\dfrac{CH}{BC}\quad (2)$
Lấy (1)+(2) ta được đpcm.\

Ví dụ 4. Cho tam giác $ABC$ nhọn và $H$ là trực tâm. Chứng minh rằng

$$AB^2 + CH^2 = AC^2 + BH^2 = AH^2 + BC^2$$

Lời giải.

Gọi $D$ là chân đường cao hạ từ $A$.
Ta có $AB^2 = BD^2 + AD^2$ và $CH^2 = CD^2 + DH^2$, suy ra $AB^2 +CH^2 = BD^2+AD^2+CD^2+DH^2$. (1)
tương tự thì $AC^2 = AD^2 + CD^2$, $BH^2 = BD^2+DH^2$, suy ra $AC^2+BH^2=AD^2+CD^2+BD^2+DH^2$. (2)
Từ (1) và (2) ta có $AB^2 + CH^2 = AC^2+BH^2$.
Chứng minh tương tự cho đẳng thức còn lại.

Ví dụ 5. Cho tam giác $ABC$ vuông tại $A$ có đường cao $AH$, đường trung tuyến $BM$, đường phân giác $CD$ đồng quy tại $O$.

a) Chứng minh rằng $BH = AC$.
b) Cho biết $BC = x$ . Tính độ dài $AB, AC$ theo $x$.
Lời giải. 


a) Gọi $E$ là điểm đối xứng của $O$ qua $M$. Khi đó tứ giác $AECO$ là hình bình hành nên $CE\parallel AO$.
Áp dụng định lí Ta-lét trong tam giác $BEC$ có $OH\parallel EC$:
$$\dfrac{BH}{BC}=\dfrac{OH}{CE}$$
$CO$ là đường phân giác của $\triangle ACH$ nên:
$$\dfrac{OH}{OA}=\dfrac{CH}{CA}$$
Từ hai đẳng thức trên và $CE=OA$(AECO là hình bình hành) ta có:
$$\dfrac{BH}{BC}=\dfrac{CH}{AC} \Leftrightarrow BH\cdot AC=CH\cdot BC$$
Áp dụng hệ thức lượng trong tam giác vuông $ABC$ ta được $AC^2=CH\cdot CB$
Từ đó suy ra $BH=AC$(đpcm)
b) Ta có $AC^2=CH\cdot CB=\left(CB-BH\right)\cdot CB=\left(x-AC\right)x$. Suy ra:
$$AC^2+2AC\cdot \dfrac{x}{2}+\dfrac{x^2}{4}=\dfrac{5x^2}{4} \Leftrightarrow \left(AC+\dfrac{x}{2}\right)^2=\left(\dfrac{x\sqrt{5}}{2}\right)^2$$
Vậy $ AC = \left(\dfrac{\sqrt{5} – 1}{2}\right)x $, $ AB = \sqrt{x^2 – AC^2} = x\sqrt{\dfrac{\sqrt{5} – 1}{2}}$

Ví dụ 6. Cho tam giác $ABC$ vuông cân tại $A$, đường trung tuyến $BM$. Gọi $D$ là hình chiếu vuông góc của $C$ trên $BM$, $H$ là hình chiếu vuông góc của $D$ trên $AC$. Chứng minh rằng $AH = 3HD$.

Lời giải.

Cách 1. Đặt $AM=x$, tính được $MC = AM = x$, $AC = 2x = AB$.
Áp dụng định lý Pythagoras trong tam giác vuông $BAM$:
$BM=\sqrt{AB^2+AM^2}=\sqrt{\left(2x\right)^2+\left(x\right)^2}=x\sqrt{5}$
$\triangle BAM \backsim \triangle CDM $(g-g) $\Rightarrow \dfrac{AB}{DC}=\dfrac{MA}{MD}=\dfrac{BM}{CM}=\dfrac{\sqrt{5}x}{x}=\sqrt{5}$
$\Rightarrow MD=\dfrac{AM}{\sqrt{5}}=\dfrac{x}{\sqrt{5}}$
Áp dụng hệ thức lượng trong tam giác vuông $MDC$:
$MD^2=MH\cdot MC \Rightarrow MH=\dfrac{MD^2}{MC}=\dfrac{\dfrac{x^2}{5}}{x}=\dfrac{x}{5}$.
Áp dụng định lí Pythagoras trong tam giác vuông $MHD$:
$HD=\sqrt{MD^2-MH^2}=\sqrt{\left(\dfrac{x}{\sqrt{5}}\right)^2-\left(\dfrac{x}{5}\right)^2}=\dfrac{2}{5}x$.
Mà $AH=AM+MH=x+\dfrac{x}{5}=\dfrac{6}{5}x$
Vậy $AH=3HD$(đpcm)
Cách 2. Gọi $I$ là trung điểm $BC$, $AI$ cắt $BM$ tại $G$ thì $G$ là trọng tâm tam giác $ABC$, suy ra $AI = 3GI = IB = IC$.
Ta có $\triangle MAB \backsim MDC$, suy $MA \cdot MC = MB \cdot MD$, suy ra $\triangle MAD \backsim \triangle MBC$, suy ra $\angle MAD = \angle MBC = \angle GBI$.
Khi đó $\triangle DAH \backsim \triangle GBI$, suy ra $\dfrac{AH}{DH} = \dfrac{IB}{GI} = 3$ hay $AH = 3DH$.

Ví dụ 7. Cho tam giác $ABC$ vuông tại $A$, $BM$ và $CN$ là các đường phân giác góc $B$ và $C$.

a)Cho $AB = 3, AC = 4$. Tính độ dài $BN, CM$ và $MN$.
b) Đặt $AB = c, AC = b$. Tính $CM, BN$ theo $b$ và $c$.
c) Chứng minh rằng $\dfrac{{AC}}{{MA}}\cdot \dfrac{{AB}}{{NA}} \ge 3 + 2\sqrt 2 $

Lời giải.

a) Áp dụng định lí Pythagoras trong tam giác vuông $ABC$:
$$BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5$$
Do $CN$ là phân giác của $\angle ACB$ nên $\dfrac{AN}{BN}=\dfrac{AC}{BC}=\dfrac{4}{5}$. Kết hợp với $NA+NB=3$ ta sẽ tính được $NA=\dfrac{4}{3}$ và $BN=\dfrac{5}{3}$
Tính tương tự ta được $AM=\dfrac{3}{2},MC=\dfrac{5}{2}$
Áp dụng định lí Pythagoras trong tam giác vuông $AMN$:
$$MN=\sqrt{AM^2+AN^2}=\sqrt{\left(\dfrac{4}{3}\right)^2+\left(\dfrac{3}{2}\right)^2}=\dfrac{\sqrt{145}}{6}$$
b) Áp dụng định lí Pythagoras trong tam giác vuông $ABC$:
$$BC=\sqrt{AB^2+AC^2}=\sqrt{c^2+b^2}$$
Do $CN$ là phân giác của $\angle ACB$ nên $\dfrac{AN}{BN}=\dfrac{AC}{BC}=\dfrac{b}{\sqrt{b^2+c^2}}$. Kết hợp với $NA+NB=c$ ta sẽ tính được $BN=\dfrac{c\sqrt{b^2+c^2}}{b+\sqrt{b^2+c^2}}$
Tính tương tự ta được $MC=\dfrac{b\sqrt{b^2+c^2}}{c+\sqrt{b^2+c^2}}$
c) Do $BM$ là tia phân giác của $\angle ABC$ nên $\dfrac{MC}{MA}=\dfrac{BC}{AB}$
Do $CN$ là tia phân giác của $\angle ACB$ nên $\dfrac{NB}{NA}=\dfrac{BC}{AC}$
$\dfrac{AC}{MA}.\dfrac{AB}{NA}=\left(1+\dfrac{MC}{MA}\right)\left(1+\dfrac{NB}{NA}\right)$
$=\left(1+\dfrac{BC}{AB}\right)\left(1+\dfrac{BC}{AC}\right)$
$=1+\dfrac{BC}{AC}+\dfrac{BC}{AB}+\dfrac{BC^2}{AB.AC} $
$\ge 1+2\sqrt{\dfrac{BC^2}{AB.AC}}+\dfrac{BC^2}{AB.AC}$

$=\left( \sqrt{\dfrac{BC^2}{AB.AC}}+1\right)^2$
Ta có $AB.AC\le \dfrac{AB^2+AC^2}{2}=\dfrac{BC^2}{2}$

$\Rightarrow \dfrac{BC^2}{AB.AC}\ge 2$
Vậy $\dfrac{AC}{MA}.\dfrac{AB}{NA}\geq \left( \sqrt{\dfrac{BC^2}{AB.AC}}+1\right)^2 \ge \left(\sqrt{2}+1\right)^2=3+2\sqrt{2}$

Bài tập rèn luyện

Bài 1. Cho hình thang vuông $ABCD$ có $\angle A = \angle D = 90^\circ, AB = AD = a, CD = 2a$.

a) Chứng minh $BC = a\sqrt{2}$.
b) Vẽ $DH$ vuông góc với $AC$. Chứng minh $AH \cdot AC = a^2$.
c) $BH$ cắt $CD$ tại $K$. Chứng minh $BK \cdot BH =2a^2$.

Bài 2. Cho tam giác $ABC$ khác tam giác tù. Gọi $G$ là trọng tâm tam giác. Chứng minh rằng nếu $$AG^2 = \dfrac{1}{9}(AB^2+AC^2) $$
thì tam giác $ABC$ vuông.

Bài 3. Cho tam giác $ABC$ có các đường cao $AD, BE, CF$. Chứng minh rằng nếu

$$ \dfrac{1}{AD^2} = \dfrac{1}{BE^2} + \dfrac{1}{CF^2}$$

thì tam giác $ABC$ vuông tại $A$.

Bài 4. Cho tam giác $\triangle A B C, \angle A=90$, đường phân giác $AD$. Chưmg minh rằng
$$
\dfrac{\sqrt{2}}{A D}=\dfrac{1}{A B}+\dfrac{1}{A C}
$$

Bài 5. Cho tam giác $ABC$ có $M$ là trung điểm $BC$.

a) Chứng minh rằng $BC^2 +4AM^2 = 2(AB^2 +AC^2)$.

b) Gọi $N$ là trung điểm $AC$. Chứng minh $AM$ vuông góc $BN$ khi và chỉ khi $AC^2+BC^2 = 5AB^2$.

Hệ thức lượng trong tam giác – Tính toán độ dài

Dạng 1. Tính toán

Áp dụng đầu tiên của các hệ thức lượng trong tam giác vuông đó là tính toán độ dài khi biết một số yếu tố cho trước, việc tính toán này xem ra là bài toán dễ tuy vậy đòi hỏi tính chính xác và áp dụng định lí một cách thành thục.

  • Phương pháp chủ yếu là áp dụng định lí thiết lập mối quan hệ giữa yếu tố đã cho và yếu tố chưa biết, từ đó tính được đối tượng cần tính.
  • Với các bài toán khó hơn phải thiết lập các phương trình hoặc hệ phương trình để giải.
  • Ta cũng hay vẽ thêm các đường vuông góc để tao ra tam giác vuông hay đường cao, từ đó mới có thể áp dụng được hệ thức lượng.

Ví dụ 1. Cho tam giác $ABC$ vuông tại $A$ có $AB = 6cm, BC = 10cm$, đường cao $AH$ ($H$ thuộc $BC$).

a)Tính độ dài cạnh $AC,AH$.
b) Tính $BH, CH$.
Lời giải.
a) Áp dụng định lý Pitago cho tam giác $ABC$ ta có:\
$AB^2 + AC^2 = BC^2$ $\Leftrightarrow 6^2 + AC^2 = 10^2$ \
$\Rightarrow AC = \sqrt{10^2-6^2} =8(cm)$.\
Áp dụng hệ thức lượng cho tam giác vuông $ABC$ ta có:\
$AH \cdot BC = AB \cdot AC \Rightarrow
AH = \dfrac{AB \cdot AC}{BC} = \dfrac{6\cdot 8}{10} = \dfrac{24}{5} (cm)$.
b) Áp dụng hệ thức lượng cho tam giác vuông $ABC$ ta có: \
$BH \cdot BC = AB^2 \Rightarrow BH = \dfrac{AB^2}{BC} =\dfrac{18}{5} (cm)$ \
và $CH = BC – BH = 10 – \dfrac{18}{5} = \dfrac{32}{5} (cm)$. \

Ví dụ 2. Cho tam giác $ABC$ vuông tại $A$, đường cao $AH$. Cho $BH = 4, CH = 9$. Tính
a) Tính $AH, AB, AC$.
b)Vẽ $HD \bot AB$ và $HE \bot AC$( với $D$ thuộc $AB$ và $E$ thuộc $AC$). Tính $AD$ và $AE$.
Lời giải

Ta có $BC = BH + CH = 4 + 9 = 13$.
a) Tam giác $ABC$ vuông tại $A$ có đường cao $AH$ nên:
$AH^2 = BH \cdot CH = 36 \Rightarrow AH = 6$;
$AB^2 = BH \cdot BC = 4\cdot 13\Rightarrow AB = 2\sqrt{13}$;
$AC^2 = CH \cdot BC = 9 \cdot 13 \Rightarrow CH = 3\sqrt{13}$.
b)
Tam giác $ABH$ vuông tại $H$ có đường cao $HD$ nên:\
$AD\cdot AB = AH^2 \Rightarrow AD = \dfrac{AH^2}{AB} = \dfrac{36}{2\sqrt{13}} = \dfrac{18\sqrt{13}}{13}$;
Tương tự ta có $AE\cdot AC = AH^2 \Rightarrow AE = \dfrac{AH^2}{AC} = \dfrac{36}{3\sqrt{13}} = \dfrac{12\sqrt{13}}{13}$.

Ví dụ 3. Cho hình chữ nhật $ABCD$ có $AB = 2AD$ và $AC = 4\sqrt{5}$.

a)Tính độ dài cạnh của hình chữ nhật.
b) Vẽ $AH \bot BD$. Tính $AH, CH$.

Lời giải

a) Ta có $BD = AC = 4\sqrt{5}$.
Đặt $AD = x$, suy ra $AB = 2x$.
Ta có $BD^2 = AB^2 + CD^2\
\Leftrightarrow 80 = 5x^2 \Rightarrow x = 4$.
Do đó $AB = 8, AD = 4$.
b) Tam giác $ABD$ vuông có đường cao $AH$ nên
$AH \cdot BD = AB \cdot AD
\Rightarrow AH = \dfrac{AB \cdot AD}{BD} = \dfrac{8}{\sqrt{5}}$.
Vẽ $HK \bot CD$.
Ta có $\triangle DHK \backsim ADH$, suy ra $$\dfrac{HK}{DH} = \dfrac{DK}{AH} = \dfrac{DH}{AD} = \dfrac{1}{\sqrt{5}}$$
Suy ra $DK = \dfrac{8}{5}, KH = \dfrac{4}{5}$.
Khi đó $CK = CD – DK = 8-\dfrac{8}{5} = \dfrac{32}{5}$.
Và $CH = \sqrt{CK^2+HK^2}= \sqrt{\dfrac{32^2}{5^2}+\dfrac{4^2}{5^2}} = \dfrac{4\sqrt{65}}{5}$.

Ví dụ 4. Cho tam giác $ABC$ cân tại $A$ có $AB = 10, BC = 16$. Gọi $M$ là trung điểm $BC$.

a)Tính độ dài $AM$.
b) Vẽ $MD$ vuông góc $AB$. Tính $AM$.
Lời giải

Tam giác $ABC$ cân tại $A$ nên trung tuyến $AM$ cũng là đường cao, suy ra $AM \bot BC$. \
$AM^2 + MB^2 = AB^2 \Rightarrow AM = \sqrt{AB^2-MB^2}=\sqrt{10^2-8^2}=6$.
\item Tam giác $ABM$ vuông tại $M$ có $MD$ là đường cao:\ $AD\cdot AB = AM^2 \Rightarrow AD = \dfrac{AM^2}{AB} = \dfrac{36}{10} = \dfrac{18}{5}$.\

Ví dụ 5. Cho hình thang cân $ABCD$ có đáy nhỏ $AB = 3$, đáy lớn $CD = 7$, cạnh bên $AD = 5$. Tính diện tích hình thang $ABCD$.}

Lời giải

Vẽ đường cao $AH, BK$ của hình thang $ABCD$.
Ta có $\triangle AHD = \triangle BKC$ (ch.gn), suy ra $HD = CK$.
Hơn nữa $ABKH$ là hình chữ nhật nên $HK = AB =3$.
Suy ra $DH = CK = 2$.
Tam giác $ADH$ vuông tại $H$, suy ra $AD^2 = DH^2 + AH^2$

$\Rightarrow AH = \sqrt{AD^2-DH^2}=\sqrt{25-4}=\sqrt{21}$
Khi đó $S_{ABCD} = \dfrac{1}{2}AH \cdot (AB+CD) = 5\sqrt{21}$.

Bài tập rèn luyện

Bài 1. Cho tam giác vuông $A B C$, đặt $A B=c, A C=b, B C=a$, đường cao $A H=h, B H=c^{\prime}$, $C H=b^{\prime}$. Tính độ dài các đoạn thẳng còn lại khi biết:
(a) $a=13, b=12$.
(b) $b^{\prime}=3, c^{\prime}=12$.
(c) $b=5, h=4$.
(d) $h=3, a=10$.
Bài 2. Cho hình thang vuông $A B C D$ có $\angle A=\angle D=90^{\circ}$. Cho $A D=h, A B=a, C D=b, B C=$ c. Tính các độ dài chưa biết khi cho:
(a) $a=3, b=7, h=3$.
(b) $a=5, c=13, b=10$.
Bài 3. Cho tam giác $A B C$ vuông tại $A$ có $A B=9 cm, B C=15 cm, A H$ là đường cao $(H$ thuộc cạnh $B C$ ). Tính độ dài các đoạn thẳng $B H, C H, A C$ và $A H$.
Bài  4. Cho tam giác $A B C$ vuông tại $A$, đường cao $A H$.
Biết $B H=\frac{9}{5} ; C H=\frac{16}{5}$.
(a) Tính $A H, A B, A C$.
(b) Gọi $D, E$ là hình chiếu vuông góc vuông góc của $H$ trên $A B, A C$.
Chứng minh $ A D \cdot A B=A E \cdot A C$.
(c) Đường thẳng $D E$ cắt đường thẳng $B C$ tại $F$. Chứng minh $F B \cdot F C=F D \cdot F E$.
Bài 5. Cho tam giác $A B C$ vuông tại $A$. Biết tỉ số hai cạnh góc vuông là $\frac{3}{4}$, độ dài cạnh góc vuông nhỏ bằng $6 \mathrm{~cm}$. Tính độ dài cạnh huyền, độ dài hình chiếu vuông góc của các cạnh góc vuông lên cạnh huyền.

Bài 6. Tam giác $A B C$ nhọn có đường cao $A H$, biết rằng $A B=26 cm, A C=25 cm$, đường cao $A H=24 ~cm$. Tính độ dài cạnh $B C$.
Bài 7. Cho tam giác $A B C$ vuông tại $A$ có $B C=\sqrt{13} cm$.
Tính $A B, A C$, cho biết $A B=\frac{2}{3} A C$.
Bài 8. Cho tam giác $A B C$ vuông tại $A$ có $A H$ là đường cao. $B H=1 cm, C H=4 cm$. Tính $B C$, $A H, A B$ và $A C$.

Tài liệu tham khảo

Nguyễn Tăng Vũ, Bài tập hình học 9 cơ bản và nâng cao, Star Education

Tỉ số lượng giác của góc nhọn

Để định nghĩa tỉ số của một góc nhọn $\alpha$ ta xét tam giác vuông $ABC$ tại $A$, trong đó $\angle ABC = \alpha$, khi đó $AB$ là cạnh kề $\alpha$, $AC$ là cạnh đối, và $BC$ là cạnh huyền. Ta định nghĩa các tỉ số lượng giác của $\alpha$ như sau:

Tỉ số lượng giác của góc nhọn.
  •  $\sin \alpha = \dfrac{đối}{huyền}=\dfrac{đ}{h}$
  • $\cos \alpha = \dfrac{kề}{huyền}=\dfrac{k}{h}$
  • $\tan \alpha = \dfrac{đối}{kề} = \dfrac{đ}{k}$
  • $\cot \alpha = \dfrac{kề}{đối} = \dfrac{k}{đ}$
 Tính chất
  • $\sin^2 \alpha + \cos^2 \alpha = 1$.
  • $\tan \alpha .\cot \alpha = 1$.
  • $0 < \sin \alpha < 1, 0 < \cos \alpha < 1$.

Bảng Tỉ số lượng giác của một số góc thường gặp

Ta sử dụng Tỉ số lượng giác của góc nhọn để dùng trong các nội dung sau:

  • Trong một tam giác vuông, nếu ta biết số đo một góc nhọn và độ dài một cạnh thì ta có thể tính được độ dài các cạnh còn lại. Nếu biết độ dài 2 cạnh ta có thể tính được số đo của các góc nhọn.
  • Dùng để tính toán, đo đạc độ dài, tính số đo góc
  • Dùng thiết lập các đẳng thức, bất đẳng thức hình học
  • Ứng dụng thực tế là đo chiều cao, chiều dài, …một số đối tượng thực tế.

Ví dụ 1. Cho tam giác $ABC$ vuông tại $A$ có $AB = 3, AC = 4$. Tính $\sin \angle B, \cos B, \tan \angle B$.

Gợi ý

Tam giác $ABC$ vuông tại $A$ nên $BC^2 = AB^2 + AC^2 = 3^2 + 4^2 = 25$, suy ra $BC = 5$.

Khi đó $\sin \angle B = \dfrac{d}{h} = \dfrac{AC}{BC} = \dfrac{4}{5}$.

$\cos \angle B = \dfrac{k}{h} = \dfrac{AB}{BC} = \dfrac{3}{5}$.

$\tan \angle B = \dfrac{đ}{k} = \dfrac{AC}{AB} = \dfrac{4}{3}$

Ví dụ 2. Cho tam giác $A B C$ cân tại $A$ có $A B=10, B C=12$.
a) Tính $\sin A B C$.
b) Vẽ đường cao $B K$. Tính $B K$ và $\sin B A C$.

 

Gợi ý

a) Gọi $M$ là trung điểm cạnh $B C$, ta có $A M \perp B C$.
$M B=\frac{1}{2} B C=6$, suy ra $A M=$ $\sqrt{A B^2-B M^2}=8$.
$$
\sin A B C=\frac{A M}{A B}=\frac{8}{10}=\frac{4}{5} \text {. }
$$
b) Vẽ đường cao $B K$.
Ta có $\triangle C K B \backsim \triangle C M A$, suy ra $\frac{B K}{A M}=$ $\frac{C B}{A C} \Rightarrow B K=\frac{A M \cdot B C}{A C}=\frac{48}{5}$.
Khi đó $\sin B A C=\frac{B K}{A B}=\frac{48}{50}=\frac{24}{25}$.

Ví dụ 3. Cho tam giác $A B C$ vuông tại $A$ có $A C=2, \sin A B C=\frac{1}{3}$. Tính $A B$.

Gợi ý

Ta có 
$$
\sin A B C=\frac{A C}{B C}=\frac{1}{3} \text {, suy ra } B C=3 A C=6 .
$$

Từ đó $A B=\sqrt{B C^2-A C^2}=\sqrt{6^2-2^2}=4 \sqrt{2}$.

Ví dụ 4. Cho tam giác $A B C$ có $A B=1, A C=\sqrt{3}, B C=2$. Tính số đo các góc của tam giác $A B C$.

Gợi ý

Ta có $A B^2+A C^2=1+3=4=B C^2$, suy tam giác $A B C$ vuông tại $A$, vậy $\angle B A C=90^{\circ}$.
Ta có $\sin A B C=\frac{A C}{B C}=\frac{\sqrt{3}}{2}$, suy ra $\angle A B C=$ $60^{\circ}$.
Và $\angle A C B=180^{\circ}-\angle B A C-\angle A B C=30^{\circ}$.

Ví dụ 5. Cho tam giác $A B C$ có $\angle A B C=60^{\circ}, \angle A C B=45^{\circ}$, đường cao $A H=\sqrt{3}$.
a) Tính độ dài các cạnh của tam giác $A B C$.
b) Dựng đường cao $B K$. Tính $B K$ và $\sin B A C$.

Gợi ý

a) $A B \cdot \sin A B C=A H \Leftrightarrow A B \sin 60^{\circ}=$ $\sqrt{3} \Leftrightarrow A B \frac{\sqrt{3}}{2}=\sqrt{3}$, suy ra $A B=2$.
Tam giác $A H C$ vuông cân, suy ra $A C=$ $\sqrt{2} A H=\sqrt{6}$.
$B H=\sqrt{A B^2-A H^2}=1, C H=A H=$ $\sqrt{3}$.
Suy ra $B C=1+\sqrt{3}$.
b) Ta có $B K=B C \cdot \sin B C K=(1+$ $\sqrt{3}) \sin 45^{\circ}=\frac{1+\sqrt{3}}{\sqrt{2}}=\frac{\sqrt{6}+\sqrt{2}}{2}$.

Bài tập

Bài 1. Tìm độ dài cạnh và số đo các góc chưa biết của tam giác $A B C$ trong các trường hợp sau (làm tròn góc nếu cần).
a) $A B=15, \angle A=90^{\circ}, \angle C=60^{\circ}$.
b) $\angle A=90^{\circ}, A B=2, B C=4$.
c) $A B=3, B C=5, A C=4$.
d) $A B=12, \angle A=30^{\circ}, \angle B=60^{\circ}$.

Bài 2. Tìm độ dài cạnh và số đo các góc chưa biết của tam giác $A B C$ trong các trường hợp sau:
a) $\angle A=90^{\circ}, \tan B=\frac{1}{2}, A C=5$.
b) $\angle A=90^{\circ}, \cos B=\frac{2}{3}, A B=3$.
c) $\angle A=75^{\circ}, \angle B=60^{\circ}, B C=1+\sqrt{3}$.

Bài 3. Cho tam giác $A B C$ vuông tại  $A$  và $B C=2 A B$. Tính số đo các góc của tam giác $A B C$. 

Bài 4. Cho tam giác $A B C$ thỏa $\frac{A B}{1}=\frac{B C}{2}=\frac{A C}{\sqrt{3}} $.

Tính số đo các góc của tam giác $ A B C$.

Bài 5. Cho tam giác $A B C$ vuông tại $A$, đường cao $A H$. Biết $\angle A B C=60^{\circ}$ và $A H=\sqrt{3}$. Tính độ dài các cạnh của tam giác $A B C$.

 

 

Hệ thức trong tam giác vuông – Bài 1

I. Lý thuyết và ví dụ

Cho tam giác $ABC$ vuông tại $A$, đường cao $AH$.

Đặt $BC = a, AC=b, AB =c, AH=h, BH=c’, CH=b’$. Khi đó:

  • $a.h  =bc = 2S_{ABC}$
  • $c^2 = c’.a$
  • $b^2 = b’.a$
  • $h^2 = b’.c’$
  • $\dfrac{1}{h^2} = \dfrac{1}{b^2} + \dfrac{1}{c}$
 

Dạng 1. Các bài tính toán cơ bản

Ví dụ 1. Tính $a, b’,c’,h$ trong hình sau:

 

Gợi ý

 Tam giác vuông có cạnh huyền là $a$ nên:

  • $a^2 = 6^2 + 8^2 =100$
  • $a = 10 cm$ (vì $a > 0$)

Ta có

  • $ah = bc$
  • $10h = 6.8$
  • $h = \dfrac{24}{5} (cm) $.

 

 Ta có

  • $6^2 = c’.a$
  • $36  = c’.10$
  • $c’ = \dfrac{18}{5}(cm)$

Suy ra $b’ = a – c’ = 10 – \dfrac{18}{5} = \dfrac{32}{5} (cm)$

Ví dụ 2. Tính $b, b’,c$ trong hình sau:

Gợi ý

Tam giác $ABC$ có $h$ là độ dài đường cao, hình chiếu của $AB$ là $4$ nên:

  • $h^2 = 4.b$
  • $10^2 = 4b \Rightarrow b = 25 cm$.

Khi đó $a = b’+c’ = 4+ 25 = 29$.

  • $b^2 = b’.a$
  • $b^2 = 25.29$
  • $b^2 = 725$
  • $b = \sqrt{725} = 5\sqrt{29}$ (cm)(vì $b > 0$)

  • $b.c = ha$
  • $5\sqrt{29}c = 10.29$
  • $c = 2\sqrt{29}$ (cm)

Ví dụ 3. Tính $c, h, b’$ trong hình sau:

 

Gợi ý

Với bài toán này, các độ dài cho trước có vẻ rời rạc và chưa tính được độ dài nào được ngay.

Nhưng ta có thể thấy $h, b’$ có liên hệ với $c’ = 4cm, b = 10cm$. Từ đó nghĩ đến cách lập hệ ẩn $h, b’$.

Giải

Ta có

  • $h^2  = 4b’$ (1)
  • $h^2 + b’^2 = (\sqrt{45})^2=45$ (2)
  • Từ (1), (2) suy ra $b’^2 = 45 – 4b’$
  • $b’^2+4b’-45 = 0$
  • $(b’-5)(b’+9) = 0$
  • $b’ = 9$ (cm) (do $b’ > 0$)

Khi đó  $h^2 = 4.5= 20$ hay $h = \sqrt{20}$ (cm).

Và $c^2 = 4^2 + (\sqrt{20})^2 = 36$, $c = 6$ (cm).

III. Bài tập

1.Tính các yếu tố còn lại trong hình đã cho.

Gợi ý

a. Tam giác vuông có $h$ là chiều cao và 2 cạnh góc vuông có độ dài là: $2cm$ và $4cm$ ta có:
$\dfrac{1}{{{h^2}}} = \dfrac{1}{{{2^2}}} + \dfrac{1}{{{4^2}}}$ (Hệ thức lượng)
$\dfrac{1}{{{h^2}}} = \dfrac{5}{{16}}$
$\dfrac{1}{h} = \dfrac{{\sqrt 5 }}{4}$
$h = \dfrac{{4\sqrt 5 }}{5} (cm)$
Ta có: $h.\left( {c’ + b’} \right) = 4.2$
$\dfrac{{4\sqrt 5 }}{5}\left( {b’ + c’} \right) = 8$
$\left( {b’ + c’} \right) = 2\sqrt 5 (cm) $
Và ${4^2} = c’.\left( {b’ + c’} \right)$
$16 = c’.2\sqrt 5 $
$c’ = \dfrac{{8\sqrt 5 }}{5} (cm)$
Và ${2^2} = b’.\left( {b’ + c’} \right)$
$4 = b’.2\sqrt 5 $
$b’ = \dfrac{{2\sqrt 5 }}{5} (cm) $
b. Tam giác vuông có đường cao $h$ và hai cạnh góc vuông lần lượt là $c$ và $b$
Ta có: ${h^2} = 4.9$
${h^2} = 36$
$h = 6 (cm)$
Và ${c^2} = 4.\left( {4 + 9} \right)$
${c^2} = 52$
$c = 2\sqrt {13} (cm) $
${b^2} = 9.\left( {4 + 9} \right)$
${b^2} = 117$
$b = 3\sqrt {13} (cm) $
c.Tam giác vuông có đường cao có độ dài $4cm$ và hai cạnh hóc vuông có độ dài $5cm$ và $c$
Ta có: $\dfrac{1}{{{4^2}}} = \dfrac{1}{{{c^2}}} + \dfrac{1}{{{5^2}}}$
$c = \dfrac{{20}}{3} (cm)$
Và $5.\dfrac{{20}}{3} = 4.(b’ + c’)$
$(b’ + c’) = \dfrac{{25}}{3} (cm) $Ta có: ${5^2} = b’.\left( {b’ + c’} \right)$
$b’ = 3(cm)$
Và ${c^2} = c’\left( {b’ + c’} \right)$
$c’ = \dfrac{{16}}{3}$
Hay $c’ = \dfrac{{25}}{3} – b’ = \dfrac{{25}}{3} – 3 = \dfrac{{16}}{3}$


2. Tính $x, y$ trong hình dưới đây:

Gợi ý

Tam giác vuông cân có cạnh góc vuông có độ dài $3cm$
Suy ra cạnh huyền của tam giác đó có độ dài là: $3\sqrt 2 (cm) $ (Pytago)
Tam giác vuông có hai cạnh góc vuông có độ dài lần lượt là $\sqrt 2 cm;3\sqrt 2 cm$
Khi đó: ${\left( {x + y} \right)^2} = {\left( {\sqrt 2 } \right)^2} + {\left( {3\sqrt 2 } \right)^2}$
$ \Rightarrow x + y = 2\sqrt 5 (cm) $
Ta có: ${\left( {\sqrt 2 } \right)^2} = y.\left( {x + y} \right)$
$y = \dfrac{{\sqrt 5 }}{5}$
Và $x = 2\sqrt 5 – \dfrac{{\sqrt 5 }}{5} = \dfrac{{9\sqrt 5 }}{5}$


3. Tìm $x, y$ trong hình cho dưới đây.
Gợi ý

Ta có: ${3^2} = x.\left( {x + \frac{{16}}{5}} \right)$
$\Rightarrow \left[ {\begin{array}{*{20}{c}}
{x = \dfrac{9}{5}(cm)(n)}\\
{x = – 5(cm)(l)}
\end{array}} \right.$
Và 4{y^2} = \dfrac{{16}}{5}\left( {\dfrac{{16}}{5} + x} \right)$
$\Rightarrow y = 4(cm)$

4.Tìm độ dài các cạnh góc vuông của một tam giác vuông có độ dài cạnh huyền bằng $25cm$ và đường cao ứng với cạnh huyền bằng $12 cm$.

Gợi ý

Gọi hình chiếu hai cạnh góc vuông trên cạnh huyền là $x, y$. Ta có $x + y = 25, xy = 12^2 = 144$. Giải ra được $x = 9, y = 16$.
Suy ra độ dài 2 cạnh là $15, 20 (cm)$.

5. Tìm độ dài hai cạnh góc vuông của tam giác vuông biết đường cao bằng $4cm$ và độ dài trung tuyến ứng với cạnh huyền bằng $6cm$.
Gợi ý

Cạnh huyền là $12$. Làm tương tự bài 4.

6. Tính $x, y$ trong hình sau:

Gợi ý

Xét hình chữ nhật có độ dài 2 cạnh lần lượt là $3cm$ và $4cm$
Khi đó đường chéo của hình chữ nhật có độ dài là $5cm$
Xét tam giác vuông có 2 cạnh góc vuông là $5cm$, $ycm$ và có chiều cao là $3cm$ ta có:
$\dfrac{1}{{{3^2}}} = \dfrac{1}{{{y^2}}} + \dfrac{1}{{{5^2}}}$
$ \Rightarrow y = \dfrac{{15}}{4}(cm)$
Tương tự: $x = \dfrac{{20}}{3}(cm)$

7. Tìm $x, y$ là cạnh của hình chữ nhật biết $MN = 1$.
Gợi ý

Gọi hình chữ nhật đó là $ABCD$ với $N$ thuộc cạnh $CD$.
Ta có $AB // CD $
$ \Rightarrow \dfrac{{AB}}{{DN}} = \dfrac{{AM}}{{MN}}$ (Ta- lét)
$\Rightarrow \dfrac{y}{{\dfrac{y}{2}}} = \dfrac{{AM}}{1}$
$\Rightarrow AM = 2$
$ \Rightarrow AN = AM + MN = 2 + 1 = 3$
Tam giác $ADN$ vuông tại $D$ ta có:
$D{N^2} = MN.AN$
$ \Rightarrow DN = \sqrt 3 $
Và $A{D^2} = AM.AN$
$AD = \sqrt 6 $
Vậy $ x = \sqrt 6$ và $ y = 2\sqrt 3$


8. (*) Cho tam giác $ABC$ vuông có đường cao $AH$, trung tuyến $BM$ và phân giác $CD$ đồng quy.

    •  (a). Chứng minh $BH = AC$.
    •  (b). Tính $AB, AC$ biết $BC = 10cm$.

Gợi ý

 a) Gọi O là giao điểm của $AH$; $BM$; $CD$
Áp dụng định lí Ceva vào trong tam giác ABC, ta có:
$\dfrac{{MA}}{{MC}}.\dfrac{{HC}}{{HB}}.\dfrac{{DB}}{{DA}} = 1 \Rightarrow \dfrac{{HC}}{{HB}} = \drac{{DA}}{{DB}}$
(Vì $M$ là trung điểm của $AC$)
Mà: $\dfrac{{DA}}{{DB}} = \dfrac{{AC}}{{BC}}$ ( $CD$ là phân giác)
$\Rightarrow \dfrac{{HC}}{{HB}} = \dfrac{{AC}}{{BC}} \Rightarrow CH.CB = AC.HB$
Mặt khác: $CH.CB = A{C^2}$ (Hệ thức lượng trong tam giác vuông $ABC$)
$\Rightarrow AC.HB = A{C^2} \Rightarrow BH = AC$
b) Ta có: $A{C^2} = HC.BC$
$A{C^2} = (BC – BH).BC$
Mà: $ BH = AC$ ( câu a)
$\Rightarrow A{C^2} = (BC – AC).BC$
$ \Rightarrow AC = – 5 + 5\sqrt 5 (cm) $
Và $\Rightarrow AB = – 50 + 50\sqrt 5 (cm)$

Định lý Pytago (Phần 1)

Định lý Pytago thuận. Trong một tam giác vuông tổng bình phương hai cạnh góc vuông bằng bình phương cạnh huyền.

Chứng minh

Có nhiều cách chứng minh định lý Pytago, trong đó có những cách bằng cắt ghép hình khá thú vị, tất nhiên để chứng minh chặc chẽ thì cần phải suy luận thêm.

      

Sử dụng tam giác đồng dạng.

Vẽ đường cao AH.

Khi đó $\triangle BAH \backsim \triangle BCA$, suy ra $BA^2 = BH.BC$ (1).

Tương tự $\triangle CAH \backsim \triangle CBA$, suy ra $CA^2 = CH.BC$ (2).

Khi đó $AB^2 + AC^2 = BH.BC + CH.BC = BC^2$.

Định lý Pytago đảo. Nếu trong một tam giác có tổng bình phương hai cạnh bằng bình phương cạnh còn lại thì tam giác đó là tam giác vuông.

Chứng minh
Giả sử tam giác $ABC$ có $AB^2 + AC^2 = BC^2$, chứng minh tam giác $ABC$ vuông tại $A$.

Trên đoạn $BC$ lấy điểm $H$ sao cho $AB^2 = BH.BC$, suy ra $AC^2 = BC^2 – AB^2 = BC.CH$.

Ta có $\triangle BAH \backsim \triangle BCA (c.g.c)$, suy ra $\angle BAH = \angle BAC$.

Tương tự $\angle CAH = \angle CBA$. Suy ra $\angle BAC = \angle BAH + \angle CAH = \angle BAC + \angle CAB$, suy ra $\angle BAC = 90^\circ$.

Ví dụ 1. Tìm $x$ trong các trường hợp sau.

 

Lời giải

a. Cạnh huyền có độ dài 11 ta có:

  • $x^2 + 6^2 = 11^2$ (Pytago)
  • $x^2 +36  = 121$
  • $x^2 = 85$.
  • $x = \sqrt{85}$ (cm) (vì $x > 0$).

c. Tương tự như a.

b. $x$ là cạnh huyền nên ta có:

  • $3^2 + (\sqrt{2})^2 = x^2$ (Pitago)
  • $9 + 2  = x^2$.
  • $x=\sqrt{11}$ (cm) (Vì $x > 0$)

d. Tam giác vuông cân có cạnh góc vuông là $x$, cạnh huyền $\sqrt{10}$ nên:

  • $x^2 + x^2  =(\sqrt{10})^2$
  • $2x^2 =10$
  • $x^2 = 5$
  • $x = \sqrt{5}$ (cm) (vì $x > 0$)

Ví dụ 2. Tìm $y$ trong hình sau, lấy hai chữ số thập phân.

Gợi ý

 Tam giác $ABC$ có $x$ là cạnh huyền nên:

  • $x^2 = 5^2 + 1^2 = 26$.
  • $x = \sqrt{26}$.
 Tam giác $ACD$ có $6$ là cạnh huyền nên:

  • $6^2 = y^2 +x^2$
  • $36 = y^2 +26$.
  • $y^2 = 10$
  • $y  = \sqrt{10} \sim 3.16$

Bài tập.

  1. Tìm $x$ trong các hình sau:

Đáp số

a. Cạnh huyền có dộ dài bằng 26 (cm) ta có:

  • ${26^2} = {\left( {2x} \right)^2} + {\left( {3x} \right)^2}$ (Pytago)
  • $676 = 4{x^2} + 9{x^2}$
  • $676 = 13{x^2}$
  • ${x^2} = 52$
  • $x = \sqrt {52}$ (cm) (Vì $ x > 0$ )

b. Cạnh huyền có độ dài $2x$ (cm) ta có:

  • ${\left( {2x} \right)^2} = {9^2} + {x^2}$ (Pytago)
  • $4{x^2} – {x^2} = 81$
  • $3{x^2} = 81$
  • ${x^2} = 27$
  • $x = \sqrt {27}$ (cm) (Vì $ x > 0$ )

c. Cạnh huyền có độ dài bằng $3x$ (cm) ta có:

  • ${\left( {3x} \right)^2} = {\left( {2x} \right)^2} + {\left( {\sqrt {20} } \right)^2}$ (Pytago)
  • $9{x^2} = 4{x^2} + 20$
  • $5{x^2} = 20$
  • ${x^2} = 4$
  • $x = 2$ (cm) (Vì $ x > 0$ )

2. Tìm các giá trị chưa biết $x, y$ trên hình:

Đáp số

 a)Tam giác vuông cân có cạnh huyền $y$ (cm) ta có:
${y^2} = {2^2} + {2^2}$ (Pytago)
${y^2} = 8$
$y = 2\sqrt 2 $ (cm) (Vì $y > 0$)
Tam giác vuông có cạnh huyền$ x $(cm) ta có:
${x^2} = {y^2} + {3^2}$ (Pytago)
${x^2} = 8 + 9$
${x^2} = 17$
$x = \sqrt {17} $ (Vì $ x > 0 $)
b)Tam giác vuông có cạnh huyền 7(cm) ta có:
${7^2} = {2^2} + {y^2}$ (Pytago)
${y^2} = 49 – 4$
${y^2} = 45$
$y = \sqrt {45}$ (cm) (Vì $ y > 0$ )
Tam giác vuông có cạnh huyền bằng $y$(cm) ta có:
${y^2} = {4^2} + {x^2}$ (Pytago)
$45 = 16 + {x^2}$
${x^2} = 45 – 16$
${x^2} = 29$
$x = \sqrt {29} $ (cm) ( Vì $x > 0 $ )

c) Tam giác vuông có cạnh huyền bằng 3 (cm) ta có:
${3^2} = {x^2} + {2^2}$ (Pytago)
${x^2} = {3^2} – {2^2}$
${x^2} = 5$
$x = \sqrt 5$ (cm) ( Vì $x > 0 $ )
Tam giác vuông có cạnh huyền bằng $y$ (cm) ta có:
${y^2} = {x^2} + {1^2}$
${y^2} = 5 + {1^2}$
${y^2} = 6$
$y = \sqrt 6 $ (cm) (Vì $y$ > 0)

3. Tìm $x$ (lấy 2 chữ số thập phân).

Gợi ý

 a. Gọi đường vuông góc có độ dài là $h$ (cm)

Gọi đường vuông góc có độ dài là $h$ (cm) .

Tam giác vuông có cạnh huyền bằng 3 (cm) ta có: ${3^2} = {x^2} + {h^2}$(Pytago)${h^2} = 9 – {x^2}$(1)

Tam giác vuông có cạnh huyền bằng 4 (cm) ta có:${4^2} = 3{}^2 + {h^2}$ (Pytago)

${h^2} = {4^2} – {3^2}$ (2

)Từ (1) và (2) suy ra: $9 – {x^2} = {4^2} – {3^2}$${x^2} = 2$$x = \sqrt 2  \approx 1,41$(cm)

b. Tam giác vuông có cạnh huyền bằng 13 (cm) ta có:
${13^2} = {5^2} + {\left( {x – 2} \right)^2}$
${13^2} – {5^2} = {\left( {x – 2} \right)^2}$
${\left( {x – 2} \right)^2} = 144$
$\left[ {\begin{array}{*{20}{c}}
{x – 2 = 12}\\
{x – 2 = – 12}
\end{array}} \right.$
$\left[ {\begin{array}{*{20}{c}}
{x = 14(n)}\\
{x = – 10(l)}
\end{array}} \right.$

4. Tính $AC$ trong hình sau:

Đáp số

Xét $\Delta ABD$ vuông tại $ B$ ta có:

  • $A{D^2} = A{B^2} + B{D^2}$ (Pytago)
  • $B{D^2} = A{D^2} – A{B^2}$
  • $B{D^2} = {9^2} – {5^2}$
  • $B{D^2} = 56$
  • $BD = 2\sqrt {14} $(cm)

Mà: $BC = \dfrac{{BD}}{2}$

  • $ \Rightarrow BC = \sqrt {14}$ (cm)
  • Xét $\Delta ABC$ vuông tại $B$ ta có:
  • $A{C^2} = A{B^2} + B{C^2}$
  • $A{C^2} = {5^2} + {\left( {\sqrt {14} } \right)^2}$
  • $A{C^2} = 39$
  • $AC = \sqrt {39} $ (cm)

5. Tính độ dài $AB$ trong các hình sau:

Đáp số

a) Kẻ $ BH \bot AD\left( {H \in AD} \right)$
Khi đó $HDCB$ là hình chữ nhật ( tứ giác có 3 góc vuông)
$ \Rightarrow \left\{ {\begin{array}{*{20}{c}}
{{\rm{DC = }}HB = DA = 4cm}\\
{CB = DH = 3cm}
\end{array}} \right.$
Ta có: $HA = DA – DH = 4 – 3 = 1$(cm)
Xét $\Delta BHA$ vuông tại $H$ ta có:
$A{B^2} = H{B^2} + H{A^2}$(Pytago)
$A{B^2} = {4^2} + {1^2} = 17$
$AB = \sqrt {17}$ (cm)

b) Tương tự cũng dùng định lí Pytago

c) Dựng hình chữ nhật $ADMN$.
Khi đó: $\left\{ {\begin{array}{*{20}{c}}
{MA = ND = 3cm}\\
{MN = AD = 5cm}
\end{array}} \right.4
Ta có: $BD = ND + NB = 3 + 1 = 4$ (cm)
Xét $\Delta ADB$ vuông tại $D$ ta có:
$A{B^2} = A{D^2} + D{B^2}$(Pytago)
$\Leftrightarrow A{B^2} = {5^2} + {4^2}4$
$ \Leftrightarrow A{B^2} = 41$
$\Leftrightarrow A{B^2} = 41$
$\Leftrightarrow AB = \sqrt {41}$ (cm)

6. Tam giác đều có độ dài cạnh bằng $3cm$. Tính diện tích tam giác.

7. Tam giác cân có cạnh bên bằng 8, cạnh đáy bằng 6. Tính diện tích tam giác.

8. Một hình thang có một đáy là $2x$ và các cạnh còn lại bằng $x$. Tìm $x$ biết diện tích hình thang bằng $6\sqrt{3}$.

9. Một người đi xe đạp từ $C$ đến $B$ với vận tốc $15km/h$. Hỏi đi được bao lâu thì người đó cách đều hai điểm $A$ và $B$ ?

10. Bạn Rô muốn treo một banner khuyến mãi dài 7m trước cửa hiệu. Có hai đinh treo được đóng trên tường, tạo thành một đoạn thẳng song song mặt đất và có độ dài 10m. Nếu muốn banner treo thấp hơn đoạn thẳng đó 1m thì độ dài hai dây treo phải là bao nhiêu?