Category Archives: Toán phổ thông

Rút gọn căn thức – Các biểu thức số

Trong bài này ta tổng hợp các kĩ năng thực hiện các phép tính toán, khai căn, phân tích thành tích, trục căn thức ở mẫu để làm các bài toán phức tạp hơn.

Chú ý khi làm bài. Trong các bài này ta có thể rút gọn các phân thức riêng lẻ trước nếu được bằng cách phân tích thành tích, tiếp theo thì trục căn thức và rút gọn các biểu thức trong ngoặc, không nên qui đồng vì tính toán sẽ rất phức tạp.

Ví dụ 1. Rút gọn

a) $\dfrac{6-6\sqrt{3}}{1-\sqrt{3}}+\dfrac{3\sqrt{3}+3}{\sqrt{3}+1}$.
b) $\dfrac{2-\sqrt{2}}{1-\sqrt{2}}+\dfrac{\sqrt{2}-\sqrt{6}}{\sqrt{3}-1}$.
c) $\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}+\dfrac{5-2\sqrt{5}}{2\sqrt{5}-4}$.
d) $\dfrac{3\sqrt{2}-6}{\sqrt{2}-1}+\dfrac{6\sqrt{2}-4}{\sqrt{2}-3}$.

Giải

a)  $\dfrac{6-6\sqrt{3}}{1-\sqrt{3}}+\dfrac{3\sqrt{3}+3}{\sqrt{3}+1}$.\\
Ta có:\\
$\begin{aligned}
&\dfrac{6-6\sqrt{3}}{1-\sqrt{3}}+\dfrac{3\sqrt{3}+3}{\sqrt{3}+1}\\
&=\dfrac{6\left(1-\sqrt{3}\right)}{1-\sqrt{3}}+\dfrac{3\left(\sqrt{3}+1\right)}{\sqrt{3}+1}\\
&=6+3\\
&=9
\end{aligned}$
b) $\dfrac{2-\sqrt{2}}{1-\sqrt{2}}+\dfrac{\sqrt{2}-\sqrt{6}}{\sqrt{3}-1}$.\\
Ta có:\\
$\begin{aligned}
&\dfrac{2-\sqrt{2}}{1-\sqrt{2}}+\dfrac{\sqrt{2}-\sqrt{6}}{\sqrt{3}-1}\\
&=\dfrac{\sqrt{2}\left(\sqrt{2}-1\right)}{-\left(\sqrt{2}-1\right)}+\dfrac{\sqrt{2}\left(1-\sqrt{3}\right)}{-\left(1-\sqrt{3}\right)}\\
&=-\sqrt{2}-\sqrt{2}\\
&=-2\sqrt{2}
\end{aligned}$
c) $\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}+\dfrac{5-2\sqrt{5}}{2\sqrt{5}-4}$.\\
Ta có:\\
$\begin{aligned}
&\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}+\dfrac{5-2\sqrt{5}}{2\sqrt{5}-4}\\
&=\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}+\dfrac{\sqrt{5}\left(\sqrt{5}-2\right)}{2\left(\sqrt{5}-2\right)}\\
&=\sqrt{5}+\dfrac{\sqrt{5}}{2}\\
&=\dfrac{3\sqrt{5}}{2}
\end{aligned}$
d) $\dfrac{3\sqrt{2}-6}{\sqrt{2}-1}+\dfrac{6\sqrt{2}-4}{\sqrt{2}-3}$.\\
Ta có:\\
$\begin{aligned}
&\dfrac{3\sqrt{2}-6}{\sqrt{2}-1}+\dfrac{6\sqrt{2}-4}{\sqrt{2}-3}\\
&=\dfrac{3\sqrt{2}\left(1-\sqrt{2}\right)}{-\left(1-\sqrt{2}\right)}+\dfrac{2\sqrt{2}\left(3-\sqrt{2}\right)}{-\left(3-\sqrt{2}\right)}\\
&=-3\sqrt{2}-2\sqrt{2}\\
&=-5\sqrt{2}
\end{aligned}$

Ví dụ 2. Rút gọn

a) $\dfrac{6}{\sqrt{5}-1}+\dfrac{7}{1-\sqrt{3}}-\dfrac{2}{\sqrt{3}-\sqrt{5}}$.
b) $\dfrac{\sqrt{12}-6}{\sqrt{8}-\sqrt{24}}-\dfrac{3+\sqrt{3}}{\sqrt{3}}+\dfrac{4}{1-\sqrt{7}}$.
c) $\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{1}{\sqrt{3}-\sqrt{5}}+\dfrac{1}{\sqrt{7}-\sqrt{5}}$.
d) $\left(\dfrac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}$.

Giải

a)$\dfrac{6}{\sqrt{5}-1}+\dfrac{7}{1-\sqrt{3}}-\dfrac{2}{\sqrt{3}-\sqrt{5}}$.
Ta có:
$\begin{aligned}
&\dfrac{6}{\sqrt{5}-1}+\dfrac{7}{1-\sqrt{3}}-\dfrac{2}{\sqrt{3}-\sqrt{5}}\\
&=\dfrac{6}{5-1}\left(\sqrt{5}+1\right)+\dfrac{7}{1-3}\left(1+\sqrt{3}\right)-\dfrac{2}{3-5}\left(\sqrt{3}+\sqrt{5}\right)\\
&=\dfrac{3}{2}\left(\sqrt{5}+1\right)-\dfrac{7}{2}\left(1+\sqrt{3}\right)+\sqrt{3}+\sqrt{5}\\
&=\dfrac{3\sqrt{5}}{2}+\dfrac{3}{2}-\dfrac{7}{2}-\dfrac{7\sqrt{3}}{2}+\sqrt{3}+\sqrt{5}\\
&=\dfrac{5\sqrt{5}}{2}-\dfrac{5\sqrt{3}}{2}-2\\
&=\dfrac{5}{2}\left(\sqrt{5}-\sqrt{3}\right)-2
\end{aligned}$
b) $\dfrac{\sqrt{12}-6}{\sqrt{8}-\sqrt{24}}-\dfrac{3+\sqrt{3}}{\sqrt{3}}+\dfrac{4}{1-\sqrt{7}}$.
Ta có:
$\begin{aligned}
&\dfrac{\sqrt{12}-6}{\sqrt{8}-\sqrt{24}}-\dfrac{3+\sqrt{3}}{\sqrt{3}}+\dfrac{4}{1-\sqrt{7}}\\
&=\dfrac{\sqrt{6}\left(\sqrt{2}-\sqrt{6}\right)}{2\left(\sqrt{2}-\sqrt{6}\right)}-\dfrac{\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}}+\dfrac{4}{1-7}\left(1+\sqrt{7}\right)\\
&=\dfrac{\sqrt{6}}{2}-\left(\sqrt{3}+1\right)-\dfrac{2}{3}\left(1+\sqrt{7}\right)\\
&=-\dfrac{2}{3}\sqrt{7}+\dfrac{\sqrt{6}}{2}-\sqrt{3}-\dfrac{5}{3}
\end{aligned}$
c) $\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{1}{\sqrt{3}-\sqrt{5}}+\dfrac{1}{\sqrt{7}-\sqrt{5}}$.\\
Ta có:\\
$\begin{aligned}
&\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{1}{\sqrt{3}-\sqrt{5}}+\dfrac{1}{\sqrt{7}-\sqrt{5}}\\
&=\dfrac{1}{2-3}\left(\sqrt{2}+\sqrt{3}\right)-\dfrac{1}{3-5}\left(\sqrt{3}+\sqrt{5}\right)+\dfrac{1}{7-5}\left(\sqrt{7}+\sqrt{5}\right)\\
&=-\left(\sqrt{2}+\sqrt{3}\right)+\dfrac{1}{2}\left(\sqrt{3}+\sqrt{5}\right)+\dfrac{1}{2}\left(\sqrt{7}+\sqrt{5}\right)\\
&=-\sqrt{2}-\sqrt{3}+\dfrac{1}{2}\sqrt{3}+\dfrac{1}{2}\sqrt{5}+\dfrac{1}{2}\sqrt{7}+\dfrac{1}{2}\sqrt{5}\\
&=\dfrac{1}{2}\sqrt{7}+\sqrt{5}-\dfrac{1}{2}\sqrt{3}-\sqrt{2}
\end{aligned}$
d) $\left(\dfrac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}$.\\
Ta có:
$\begin{aligned}
&\left(\dfrac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\\
&=\left[\dfrac{\sqrt{7}\left(\sqrt{2}-1\right)}{-\left(\sqrt{2}-1\right)}+\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{-\left(\sqrt{3}-1\right)}\right].\left(\sqrt{7}-\sqrt{5}\right)\\
&=\left(-\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)\\
&=-(7-5)\\
&=-2
\end{aligned}$

Ví dụ 3. Rút gọn

a) $\left(\dfrac{12}{\sqrt{5}+1}-\dfrac{4}{\sqrt{5}+2}+\dfrac{20}{3+\sqrt{5}}\right)(10+3\sqrt{5})$.
b) $\left(\dfrac{24}{\sqrt{7}+1}+\dfrac{4}{3+\sqrt{7}}-\dfrac{3}{\sqrt{7}+2}\right)(4-\sqrt{7})$.
c) $\left(\dfrac{8}{\sqrt{3}-1}-\dfrac{4}{\sqrt{3}+1}+\dfrac{4}{\sqrt{5}+\sqrt{3}}\right):\sqrt{14+6\sqrt{5}}$.
d) $\left(\dfrac{7}{\sqrt{2}-1}+\dfrac{56}{\sqrt{2}-4}+\dfrac{3}{\sqrt{3}+\sqrt{2}}\right):\sqrt{12-6\sqrt{3}}$.

Giải

a) $\left(\dfrac{12}{\sqrt{5}+1}-\dfrac{4}{\sqrt{5}+2}+\dfrac{20}{3+\sqrt{5}}\right)(10+3\sqrt{5})$.
Ta có:
$\begin{aligned}
&\left(\dfrac{12}{\sqrt{5}+1}-\dfrac{4}{\sqrt{5}+2}+\dfrac{20}{3+\sqrt{5}}\right)(10+3\sqrt{5})\\
&=\left[\dfrac{12}{5-1}\left(\sqrt{5}-1\right)-\dfrac{4}{5-4}\left(\sqrt{5}-2\right)+\dfrac{20}{9-5}\left(3-\sqrt{5}\right)\right]\left(10+3\sqrt{5}\right)\\
&=\left[3\left(\sqrt{5}-1\right)-4\left(\sqrt{5}-2\right)+5\left(3-\sqrt{5}\right)\right]\left(10+3\sqrt{5}\right)\\
&=\left[3\sqrt{5}-3-4\sqrt{5}+8+15-5\sqrt{5}\right]\left(10+3\sqrt{5}\right)\\
&=\left(-6\sqrt{5}+20\right)\left(10+3\sqrt{5}\right)\\
&=2\left(10-3\sqrt{5}\right)\left(10+3\sqrt{5}\right)\\
&=2(100-45)\\
&=110
\end{aligned}$
b) $\left(\dfrac{24}{\sqrt{7}+1}+\dfrac{4}{3+\sqrt{7}}-\dfrac{3}{\sqrt{7}+2}\right)(4-\sqrt{7})$.
Ta có:
$\begin{aligned}
&\left(\dfrac{24}{\sqrt{7}+1}+\dfrac{4}{3+\sqrt{7}}-\dfrac{3}{\sqrt{7}+2}\right)(4-\sqrt{7})\\
&=\left[\dfrac{24}{7-1}\left(\sqrt{7}-1\right)+\dfrac{4}{9-7}\left(3-\sqrt{7}\right)-\dfrac{3}{7-4}\left(\sqrt{7}-2\right)\right]\left(4-\sqrt{7}\right)\\
&=\left[4\left(\sqrt{7}-1\right)+2\left(3-\sqrt{7}\right)-\left(\sqrt{7}-2\right)\right]\left(4-\sqrt{7}\right)\\
&=\left(4\sqrt{7}-4+6-2\sqrt{7}-\sqrt{7}+2\right)\left(4-\sqrt{7}\right)\\
&=\left(\sqrt{7}+4\right)\left(4-\sqrt{7}\right)\\
&=16-7
&=9
\end{aligned}$
c) $\left(\dfrac{8}{\sqrt{3}-1}-\dfrac{4}{\sqrt{3}+1}+\dfrac{4}{\sqrt{5}+\sqrt{3}}\right):\sqrt{14+6\sqrt{5}}$.
Ta có:
$\begin{aligned}
&\left(\dfrac{8}{\sqrt{3}-1}-\dfrac{4}{\sqrt{3}+1}+\dfrac{4}{\sqrt{5}+\sqrt{3}}\right):\sqrt{14+6\sqrt{5}}\\
&=\left[\dfrac{8}{3-1}\left(\sqrt{3}+1\right)-\dfrac{4}{3-1}\left(\sqrt{3}-1\right)+\dfrac{4}{5-3}\left(\sqrt{5}-\sqrt{3}\right)\right]:\left(3+\sqrt{5}\right)\\
&=\left[4\left(\sqrt{3}+1\right)-2\left(\sqrt{3}-1\right)+2\left(\sqrt{5}-\sqrt{3}\right)\right]:\left(3+\sqrt{5}\right)\\
&=\left(4\sqrt{3}+4-2\sqrt{3}+2+2\sqrt{5}-2\sqrt{3}\right):\left(3+\sqrt{5}\right)\\
&=\left(6+2\sqrt{5}\right):\left(3+\sqrt{5}\right)\\
&=2
\end{aligned}$
d) $\left(\dfrac{7}{\sqrt{2}-1}+\dfrac{56}{\sqrt{2}-4}+\dfrac{3}{\sqrt{3}+\sqrt{2}}\right):\sqrt{12-6\sqrt{3}}$.\\
Ta có:
$\begin{aligned}
&\left(\dfrac{7}{\sqrt{2}-1}+\dfrac{56}{\sqrt{2}-4}+\dfrac{3}{\sqrt{3}+\sqrt{2}}\right):\sqrt{12-6\sqrt{3}}\\
&=\left[\dfrac{7}{2-1}\left(\sqrt{2}+1\right)+\dfrac{56}{2-16}\left(\sqrt{2}+4\right)+\dfrac{3}{3-2}\left(\sqrt{3}-\sqrt{2}\right)\right]:\left(3-\sqrt{3}\right)\\
&=\left[7\left(\sqrt{2}+1\right)-4\left(\sqrt{2}+4\right)+3\left(\sqrt{3}-\sqrt{2}\right)\right]:\left(3-\sqrt{3}\right)\\
&=\left(7\sqrt{2}+7-4\sqrt{2}-16+3\sqrt{3}-3\sqrt{2}\right):\left(3-\sqrt{3}\right)\\
&=\left(-9+3\sqrt{3}\right):\left(3-\sqrt{3}\right)\\
&=-3
\end{aligned}$

Bài tập rèn luyện

Bài 1. Rút gọn

a) $\dfrac{\sqrt{160}-\sqrt{80}}{\sqrt{8}-\sqrt{2}}-\dfrac{\sqrt{40}-\sqrt{15}}{2\sqrt{2}-\sqrt{3}}$.
b) $\left(\dfrac{5-2\sqrt{5}}{2-\sqrt{5}}-2\right)\left(\dfrac{5+3\sqrt{5}}{3+\sqrt{5}}-2\right)$.
c) $\left(\dfrac{\sqrt{216}}{3}-\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}\right)\dfrac{1}{\sqrt{6}}$.
d) $\left(\dfrac{\sqrt{343}}{21}-\dfrac{28+4\sqrt{7}}{\sqrt{63}+3}\right)\dfrac{\sqrt{7}}{7}$.

Bài 2. Rút gọn

a) $\dfrac{5\sqrt{2}-2\sqrt{5}}{\sqrt{5}-\sqrt{2}}+\dfrac{6}{2-\sqrt{10}}$.
b) $\dfrac{3}{\sqrt{5}-\sqrt{2}}-\dfrac{2}{2-\sqrt{2}}+\dfrac{1}{\sqrt{3}+\sqrt{2}}$.
c) $\dfrac{-4}{\sqrt{7}-\sqrt{5}}+\dfrac{1}{\sqrt{3}-1}+\dfrac{4-2\sqrt{5}}{\sqrt{5}-2}$.
d) $\dfrac{5}{3-\sqrt{7}}-\dfrac{2}{\sqrt{2}+\sqrt{3}}+\dfrac{-1}{\sqrt{2}-1}$.

Bài 3. Rút gọn

a) $\dfrac{(\sqrt{3}-\sqrt{5})^2+4\sqrt{15}}{\sqrt{3}+\sqrt{5}}$.
b) $(\sqrt{5}+2)\dfrac{(\sqrt{5}+2)^2-8\sqrt{5}}{\sqrt{5}-2}$.
c) $\dfrac{(\sqrt{2}+1)^2-4\sqrt{2}}{\sqrt{2}-1}\cdot(\sqrt{2}+1)$.
d) $\dfrac{(\sqrt{3}-\sqrt{2})^2+4\sqrt{6}}{(\sqrt{3}+\sqrt{2})^2}\cdot(\sqrt{3}-\sqrt{2})$.

Căn bậc hai – Tính chất cơ bản phần 2

Bài 1. Khai triển các biểu thức sau

a) $(\sqrt{x}-1)^2+(\sqrt{x}+1)^2$.
b) $(\sqrt{x}+2)(\sqrt{x}-3)-(\sqrt{x}+1)(2\sqrt{x}-5)$.
c) $(2\sqrt{x}-3)^2+3(\sqrt{x}-1)(\sqrt{x}+2)$.
d) $(3-\sqrt{x})(3+\sqrt{x})+(\sqrt{x}-2)^2$.

Giải

a) $(\sqrt{x}-1)^2+(\sqrt{x}+1)^2$

$= {{(\sqrt{x}-1)}^2}+{{(\sqrt{x}+1)}^2}$

$=x-2\sqrt{x}+1+x+2\sqrt{x}+1=2x+2$.
b) $(\sqrt{x}+2)(\sqrt{x}-3)-(\sqrt{x}+1)(2\sqrt{x}-5)$
$=(\sqrt{x}+2)(\sqrt{x}-3)-(\sqrt{x}+1)(2\sqrt{x}-5)$

$=x-\sqrt{x}-6-2x+3\sqrt{x}+5$

$=-x+2\sqrt{x}-1=-{{\left(\sqrt{x}-1\right)}^2}$.
c) $(2\sqrt{x}-3)^2+3(\sqrt{x}-1)(\sqrt{x}+2)$
$={{(2\sqrt{x}-3)}^2}+3(\sqrt{x}-1)(\sqrt{x}+2)$

$=4x-12\sqrt{x}+9+3\left(x+\sqrt{x}-2\right)$

$=7x-9\sqrt{x}+3$.
d) $(3-\sqrt{x})(3+\sqrt{x})+(\sqrt{x}-2)^2$

$=(3-\sqrt{x})(3+\sqrt{x})+{{(\sqrt{x}-2)}^2}$

$=9-x+x-4\sqrt{x}+4$

$=13-4\sqrt{x}$.

Bài 2. Rút gọn các biểu thức sau:
a) $A=(\sqrt{x}+2)(5-\sqrt{x})-(\sqrt{x}+3)(\sqrt{x}+1)-(3x+4\sqrt{x}+5)$. $(x \geq 0)$
b) $B=(2\sqrt{a}+\sqrt{b})(\sqrt{a}+1)-(2-\sqrt{a b})(\sqrt{a}-1)$. ($a, b \geq 0$)

Giải

a) $A=(\sqrt{x}+2)(5-\sqrt{x})-(\sqrt{x}+3)(\sqrt{x}+1)-(3x+4\sqrt{x}+5)$
$A=(\sqrt{x}+2)(5-\sqrt{x})-(\sqrt{x}+3)(\sqrt{x}+1)-(3x+4\sqrt{x}+5)$
$A=x+3\sqrt{x}+10-\left(x+4\sqrt{x}+3\right)-3x-4\sqrt{x}-5$
$A=x+3\sqrt{x}+10-x-4\sqrt{x}-3-3x-4\sqrt{x}-5$
$A=-3x-5\sqrt{x}+2$

b) $B=(2\sqrt{a}+\sqrt{b})(\sqrt{a}+1)-(2-\sqrt{a b})(\sqrt{a}-1)$
$B=(2\sqrt{a}+\sqrt{b})(\sqrt{a}+1)-(2-\sqrt{ab})(\sqrt{a}-1)$
$B=2a+2\sqrt{a}+\sqrt{ab}+\sqrt{b}-\left(2\sqrt{a}-2-a \sqrt{b}+\sqrt{ab}\right)$

$B=2a+2\sqrt{a}+\sqrt{ab}+\sqrt{b}-2\sqrt{a}+2+a \sqrt{b}-\sqrt{ab}$
$B=2a+\sqrt{b}+2+a \sqrt{b}$

Bài 3. Phân tích các đa thức sau thành nhân tử:

a) $A=x-\sqrt{x}-2$.
b) $B=x-y+3\sqrt{x}-3\sqrt{y}$.
c) $C=\sqrt{a b}+2\sqrt{a}-\sqrt{b}-2$.
d) $D=x\sqrt{x}+x-2\sqrt{x}$.

Giải

a)  $A=x-\sqrt{x}-2={{\left(\sqrt{x}\right)}^2}-1 \left(\sqrt{x}+1\right)$

$=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+1\right)$

$=\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)$.
b) $B=x-y+3\sqrt{x}-3\sqrt{y}=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+3\left(\sqrt{x}-\sqrt{y}\right)$

$=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}+3\right)$.

c)$C=\sqrt{ab}+2\sqrt{a}-\sqrt{b}-2=\sqrt{a}.\sqrt{b}+2\sqrt{a}-\sqrt{b}-2$

$=\sqrt{b}\left(\sqrt{a}-1\right)+2\left(\sqrt{a}-1\right)$

$=\left(\sqrt{a}-1\right)\left(\sqrt{b}+2\right)$.
d)
$D=x\sqrt{x}+x-2\sqrt{x}$
$=x\sqrt{x}-\sqrt{x}+x-\sqrt{x}$
$=\sqrt{x}(x-1)+\sqrt{x}\left(\sqrt{x}-1\right)$
$=\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+\sqrt{x}\left(\sqrt{x}-1\right)$
$=\sqrt{x}\left(\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)$

Bài 4. Rút gọn các biểu thức sau:
a) $\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}$.
b) $\dfrac{x-4\sqrt{x}+4}{x-2\sqrt{x}}$.
c) $\dfrac{x\sqrt{x}+8}{\sqrt{x}+2}-x-4$.
d) $\dfrac{x-4\sqrt{x}-5}{\sqrt{x}+1}$.

Giải

a)Ta có $\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{{{\left(\sqrt{x}-1\right)}^2}}{\left(\sqrt{x}-1\right)}=\sqrt{x}-1$.
b) Ta có $\dfrac{x-4\sqrt{x}+4}{x-2\sqrt{x}}=\dfrac{{{\left(\sqrt{x}-2\right)}^2}}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}-2}{\sqrt{x}}=1-\dfrac{2}{\sqrt{x}}$.
c) Ta có $\dfrac{x\sqrt{x}+8}{\sqrt{x}+2}-x-4=\dfrac{x\sqrt{x}+8-x\sqrt{x}-2\sqrt{x}-4\sqrt{x}-8}{\sqrt{x}+2}=\dfrac{-6\sqrt{x}}{\sqrt{x}+2}$.
d) Ta có $\dfrac{x-4\sqrt{x}-5}{\sqrt{x}+1}=\dfrac{\left(\sqrt{x}-5\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}=\sqrt{x}-5$.

Bài tập rèn luyện

Bài 1. Khai triển

a) $(\sqrt{a}+2)^2 – (\sqrt(a)-1)^2$.

b) $\sqrt{b}(\sqrt{b}+1)^2 – 2b(\sqrt{b}+3)$.

c) $(\sqrt{x}-1)(\sqrt{y}+4)- 2(2\sqrt{x}+1)(2-\sqrt{y})$.

d) $(\sqrt{x}-1)^3 – 3(\sqrt{x}+2)(\sqrt{x}-1) – 2x(\sqrt{x}-1)$.

Bài 2. Cho $x = \sqrt{3} – \sqrt{2}$.
a) Tính giá trị của biểu thức $A = x^2 -4x+1$.
b) Tính giá trị của biểu thức $B = x^4 -x^2+1$.
Bài 3. Rút gọn các biểu thức sau:
a) $\dfrac{{a\sqrt a – 1}}{{\sqrt a – 1}} – \sqrt a $
b) $\dfrac{{x\sqrt x + 8}}{{\sqrt x + 2}} – 2\sqrt x $
Bài 4. Rút gọn các biểu thức sau:

a)  $\dfrac{{a – 1}}{{\sqrt a + 1}} + \dfrac{{4 – a}}{{\sqrt a + 2}}$.
b) $\dfrac{x-3\sqrt{x}+2}{\sqrt{x}-2}+\dfrac{x-5\sqrt{x}+4}{\sqrt{x}-1}$.

 

Căn bậc hai – Tính chất cơ bản

Định lý 1. Với mọi $A$ ta có hằng đẳng thức $\sqrt{A^2} = |A|$

Tính chất 1. Cho $A, B$ là các số không âm. Khi đó ta có các đẳng thức sau:

a) $\sqrt{AB} = \sqrt{A} \sqrt{B}$.
b) $\sqrt{\dfrac{A}{B}} = \dfrac{\sqrt{A}}{\sqrt{B}}$ ($B > 0$)
c) $\sqrt{A^2B}= |A|\sqrt{B}$

Các ví dụ.

Ví dụ 1. Viết về dạng $A\sqrt{B}$ các biểu thức sau:
a) $3 \sqrt{8}- 4\sqrt{18} + 5\sqrt{32} – \sqrt{50}$
b) $\sqrt{125} – 2\sqrt{20} -3\sqrt{80} + 4\sqrt{45}$
c) $5\sqrt{48} – 4\sqrt{27} – 2\sqrt{75} + \sqrt{108}$

Giải

Ví dụ 2. Khai căn các biểu thức sau:
a)  $\sqrt{(\sqrt{2}-1)^2}$
b) $\sqrt{(\sqrt{3}-2)^2}$
c) $\sqrt{(\sqrt{9}-2\sqrt{2})^2}$

Ví dụ 3. Thực hiện các phép toán sau, đưa về dạng $A + B\sqrt{C}$
a)  $(1+\sqrt{2})^2$
b) $(3-\sqrt{2})^2 + (4+\sqrt{8})^2$.
c) $(1+\sqrt{3})(4-\sqrt{3})^2$.
d) $(2-\sqrt{3})^3(1+\sqrt{27})$

Ví dụ 4. Cho $x =1+ \sqrt{2}$.
a)  Tính $x^2 – 2x + 3$.
b) Tính $x^3 – 3x$.
c) Tính $(x^3-2x^2-x+2)^{2021}$.

Bài tập rèn luyện.

Bài 1. Rút gọn các biểu thức sau:
a)$2\sqrt{24} – 2\sqrt{54} + 3\sqrt{6}- \sqrt{150}$
b) $2\sqrt{28} + 2\sqrt{63} – 3\sqrt{175}+ \sqrt{112}$
c) $10\sqrt{28} + 2\sqrt{275} – 3\sqrt{343} – \dfrac{3}{2}\sqrt{396}$
d)$\dfrac{3}{2} \sqrt{6} + 2 \sqrt{\dfrac{2}{3}} -4\sqrt{\dfrac{3}{2}}$

Bài 2.  So sánh
a) $1+\sqrt{3}$ và $2\sqrt{2}$
b) $\sqrt{2016}+\sqrt{2018}$ và $2\sqrt{2017}$
c) $\sqrt{2015}-\sqrt{2014}$ và $\sqrt{2014} -\sqrt{2013}$
d) $\sqrt{1009}+\sqrt{1008}$ và $\sqrt{2017}$

Bài 3.  Thực hiện phép tính và rút gọn:
a) $(3-\sqrt{2})(7 +3\sqrt{8}) – 15\sqrt{2}$.
b) $(3-\sqrt{5})^2(3+\sqrt{5}) + (1+\sqrt{5})(1-\sqrt{5})$.
c) $(3-\sqrt{2})^3 + (5-\sqrt{2})(6+2\sqrt{2})$.
d) $(4+\sqrt{27})(2-\sqrt{3}) + (1+\sqrt{3})^3$.

Bài 4.  Cho $a = \sqrt{5} – 1$.
a)Tính $a^2 + 4a$.
b) Chứng minh $a^2 + 2a – 4 = 0$.
c) Tính giá trị của biểu thức $(a^3+2a^2-4a+2)^{10}$.
d) Chứng minh $1 < a < 2$.

Bài 5. Cho $x = \sqrt{3}+\sqrt{5}$.
a) Tính $x^3$.
b) Chứng minh $x^4-16x^2 + 4 = 0$.

Bài 6. Tìm $x$ biết $\sqrt{x}$ là số tự nhiên và $A = \dfrac{\sqrt{x}-4}{\sqrt{x}+1}$ là số nguyên.

Bài 7. Cho $x$ là số dương. Chứng minh rằng $$x-\sqrt{x}+1$$ là số dương.

Bài 8. Cho $a > 0$ và $4{a^2} + a\sqrt 2 – \sqrt 2 = 0$. \
Chứng minh rằng : $\dfrac{{a + 1}}{{\sqrt {{a^4} + a + 1} – {a^2}}} = \sqrt 2 $

Đáp án đề thi Toán không chuyên trường Phổ thông Năng Khiếu năm 2021

Bài 1. (1,5 điểm) Cho biểu thức: $$P=\dfrac{a^2+b\sqrt{ab}}{a+\sqrt{ab}}+\dfrac{a\sqrt{a}-3a\sqrt{b}+2b\sqrt{a}}{\sqrt{a}-\sqrt{b}}\ \ (a>b>0)$$

a) Thu gọn biểu thức $P$.

b) Chứng minh $P>0$.

Bài 2. (2 điểm)

a) Giải phương trình: $(x^2 +2x -3)\left( \sqrt{3-2x} – \sqrt{x+1}\right) =0$

b) Cho $(d): y=(m+1)x+mn$ và $(d_1): y=3x+1$. Tìm $m$, $n$ biết $(d)$ đi qua $A(0;2)$, đồng thời $(d)$ song song với $(d_1)$.

Bài 3. (1,5 điểm) Cho $(P)$, $(d)$ lần lượt là đồ thị hàm số $y=x^2$ và $y= 2x+m$.

a) Tìm $m$ sao cho $(P)$ cắt $(d)$ tại hai điểm phân biệt $A(x_1;y_1)$, $B(x_2;y_2)$.

b) Tìm $m$ sao cho $(x_1-x_2)^2 + (y_1-y_2)^2 =5$.

Bài 4. (2 điểm)

a) Công ty viễn thông gói cước được tính như sau:

  • Gói I: $1800$ đồng/phút cho $60$ phút đầu tiên; $1500$ đồng/phút cho $60$ phút tiếp theo và $1000$ đồng/phút cho thời gian còn lại.
  • Gói II: $2000$ đồng/phút cho $30$ phút đầu tiên; $1800$ đồng/ phút cho $30$ phút tiếp theo; $1200$ đồng/phút cho $30$ phút tiếp theo nữa và $800$ đồng/phút cho thời gian còn lại.

Sau khi cân nhắc thì bác An chọn gói II vì sẽ tiết kiện được $95000$ đồng so với gói I. Hỏi trung bình bác An gọi bao nhiêu phút một tháng?

b) Cho $\triangle ABC$ có $AB=3$, $AC=4$, $BC=5$. $BD$ là tia phân giác của $\angle ABC$. Tính $BD$?

Bài 5. (3 điểm) Cho $\triangle ABC$ nhọn $(AB<AC)$ nội tiếp đường tròn $(T)$ có tâm $O$, bán kính $R$, $BC=R\sqrt{3}$. Tiếp tuyến tại $B$, $C$ của $(T)$ cắt nhau tại $P$. Cát tuyến $PA$ cắt $(T)$ tại $D$ (khác $A$). Đường thẳng $OP$ cắt $BC$ tại $H$.

a) Chứng minh $\triangle PBC$ đều. Tính $PA\cdot PD$ theo $R$.

b) $AH$ cắt $(T)$ tại $E$ (khác $A$). Chứng minh $HA \cdot HE = HO \cdot HP$ và $PD = PE$.

c) Trên $AB$ lấy điểm $I$ thỏa $AI =AC$, trên $AC$ lấy điểm $J$ thỏa $AJ = AB$. Đường thẳng vuông góc với $AB$ tại $I$ và đường thẳng vuông góc với $AC$ tại $J$ cắt nhau ở $K$. Chứng minh $IJ=BC$ và $AK \bot BC$. Tính $PK$ theo $R$.

 

— HẾT —


LỜI GIẢI

Bài 1.

a) Ta có $a>b>0$ nên

$P = \dfrac{{{a^2} + b\sqrt {ab} }}{{a + \sqrt {ab} }} + \dfrac{{a\sqrt a – 3a\sqrt b + 2b\sqrt a }}{{\sqrt a – \sqrt b }}$

$= \dfrac{{{{\left( {\sqrt a } \right)}^3} + {{\left( {\sqrt b } \right)}^3}}}{{\sqrt a + \sqrt b }} + \dfrac{{\left( {\sqrt a – \sqrt b } \right)\left( {a – 2\sqrt {ab} } \right)}}{{\sqrt a – \sqrt b }}$

$= a – \sqrt {ab} + b + a – 2\sqrt {ab} = 2a – 3\sqrt {ab} + b.$

(1đ)

b) Ta có $a>b>0$ nên $\sqrt{a}>\sqrt{b}$, do đó

$P=2a-3\sqrt{ab}+b=\left(\sqrt{a}-\sqrt{b}\right)\left(2\sqrt{a}-\sqrt{b}\right)>0. $

(0,5đ)

Bài 2.

a) $(x^{2}+2x-3)(\sqrt{3-2x}-\sqrt{x+1})=0 \quad (*)$

Điều kiện: $\left\{ \begin{array}{l} 3-2x\geq 0 \\ x+1\geq 0 \end{array} \right. \Leftrightarrow -1\leq x\leq \dfrac{3}{2}$

(0,25đ)

$(*) \Leftrightarrow (x -1)(x+3)(\sqrt{3-2x}-\sqrt{x+1})=0$

$\Leftrightarrow \left[ {\begin{array}{*{20}{c}} {x – 1=0}\\ {x+3=0}\\ {3-2x=x+1} \end{array}} \right.$

(0,25đ)

$\Leftrightarrow \left[ {\begin{array}{*{20}{c}} {x =1 \ \ \ (n)}\\ {x=-3 \ (l)}\\ {x=\dfrac{2}{3}\ \ \ (l)} \end{array}} \right.$

(0,25đ)

Vậy $S=\left\{ 1; \dfrac{2}{3}\right\}$

(0,25đ)

b) $(d) // (d_{1})\Leftrightarrow \left\{ \begin{array}{l} m+1=3 \\ m.n\neq 1 \end{array} \right. $ $\Leftrightarrow \left\{ \begin{array}{l} m=2 \\ n\neq \dfrac{1}{2} \end{array} \right. $

(0,5đ)

Vì $A(0;2)\in (d): y=3x+2n\Leftrightarrow 2=3.0+2n\Leftrightarrow n=1$ (n)

(0,5 đ)

Vậy $m=2$, $n=1$

Bài 3.

a) Phương trình hoành độ giao điểm của $ (P) $ và $ (d) $

$ x^2=2x+m \Leftrightarrow x^2-2x-m=0 \quad (1)$

(0,25đ)

$ (P) $ cắt $ (d) $ tại 2 điểm phân biệt $ A, B \Leftrightarrow $ $ (1) $ có $2$ nghiệm phân biệt

$ \Leftrightarrow $ $ \Delta’>0 $ $ \Leftrightarrow $ $ 1+m>0 $

$ \Leftrightarrow m>-1 $ $(*)$

(0,25đ)

Vậy $m>-1$ thì $(P)$ cắt $(d)$ tại hai điểm phân biệt.

b) Với điều kiện $(*)$ theo Viet ta có: $ S=x_1+x_2=2 $, $ P=x_1\cdot x_2=-m $

(0,25đ)

Ta có: $A(x_1;y_1)\in (d) \Leftrightarrow y_1 = 2x_1+m$; $B(x_2;y_2)\in (d) \Leftrightarrow y_2=2x_2+m$

Ta có:

$ (x_1-x_2)^2+(y_1-y_2)^2=5$

$ \Leftrightarrow (x_1-x_2)^2+(2x_1-2x_2)^2=5$

(0,25đ)

$ \Leftrightarrow (x_1-x_2)^2+4(x_1-x_2)^2=5$

$ \Leftrightarrow (x_1-x_2)^2=1\Leftrightarrow (x_1+x_2)^2-4x_1x_2=1$

$ \Leftrightarrow 4+4m=1 \Leftrightarrow m=\dfrac{-3}{4}$ (thỏa $(*)$)

(0,5đ)

Vậy $m=-\dfrac{3}{4}$

Bài 4.

a) Giả sử thời gian gọi trung bình mỗi tháng của bác An là $t$ (phút, $t>0$).

Gọi $A(x)$, $B(x)$ lần lượt là cước phí khi gọi $x$ phút tương ứng với gói cước I và gói cước II, theo đề bài ta có $A(t)-B(t)=95000$ (đồng).

Ta có bảng sau:

Vậy trung bình mỗi tháng bác An gọi $475$ phút.

(1đ)

b) Ta có: $3^2 + 4^2 = 5^2$ nên $AB^2 + AC^2 = BC^2$

Theo định lý Pythagore đảo, tam giác $ABC$ vuông tại $A$.

(0,25đ)

Theo tính chất đường phân giác: $\dfrac{DC}{BC} = \dfrac{DA}{BA}$.

Suy ra $\dfrac{DC}{BC} = \dfrac{DA}{BA} = \dfrac{DC + DA}{BC + BA} = \dfrac{AC}{BA + BC} = \dfrac{1}{2} \Rightarrow AD = \dfrac{1}{2} BA = \dfrac{3}{2}$.

(0,5đ)

Tam giác $ABD$ vuông tại $A$ nên: $BD^2 = AD^2 + AB^2 = \dfrac{45}{4} \Rightarrow BD =\dfrac{3\sqrt{5}}{2}$.

(0,25đ)

Bài 5.

a)

  • Ta có: $OB = OC$, $PB = PC$ suy ra $PO$ là đường trung trực của $BC$

nên $OP \bot BC$ và $H$ là trung điểm $BC$.

$\sin \angle HOC = \dfrac{HC}{OC}= \dfrac{\sqrt{3}}{2} \Rightarrow \angle HOC = 60^\circ \Rightarrow \angle HCP = \angle HOC =60^\circ $

$\triangle PBC$ có $PB = PC$ và $\angle BCP =60^\circ $ suy ra $\triangle PBC$ đều

(0,5đ)

  •  Xét $\triangle PBD$ và $\triangle PAB$ có $\angle BPD$ chung, $\angle PBD = \angle PAB$

$\Rightarrow \triangle PBD \backsim \triangle PAB$ (g.g)

$\Rightarrow \dfrac{PB}{PA}= \dfrac{PD}{PB}\Rightarrow PA\cdot PD = PB^2 = 3R^2$

(0,5đ)

b)

  • Xét $\triangle HAB $ và $\triangle HCE$ có $\angle AHB = \angle CHE$, $\angle HAB = \angle HCE$

$\Rightarrow \triangle HAB \backsim \triangle HCE$ (g.g) $\Rightarrow HA \cdot HE = HB \cdot HC = HB^2 = HO \cdot HP$

(0,5đ)

  •  Xét $\triangle HOA $ và $\triangle HEP$ có $\angle OHA = \angle EHP$, $\dfrac{HO}{HE} = \dfrac{HA}{HP}$

$\Rightarrow \triangle HOA \backsim \triangle HEP$ (c.g.c) $\Rightarrow \angle HOA = \angle HEP$, suy ra $AOEP$ là tứ giác nội tiếp.

Suy ra $\angle HPE = \angle HPD$ (chắn hai cung $OE$ và $OA$ bằng nhau)  $(1)$

Lại có $PA \cdot PD = PB^2 = PH \cdot PO \Rightarrow \dfrac{PD}{PO} = \dfrac{PH}{PA}$

$ \Rightarrow \triangle PDH \backsim \triangle POA$ (c.g.c) suy ra $OHDA$ nội tiếp.

Mà $\angle PAO = \angle ODA =\angle AHO = \angle PHE$ nên $\angle PHD = \angle PHE$  $(2)$

Từ $(1)$ và $(2)$ suy ra $\triangle HDP = \triangle HEP$ (g.c.g), suy ra $PD=PE$.

(0,5đ)

c)

  •  Xét $\triangle ABC$ và $\triangle AJI$ có $AB=AJ$, $\angle IAC$ chung, $AC=AI$

nên $\triangle ABC = \triangle AJI \Rightarrow IJ = BC$

(0,25đ)

  •  Gọi $Q = BC \cap AK$

Ta có: $\angle AIK = \angle AJK =90^\circ $ nên $AIKJ$ nội tiếp đường tròn đường kính $AK$

$ \Rightarrow \angle AKI = \angle AJI$

Mà $\angle AJI = \angle ABC$ (do $\triangle ABC = \triangle AJI$) nên $\angle AKI = \angle ABC$.

Tứ giác $BQKI$ có $\angle AKI = \angle ABC$ nên $BQKI$ là tứ giác nội tiếp.

$\Rightarrow \angle BIK + \angle BQK = 180^\circ \Rightarrow \angle BQK = 180^\circ – \angle BIK = 180^\circ – 90^\circ =90^\circ $

Suy ra $AK \bot BC$.

(0,25đ)

  •  Vì $\triangle ABC = \triangle AIJ$ nên bán kính đường tròn ngoại tiếp của hai tam giác này bằng nhau.

Mà $AK$ là đường kính của đường tròn ngoại tiếp $\triangle AIJ$ nên $AK=2R$.

$\triangle OCP$ vuông tại $C$:

$\Rightarrow OP^2 = OC^2 + CP^2 = R^2 + \left( R\sqrt{3} \right) ^2 = 4R^2$

$\Rightarrow OP=2R \Rightarrow OP=AK$.

Ta có: $AK \bot BC$, $OP \bot BC$ nên $AK // OP$.

Tứ giác $AOPK$ có $AK // OP$ và $AK=OP$ nên $AOPK$ là hình bình hành, suy ra $PK=AO=R$.

Vậy $PK=R$.

(0,5đ)

Lời giải được thực hiện bởi nhóm giáo viên Star Education: thầy Nguyễn Tăng Vũ, thầy Nguyễn Ngọc Duy, thầy Nguyễn Tấn Phát, cô Bùi Thị Minh Phương, Châu Cẩm Triều, Lê Quốc Anh, Nguyễn Công Thành

 

Đề thi học kì 2 môn toán lớp 10 trường Bùi Thị Xuân năm 2020-2021

PHẦN ĐẠI SỐ (6 điểm)

Bài 1. Giải các bất phương trình sau:

a) $|2x+8| <x^2$

b) $1-2x-\sqrt{3x^2-4x+1} \ge 0$

Giải

a) $|2x+8| <x^2 \Leftrightarrow \left\{ \begin{array}{l} x^2 -2x -8>0\\ x^2 + 2x +8 >0 \end{array}\right. $ $\left[ \begin{array}{l} x<-2\\ x>4 \end{array}\right. $

b) $1-2x – \sqrt{3x^2 -4x +1} \ge 0 \Leftrightarrow \sqrt{3x^2 -4x +1} \le 1-2x$

$\Leftrightarrow \left\{ \begin{array}{l} 3x^2 -4x +1\ge 0\\ 1-2x \ge 0\\ x^2 +1\ge 0 \end{array}\right. $ $\Leftrightarrow \left\{ \begin{array}{l} \left[ \begin{array}{l} x\le \dfrac{1}{3}\\ x\ge 1 \end{array} \right. \\ x\le \dfrac{1}{2} \end{array}\right. $ $\Leftrightarrow x\le \dfrac{1}{3}$

Bài 2. Biết $\cos x = -\dfrac{3}{5}$ và $\dfrac{\pi}{2}<x<\pi$. Tính $\sin x$, $\sin 2x$, $\cos \left( x+\dfrac{2\pi}{3}\right) $.

Giải

Ta có: $\sin ^2 x = 1- \cos ^2 x = \dfrac{16}{25} \Rightarrow \sin x = \dfrac{4}{5}$ ($\dfrac{\pi}{2}<x<\pi$)

Ta có: $\sin 2x = 2\sin x \cos x = -\dfrac{24}{25}$

Ta có: $\cos \left( x+ \dfrac{2\pi}{3}\right) = \cos x \cdot \cos \dfrac{2\pi}{3} – \sin x \cdot \sin \dfrac{2\pi}{3} = \dfrac{3-4\sqrt{3}}{10}$

Bài 3. Cho $A$, $B$, $C$ là ba góc của tam giác. Chứng minh rằng

$$\tan \dfrac{A}{2} \cdot \tan \dfrac{B}{2} + \tan \dfrac{B}{2} \cdot \tan \dfrac{C}{2} + \tan \dfrac{C}{2} \cdot \tan \dfrac{A}{2} =1$$

Giải

$VT = \tan \dfrac{A}{2} \cdot \tan \dfrac{B}{2} + \tan \dfrac{B}{2} \cdot \tan \dfrac{C}{2} + \tan \dfrac{C}{2} \cdot \tan \dfrac{A}{2}$

$=\tan \dfrac{B}{2} \cdot \left( \tan \dfrac{A}{2} + \tan \dfrac{C}{2}\right) + \tan \dfrac{C}{2} \cdot \tan \dfrac{A}{2}$

$=\tan \dfrac{B}{2} \cdot \tan \dfrac{A+C}{2} \cdot \left( 1-\tan \dfrac{C}{2} \cdot \tan \dfrac{A}{2}\right) + \tan \dfrac{C}{2} \cdot \tan \dfrac{A}{2}$

$=1-\tan \dfrac{C}{2} \cdot \tan \dfrac{A}{2} + \tan \dfrac{C}{2} \cdot \tan \dfrac{A}{2}=1=VP$ (với $\tan \dfrac{A+C}{2} = \cot \dfrac{B}{2}$ )

Bài 4. Chứng minh biểu thức không phụ thuộc vào $x$:

$$A=\tan (\pi +x) \cdot \tan \left( \dfrac{\pi}{2} -x\right) – \cos ^2 x + \cos \left( x+ \dfrac{\pi}{6}\right) \cdot \cos \left( x-\dfrac{\pi}{6}\right) $$

Giải

$A=\tan (\pi +x) \cdot \tan \left( \dfrac{\pi}{2} -x\right) – \cos ^2 x + \cos \left( x+ \dfrac{\pi}{6}\right) \cdot \cos \left( x-\dfrac{\pi}{6}\right) $

$= \tan x \cdot \cot x – \cos ^2 x + \dfrac{1}{2} \left( \cos 2x + \cos \dfrac{pi}{3}\right) $

$= 1- \cos ^2 x + \cos ^2 x – \dfrac{1}{2} + \dfrac{1}{4} = \dfrac{3}{4}$

Bài 5. Chứng minh rằng

$$\left( \dfrac{\sin 2x – 2\sin x}{\sin 2x + 2\sin x}\right) \cdot \left( \dfrac{\sin ^4 x – \cos ^4 x + \cos ^2 x}{2\left( \cos x-1\right) }\right)= \sin ^2 \dfrac{x}{2}$$

Giải

$VT = \left( \dfrac{\sin 2x – 2\sin x}{\sin 2x + 2\sin x}\right) \cdot \left( \dfrac{\sin ^4 x – \cos ^4 x + \cos ^2 x}{2\left( \cos x-1\right) }\right)$

$=\dfrac{2\sin x \left( \cos x -1\right) }{2\sin x \left( \cos x +1\right) }\cdot \dfrac{\left( \sin ^2 x + \cos ^2 x\right) \left( \sin ^2 x – \cos ^2 x\right) + \cos ^2 x}{2\left( \cos x -1\right) }$

$=\dfrac{\sin ^2 x}{2\left( \cos x +1\right) }=\dfrac{\left( 1-\cos x\right) \left( 1+ \cos x\right) }{2\left( \cos x +1\right) }= \dfrac{1-\cos x}{2} = \sin ^2 \dfrac{x}{2} = VP$

PHẦN HÌNH HỌC (4 điểm)

Bài 6. Trong mặt phẳng với hệ tọa độ $Oxy$, cho tam giác $ABC$ có đỉnh $C(-5;-6)$ và đường cao $AH: x+2y +1=0$, đường trung tuyến $BM: 8x-y+4=0$. Tìm tọa độ các đỉnh $B$, $A$.

Giải

Ta có: $BC \bot AH \Rightarrow BC: 2x -y +c =0$

$C\in BC \Rightarrow c=4 \Rightarrow BC: 2x-y+4=0$

Ta có: $\left\{ \begin{array}{l} B\in BC\\ B\in BM \end{array}\right. $ $\Leftrightarrow \left\{ \begin{array}{l} 2x_B – y_B =-4\\ 8x_B – y_B =-4 \end{array}\right. $ $\Leftrightarrow \left\{ \begin{array}{l} x_B = 0\\ y_B =4 \end{array}\right. $ $\Rightarrow B(0;4)$

Ta có: $M\in BM \Rightarrow M(a;8a+4)$

$M$ là trung điểm $AC\Rightarrow A(2a+5; 16a+14)$

Ta có: $A\in AH \Rightarrow 2a+5 + 2(16a+14) + 2=0 \Leftrightarrow a=-1\Rightarrow A(3;-2)$

Bài 7. Trong mặt phẳng với hệ tọa độ $Oxy$, cho đường tròn $(C): x^2 + y^2 +2x -2y +1=0$. Viết phương trình tiếp tuyến $\Delta $ của đường tròn $(C)$ biết rằng đường thẳng $\Delta$ vuông góc với đường thẳng $d: 2x+y+2=0$.

Giải

$(C): x^2 + y^2 + 2x -2y +1 =0 \Rightarrow $ Tâm $I(-1;1)$, bán kính $R=1$

Ta có: $\Delta \bot d \Rightarrow d: x-2y +c =0$

Ta có: $d_{(I,\Delta)}=1 \Leftrightarrow \dfrac{|c-3|}{\sqrt{5}} =1 \Leftrightarrow |c-3| =\sqrt{5} \Leftrightarrow \left[ \begin{array}{l} c=\sqrt{5}+3\\ c=-\sqrt{5}+3 \end{array}\right. $

Với $c=\sqrt{5}+3 \Rightarrow \Delta: x-2y + \sqrt{5}+3 =0$

Với $c=-\sqrt{5}+3 \Rightarrow \Delta: x-2y -\sqrt{5}+3=0$

Bài 8. Trong mặt phẳng với hệ tọa độ $Oxy$, cho đường thẳng $d: 2x-y-5=0$ và hai điểm $A(1;2)$, $B(4;1)$. Viết phương trình đường tròn $(T)$ có tâm thuộc đường thẳng $d$ và đi qua $A$, $B$.

Giải

Gọi $I$ là tâm đường tròn $\Rightarrow I\in d \Rightarrow I(a;2a-5)$

Ta có: $AI^2 = BI^2 \Rightarrow (a-1)^2 + (2a-7)^2 = (a-4)^2 + (2a-6)^2 \Rightarrow a=1$

Suy ra $I(1;-3)$ nên $R=5$

Vậy $(T): (x-1)^2 + (y+3)^2 =25$

Bài 9. Trong mặt phẳng với hệ tọa độ $Oxy$, cho elip $(E): \dfrac{x^2}{25} + y^2 =1$. Tìm tọa độ tiêu điểm, tính tâm sai và độ dài các trục của $(E)$.

Giải

$(E): \dfrac{x^2}{25}+y^2 =1 \Rightarrow a=5$ và $b=1$

Khi đó: $c=\sqrt{a^2 -b^2} =2\sqrt{6}$

Tọa độ tiêu điểm: $F_1(-2\sqrt{6}; 0)$; $F_2(2\sqrt{6}; 0)$

Tâm sai: $e=\dfrac{c}{a} = \dfrac{2\sqrt{6}}{5}$

Độ dài trục lớn: $2a=10$

Độ dài trục bé: $2b=2$

— HẾT —

Đề thi học kì 2 môn toán lớp 11 trường PTNK năm 2020-2021

Bài 1: (1 điểm) Tính các giới hạn sau:

a) $\lim\limits_{x\rightarrow {+\infty}} \dfrac{4x+\sqrt{x^2-x}}{x+3}$.

b) $\lim\limits_{x\rightarrow 1} \dfrac{x-\sqrt{x^2+x-1}}{3x-x^2-2}$

Giải

a) $\lim\limits_{x\rightarrow {+\infty}} \dfrac{4x+\sqrt{x^2-x}}{x+3}$

$= \lim\limits_{x\rightarrow {+\infty}} \dfrac{x\left( 4+\sqrt{1-\dfrac{1}{x}}\right) }{x\left( 1+\dfrac{3}{x}\right) }$

$=\lim\limits_{x\rightarrow {+\infty}} \dfrac{ 4+\sqrt{1-\dfrac{1}{x}} }{ 1+\dfrac{3}{x} } =5$

b) $\lim\limits_{x\rightarrow 1} \dfrac{x-\sqrt{x^2+x-1}}{3x-x^2-2}$

$=\lim\limits_{x\rightarrow 1} \dfrac{\left( x-\sqrt{x^2+x-1}\right) \left( x+\sqrt{x^2+x-1}\right)}{\left( 1-x\right) \left( x-2\right) \left( x+\sqrt{x^2+x-1}\right)}$

$=\lim\limits_{x\rightarrow 1} \dfrac{1-x}{\left( 1-x\right) \left( x-2\right) \left( x+\sqrt{x^2+x-1}\right)}$

$=\lim\limits_{x\rightarrow 1} \dfrac{1}{\left( x-2\right) \left( x+\sqrt{x^2+x-1}\right)} =-\dfrac{1}{2}$

Bài 2: (1,5 điểm) Tính đạo hàm của các hàm số sau:

a) $y= \dfrac{x^2-x+5}{x+1} + \sqrt{2x-x^2}$

b) $y=\tan (1+x^2) + \cos ^5 (1-2x)$.

Giải

a) $y’=\left( \dfrac{x^2-x+5}{x+1} + \sqrt{2x-x^2}\right) ‘$

$= \dfrac{(x^2 -x +5)'(x+1)-(x^2 -x+5)(x+1)’}{(x+1)^2} + \dfrac{(2x-x^2)’}{2\sqrt{2x-x^2}}$

$=\dfrac{(2x-1)(x+1)-(x^2-x+5)}{(x+1)^2} + \dfrac{1-x}{\sqrt{2x-x^2}}$

$=\dfrac{x^2+2x-6}{(x+1)^2} + \dfrac{1-x}{\sqrt{2x-x^2}}$.

b) $y’=\left( \tan (1+x^2) + \cos ^5 (1-2x)\right) ‘$

$=(1+x^2)’ \left( 1+\tan ^2 (1+x^2)\right) + 5(1-2x)’ \cdot \cos ^4 (1-2x)$

$= 2x + 2x\tan ^2 (1+x^2) -10\cos ^4 (1-2x)$.

Bài 3: (1 điểm) Chứng minh phương trình $2(m^2 -2)x^5 – 4m^2x^4 + 2(m^2 -x^2) + 4x +1 =0$ có ít nhất hai nghiệm trái dấu với mọi số thực $m$.

Giải

Đặt $f(x) = 2(m^2 -2)x^5 -4m^2x^4 + 2(m^2 -x^2) + 4x +1$

Ta có: $f(-1) = -4m^2 -5 <0$, $f(0) = 2m^2 +1 >0$ $\Rightarrow f(-1)\cdot f(0) <0$

Suy ra phương trình $f(x) =0$ có ít nhất 1 nghiệm âm trong khoảng $(-1;0)$

Lại có: $f(1) = -1<0\Rightarrow f(0)\cdot f(1)<0$

Suy ra phương trình $f(x)=0$ có ít nhất 1 nghiệm dương trong khoảng $(0;1)$

Vậy phương trình có ít nhất hai nghiệm trái dấu với mọi $m$.

Bài 4: (1 điểm) Tìm $a$ để hàm số $y=f(x)=\left\{ \begin{array}{l} \dfrac{\sqrt{2x^2+1}+ x-5}{x^2-4}; \, x\ne \pm 2\\ ax^2 + \dfrac{19}{12}; \, x=\pm 2 \end{array}\right. $ liên tục tại $x_0=2$.

Giải

Ta có: $f(2) = 4a+\dfrac{19}{12}$

Lại có: $\lim\limits_{x\rightarrow 2} \dfrac{\sqrt{2x^2+1}+ x-5}{x^2-4} = \lim\limits_{x\rightarrow 2} \dfrac{2x^2+1- (x-5)^2}{(x-2)(x+2)(\sqrt{2x^2+1}-x+5)}$

$=\lim\limits_{x\rightarrow 2} \dfrac{x+12}{(x+2)(\sqrt{2x^2+1}-x+5)} = \dfrac{7}{12}$

Hàm số liên tục tại $x_0 =2 \Leftrightarrow 4a + \dfrac{19}{12} = \dfrac{7}{12} \Leftrightarrow a=-\dfrac{1}{4}$

Bài 5: (1,5 điểm) Cho $(C)$ là đồ thị của hàm số $y=3x^4 -3x^2 +2$.

a) Viết phương trình tiếp tuyến của $(C)$ tại điểm có hoành độ bằng $-1$.

b) Viết phương trình tiếp tuyến của $(C)$ biết tiếp tuyến có hệ số góc $k=6$.

Giải

a) Ta có: $f'(x) = 12x^3 -6x \Rightarrow f'(-1) = -6$, $f(-1) = 2$

Phương trình tiếp tuyến của $(C)$ tại $x_0=-1$: $y=-6(x+1) +2 = -6x -4$

b) Gọi phương trình tiếp tuyến cần tìm là $y=f'(x_0) (x-x_0) + f(x_0)$

Ta có: $f'(x_0) =6 \Leftrightarrow 12x_0^3 -6x_0 =6 \Leftrightarrow x_0=1 \Rightarrow f(x_0) = 2$

Vậy phương trình tiếp tuyến cần tìm là: $y=6(x-1) + 2 = 6x-4$

Bài 6: (4 điểm) Cho hình chóp $S.ABC$ có $SA \bot (ABC)$. Tam giác $ABC$ cân tại $B$, $BA = BC =a$; $\angle ABC =120^\circ $, $SA=a\sqrt{3}$. $D$ là điểm đối xứng với $B$ qua trung điểm $I$ của $AC$.

a) Tính góc tạo bởi $SC$ và mặt phẳng $(ABC)$.

b) Chứng minh $BD \bot (SAC)$. Tính góc tạo bởi hai mặt phẳng $(SBD)$ và $(ABC)$.

c) Tính khoảng cách từ $D$ đến $(SBC)$.

d) Gọi $M$, $N$ lần lượt là trung điểm $BA$, $BC$. Tính khoảng cách giữa hai đường thẳng $MN$ và $SC$.

Giải

a) Hình chiếu của $C$ lên $(ABC)$ là $C$

Hình chiếu của $S$ lên $(ABC)$ là $A$

$\Rightarrow \widehat{\left( SC, (ABC)\right) } = \widehat{(SC, AC)} = \angle SCA$

Tứ giác $ABCD$ có $I$ là trung điểm $AC$, $BD$ và $AB=BC$

Suy ra tứ giác $ABCD$ là hình thoi

Suy ra $\triangle BIC$ vuông tại $I$ và $\angle IBC = \dfrac{\angle ABC}{2} =60^\circ $

Suy ra $IC = BC \cdot \sin \angle IBC =\dfrac{a\sqrt{3}}{2} \Rightarrow AC =a\sqrt{3}$

Ta có: $\tan \angle SCA = \dfrac{SA}{AC} = 1 \Rightarrow \angle SCA =45^\circ $.

b)

  • Ta có: $BD \bot AC$, $BD \bot SA\Rightarrow BD \bot (SAC)$
  • Ta có: $BD\bot (SAC) \Rightarrow BD \bot SI$

Ta có: $\left\{ \begin{array}{l} (SBD) \cap (ABC) = BD\\ AI\bot BD, SI \bot BD \end{array}\right.$

$\Rightarrow \widehat{((SBD), (ABC))} = \widehat{(SI, AI)}= \angle SIA$

Ta có: $\tan \angle SIA = \dfrac{SA}{AI} = 2 \Rightarrow \angle SIA \approx 63^\circ $

c) Gọi $H$ là hình chiếu của $A$ trên $BC$, $K$ là hình chiếu của $A$ trên $SH$.

Ta có: $BC \bot AH$, $BC \bot SA \Rightarrow BC \bot (SAH)$

Ta có: $AK \bot SH$, $AK \bot BC\Rightarrow AK \bot (SBC)$

Do $AD // (SBC) \Rightarrow d_{(D, (SBC))} = d_{(A, (SBC))}=AK$

$\triangle AHC$ vuông tại $H$ có $\angle ACH =30^\circ \Rightarrow AH = AC \cdot \sin 30^\circ =\dfrac{a\sqrt{3}}{2}$

$\triangle SAH$ vuông tại $A$ có $AK$ là đường cao

$\Rightarrow \dfrac{1}{AK^2} = \dfrac{1}{SA^2} + \dfrac{1}{AH^2}\Rightarrow AK=\dfrac{a\sqrt{15}}{5}$

d) Gọi $J$ là giao điểm của $MN$ và $BD$ suy ra $J$ là trung điểm của $BI$

Ta có: $JI \bot AC$, $JI \bot SA \Rightarrow JI \bot (SAC)$

Ta có: $MN //AC \Rightarrow MN //(SAC) \Rightarrow d_{(MN,SC)} = d_{(MN, (SAC))} = JI = \dfrac{BD}{4} = \dfrac{a}{4}$.

 

 

— HẾT —

Đề thi học kì 2 môn toán lớp 10 trường PTNK năm 2020-2021

Bài 1: (2 điểm) Giải bất phương trình:

a) $\dfrac{-x-4}{x^2-7x+12} >0$

b) $\sqrt{x^2+4} \ge x+2$

Giải

a) $\dfrac{-x-4}{x^2-7x+12} >0 \Leftrightarrow \dfrac{x+4}{(x-3)(x-4)} <0 \Leftrightarrow x \in \left( – \infty ; -4 \right) \cup \left( 3;4 \right) $

Vậy $S=\left( – \infty ; -4 \right) \cup \left( 3;4 \right) $

b) $\sqrt{x^2+4} \ge x+2 \Leftrightarrow \left[ \begin{array}{l} x \le -2 \\ \left\{ \begin{array}{l} x >-2 \\ x^2+4 \ge x^2 +4x+4 \end{array} \right. \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x \le -2 \\ \left\{ \begin{array}{l} x >-2 \\ x \le 0 \end{array} \right. \end{array} \right. \Leftrightarrow x \le 0 $

Vậy $S= \left( – \infty ; 0 \right] $

Bài 2: (1 điểm)  Tìm $m$ để bất phương trình: $2mx^2 – 2(m-4)x+m-4 \ge 0$ vô nghiệm.

Giải
  • $m=0 \Rightarrow 8x -4 \ge 0 \Leftrightarrow x \ge \dfrac{1}{2}$ (loại)
  • $m \ne 0$

Đặt $f(x)= 2mx^2 – 2(m-4)x+m-4 $

Để $f(x) \ge 0$ vô nghiệm thì $f(x)\le 0$ với mọi $x \in \mathbb{R}$, khi và chỉ khi:

$\left\{ \begin{array}{l} m<0 \\ \Delta ‘= {\left( {m – 4} \right)^2} – 2m\left( {m – 4} \right) <0 \end{array} \right. \Leftrightarrow m<-4$

Bài 3: (1,5 điểm) Cho hệ bất phương trình: $\left\{ \begin{array}{l} \dfrac{x}{x-1}\le 0 \\ \left( m^2 +1 \right) x > 2mx + m^2 +1 \end{array} \right. \quad (I) $

a) Giải hệ bất phương trình $(I)$ khi $m=-1$.

b) Tìm $m$ để hệ bất phương trình có nghiệm.

Giải

a) Thay $m=-1$ vào $(I)$ ta được: $\left\{ \begin{array}{l} \dfrac{x}{x-1}\le 0\\ 2x>-2x + 2 \end{array}\right. $ $\Leftrightarrow \left\{ \begin{array}{l} 0\le x<1\\ x>\dfrac{1}{2} \end{array}\right. $ $\Leftrightarrow \dfrac{1}{2}<x<1$.

b) $(I) \Leftrightarrow \left\{ \begin{array}{l} 0\le x<1\\ (m-1)^2x>m^2+1 \ \ (1) \end{array}\right. $

  • TH1: $m=1$ thì hệ bất phương trình vô nghiệm.
  • TH2: $m\ne 1$, khi đó $(1)\Leftrightarrow x>\dfrac{m^2+1}{(m-1)^2}$

Hệ bất phương trình có nghiệm khi và chỉ khi $\dfrac{m^2+1}{(m-1)^2} <1\Leftrightarrow m<0$

Vậy $m<0$ thì hệ bất phương trình $(I)$ có nghiệm.

Bài 4: (1 điểm) Chứng minh rằng:

a) $\sin ^2 x + \sin ^2 \left( \dfrac{\pi}{3}-x \right) = 1 – \dfrac{1}{2}\cos\left( 2x – \dfrac{\pi}{3}\right) $

b) $ \sin ^2 x + \sin ^2 \left( \dfrac{\pi}{3}-x \right) + \sin x \cdot \sin \left( \dfrac{\pi}{3}-x \right) = \dfrac{3}{4}$

Giải

a) $VT= \sin ^2 x + \sin ^2 \left( \dfrac{\pi}{3}-x\right) = \dfrac{1}{2} – \dfrac{1}{2}\cos 2x + \dfrac{1}{2} – \dfrac{1}{2} \cos \left( \dfrac{2\pi}{3} -2x\right) $

$=1-\dfrac{1}{2} \left[ \cos 2x + \cos \left( \dfrac{2\pi}{3} -2x\right) \right] = 1-\dfrac{1}{2} \cdot 2 \cdot \cos \dfrac{\pi}{3} \cdot \cos \left(2x- \dfrac{\pi}{3}\right) $

$=1-\dfrac{1}{2}\cos \left( 2x-\dfrac{\pi}{3}\right)= VP $.

b) $VT = \sin ^2 x + \sin ^2 \left( \dfrac{\pi}{3}-x\right) + \sin x \cdot \sin \left( \dfrac{\pi}{3} -x\right) $

$= 1-\dfrac{1}{2} \cos \left( 2x-\dfrac{\pi}{3}\right) – \dfrac{1}{2} \left[ \cos \dfrac{\pi}{3} – \cos \left( 2x – \dfrac{\pi}{3}\right) \right] = \dfrac{3}{4}=VP$

Bài 5: (0,5 điểm) Cho hai số thực $a$, $b$ thỏa $2a + 3b=7$. Tìm giá trị lớn nhất của $M=(a+1)(b+1)$.

Giải
  • Cách 1: $2a + 3b =7 \Leftrightarrow a=\dfrac{7}{2} -\dfrac{3}{2}b$

Thay $a=\dfrac{7}{2} -\dfrac{3}{2}b$ vào $M$, ta được:

$M=\left( \dfrac{9}{2} – \dfrac{3}{2}b \right) (b+1) = -\dfrac{3}{2}b^2 + 3b + \dfrac{9}{2} = -\dfrac{3}{2}\left( b-1\right) ^2 +6\le 6$

Vậy giá trị nhỏ nhất của $M$ là $6$ khi và chỉ khi $b=1$ và $a=2$.

  • Cách 2: $6M = (2a+2)(3b+3) \le \dfrac{\left( 2a+2 + 3b +3\right) ^2}{4} =36 \Rightarrow M\le 6$

Vậy giá trị lớn nhất của $M$ là $6$ khi và chỉ khi $a=2$ và $b=1$.

Bài 6: (3 điểm) Trong mặt phẳng tọa độ $Oxy$ cho $2$ điểm $A(1;3)$, $B(2;1)$ và đường thẳng $(d): \left\{ \begin{array}{l} x=t \\ y=10+5t \end{array} \right. \quad (t \in \mathbb{R})$

a) Tìm tọa độ giao điểm của $AB$ với đường thẳng $(d)$. Viết phương trình đường thẳng $(d’)$ qua $A$ và song song với $(d)$.

b) Tìm $a \in \mathbb{R}$ sao cho khoảng cách từ $A$ đến đường thẳng $(\Delta )$ bằng $1$, biết

$( \Delta ): x+ (a-1)y-3a=0$

c) Viết phương trình đường tròn $(C)$ có tâm $A$ tiếp xúc với trục $Ox$. Tìm tọa độ giao điểm của đường tròn $(C)$ với trục $Oy$.

Giải

a)

  • Phương trình đường thẳng $AB: 2x + y -5=0$

Gọi $M(a; 10+5a)$ là giao điểm của $AB$ và $(d)$

Ta có: $M\in AB \Leftrightarrow 2a + 10 + 5a -5=0 \Leftrightarrow a=-\dfrac{5}{7}$

Vậy tọa độ giao điểm của $AB$ và $(d)$ là $M\left( -\dfrac{5}{7}; \dfrac{45}{7}\right) $

  • Đường thẳng $(d’)$ đi qua $A(1;3)$ và song song với $(d)$, khi đó:

$(d’): \left\{ \begin{array}{l}x=1+t’\\ y=3+5t’ \end{array}\right. $ $(t’\in \mathbb{R})$

b) Ta có: $d_{(A, (d’))} =1$

$ \Leftrightarrow \dfrac{|1 + (a-1)\cdot 3 -3a|}{\sqrt{1+(a-1)^2}} =1$

$\Leftrightarrow 1+ (a-1)^2 = 4 \Leftrightarrow \left[ \begin{array}{l} a=1+\sqrt{3}\\ a=1-\sqrt{3} \end{array}\right. $

c)

  • Ta có: $d_{(A, Ox)} = 3 = R$

Phương trình đường tròn $(C)$ tâm $A$, bán kính $R=3$ là:

$(C) : (x-1)^2 + (y-3)^2 =9$

  • Gọi $N(0,y)$ là giao điểm của $(C)$ và $Oy$.

Ta có: $N\in (C) \Leftrightarrow 1 + (y-3)^2 =9 \Leftrightarrow \left[ \begin{array}{l} y=3+2\sqrt{2}\\ y=3-2\sqrt{2} \end{array}\right. $

Vậy tọa độ giao điểm là $N_1(0; 3+2\sqrt{2})$ và $N_2(0; 3-2\sqrt{2})$.

Bài 7: (1 điểm) Trong mặt phẳng $Oxy$, cho Elip $(E): \dfrac{x^2}{25} + \dfrac{y^2}{9} =1$

a) Tính chu vi hình chữ nhật cơ sở của $(E)$.

b) Điểm $H(m;n)$ thuộc $(E)$ thỏa $F_1H=9F_2H^2$ với $F_1$, $F_2$ là hai tiêu điểm của $(E)$ và $x_{F_1} < 0$. Tìm $m$, $n$.

Giải

a) Ta có: $a=5$, $b=3$

Chu vi hình chữ nhật cơ sở là: $2(2a+2b) = 32$.

b) Ta có: $c^2 = a^2 – b^2 =16 \Rightarrow c=4 \Rightarrow e=\dfrac{4}{5}$

$F_1H = a+e\cdot m = 5+\dfrac{4}{5}m$, $F_2H = a-e\cdot m = 5-\dfrac{4}{5}m $

Ta có: $F_1H = 9F_2H^2 \Leftrightarrow 5+\dfrac{4}{5}m = 9\left( 5-\dfrac{4}{5}m\right) ^2$

$\Leftrightarrow \dfrac{144}{25}m^2 – \dfrac{364}{5}m + 220=0 \Leftrightarrow \left[ \begin{array}{l} m=5 \Rightarrow n=0\\ m=\dfrac{275}{36} \ (l) \end{array}\right. $

Vậy $H(5;0)$.

— HẾT —

Một số bài toán số học hay ôn thi vào 10 Chuyên Toán

Trong khi thì HSG TPHCM vừa qua có một điều đáng tiếc nhất là câu số học không có trong đề thi, làm nhiều thí sinh khá hụt hẫng nhưng cũng làm nhiều thí sinh vui mừng, vì số học luôn là câu hỏi hóc búa của mỗi kì thi. Có lẽ BTC cuộc thi muốn dành sự quan tâm cho các câu hỏi thực tế nên phần số học bị bỏ qua.

Khác với kì thi HSG, kì thi tuyển sinh vào 10 thì đề thi luôn có đủ cả các phần: đại số, số học, hình học và tổ hợp. Số học cũng như tổ hợp, luôn là phần khiến nhiều thí sinh gặp khó khăn, trong bài viết nhỏ này, tôi xin giới thiệu lại một số bài toán số học đã được cho trong các kì thi tuyển sinh của trường Phổ thông Năng khiếu, nơi tôi làm việc hơn 10 năm qua. Các bạn thí sinh chuẩn bị thi vào trường nên xem kĩ lời giải và cố gắng học thật tốt phần này, điều đó sẽ giúp rất nhiều cơ hội trúng tuyển vào lớp chuyên toán.

Số học THCS thì nội dung quay xung quanh các phép chia hết, phương trình nghiệm nguyên, số nguyên tố, số chính phương,…Việc đầu tiên là nắm chắc các tính chất của phép chia hết, tính chất cơ bản nhất của số nguyên tố hay số chính phương. Bài toán chia hết cũng xuất hiện nhiều lần trong đề thi, sau đây là một bài khá đơn giản nhưng hay:

Bài 1. (PTNK 2011 – Chuyên Toán) Cho các số nguyên $a, b, c$ sao cho $2a+b,2b+c, 2c+a$ đều là các số chính phương ().
a) Biết rằng có ít nhất một trong 3 số chính phương trên chia hết cho 3. Chứng minh rằng $(a-b)(b-c)(c-a)$ chia hết cho 27.
b) Tồn tại hay không các số $a, b, c$ thỏa điều kiện (
) mà $(a-b)(b-c)(c-a)$ không chia hết cho 27?

Nhận xét. Đây là một bài toán chia hết, liên quan đến các số chính phương, để ý thấy chủ yếu là chia hết cho 3. Ta phải nghĩ đến một số chính phương chia 3 xảy ra những trường hợp nào, từ đó thiết lập các tính chất đã biết:

  • Một số chính phương khi chia cho 3 dư 0 hoặc 1.
  • $a^2 + b^2 $ chia hết cho 3 khi và chỉ khi $a, b$ đồng thời chia hết cho 3.
  • Việc chứng minh tích chia hết cho 27, thì nghĩ đến việc ta cần chứng minh $a, b, c$ có cùng số dư khi chia cho 3, đó là trường hợp đơn giản nhất. Sau đây là lời giải

a) Giả sử $2a + b = m^2, 2b+c = n^2, 2c + a = p^2$.
Cộng ba đẳng thức lại, ta được $3(a+b+c) = m^2 + n^2 + p^2$. Suy ra $m^2+n^2+p^2$ chia hết cho 3.
Ta thấy bình phương của một số nguyên khi chia cho 3 dư 1 hoặc 0. Do đó nếu 1 trong 3 số, chẳng hạn $m$ chia hết cho 3 thì $n^2+p^2$ chia hết cho 3 và như thế $n^2$ và $p^2$ cũng chia hết cho 3.
Hơn nữa $2a+b = 3a +(b-a)$ chia hết cho 3, suy ra $a-b$ chia hết cho 3. Tương tự thì $b-c, c-a$ chia hết cho 3. Suy ra $(a-b)(b-c)(c-a)$ chia hết cho 27.
b) Tồn tại. Chẳng hạn có thể lấy $a=2, b=0,c=1$.

Sau đây cũng là bài toán chia hết, nhưng ở mức độ khó hơn hẳn, đòi hỏi học sinh phải có suy luận tốt và nắm chắc được nhiều kiến thức.
Bài 2. (PTNK 2016 – CT) Cho $x, y$ là hai số nguyên dương mà $x^2 + y^2 + 10$ chia hết cho $xy$.

a) Chứng minh rằng $x, y$ là hai số lẻ và nguyên tố cùng nhau.
b) Chứng minh $k = \dfrac{x^2+y^2+10}{xy}$ chia hết cho 4 và $k \geq 12$.

Nhận xét. Bài toán này cũng giống bài toán trên, là liên quan đến các số chính phương $x^2, y^2$. Việc chứng minh chẵn lẻ liên quan đến số dư khi chia cho 4 của một số chính phương.

Câu a) chỉ là bài toán xét trường hợp khá dễ nhìn, khi phản chứng là giả sử $x, y$ không cùng là số lẻ, từ đó khi xét tính chẵn lẻ của $x^2 + y^2 + 10$ và $xy$ sẽ giải quyết được vấn đề. \ Việc chứng minh nguyên tố cùng nhau thì cách tiếp cận quen thuộc nhất là gọi ước chung lớn nhất và chứng minh nó bằng 1.
Câu b) khó hơn khi có hai ý, ý đầu có thể áp dụng tiếp câu a, nhưng ý sau việc chứng minh $k \geq 12$ có thể đánh lừa nhiều học sinh trong khi việc đơn giản chỉ là chứng minh $k$ chia hết cho 3 là giải quyết được bài toán, mà chứng minh $k$ chia hết cho $3$ cũng là việc xét số dư của tử và mẫu thức khi chia cho 3. Sau đây là lời giải chi tiết.

Lời giải.
a) Giả sử trong hai số $x, y$ có một số chẵn, vì vai trò $x, y$ như nhau nên có thể giả sử $x$ chẵn. Suy ra $x^2 + y^2 + 10$ chia hết cho 2, suy ra $y$ chẵn. Khi đó $x^2 + y^2 + 10$ chia hết cho 4, suy ra 10 chia hết cho 4 vô lý.
Vậy trong hai số đều là số lẻ.
Đặt $d= (x,y)$, $x= d.x’, y = d.y’$ ta có $x^2 + y^2 + 10 = d^2(x’^2 + y’^2) + 10$ chia hết cho $d^2x’y’$. Suy ra 10 chia hết cho $d^2$. Suy ra $d= 1$. Vậy $x, y$ nguyên tố cùng nhau.
b)  Đặt $x = 2m + 1, y = 2n + 1$, suy ra $k = \dfrac{4(m^2+m+n^2+n+3}{(2m+1)(2n+1)}$.
Ta có $4, (2m+1).(2n+1)$ nguyên tố cùng nhau. Suy ra $m^2 + n^2 +m+n+3$ chia hết cho $(2m+1)(2n+1)$. Từ đó ta có $k$ chia hết cho 4. Chứng minh $k \geq 12$ bằng hai cách.
Cách 1. Ta có $x^2 + y^2 + 10 = kxy$.
Nếu trong hai số $x, y$ có một số chia hết cho 3, giả sử $x$ chia hết cho 3. Ta có $y^2 + 10$ chia hết cho 3 vô lý vì $y^2 $ chia 3 dư 0 hoặc dư 1.
Vậy $x, y$ không chia hết cho 3, suy ra $x^2 + y^2 + 10$ chia hết cho 3 và $3, xy$ nguyên tố cùng nhau. Do đó $k$ chia hết cho 3.
Do đó $k$ chia hết cho 12, vậy $k\geq 12$.
Cách 2. Xét $k=4$ ta có $x^2 + y^2 + 10 = 4xy$ () $\Leftrightarrow (x-2y)^2 = 3y^2 – 10$.
Ta có $(x-2y)^2$ chia 3 dư 0 hoặc 1 mà $3y^2-10$ chia 3 dư 2, nên phương trình (
) không có nghiệm nguyên dương.
Xét $k=8$ ta có $x^2 + y^2 + 10 = 8xy (*)\Leftrightarrow (x-4y)^2 = 15y^2 -10$.
Ta có $(x-4y)^2$ chia 3 dư 0 hoặc 1 mà $15y^2-10$ chia 3 dư 2 nên (**) không có nghiệm nguyên dương.
Vậy $k \geq 12$.

Sau chia hết, các kiến thức về phương trình nghiệm nguyên cũng rất quan trọng, trong nhiều bài thi của PTNK kĩ năng giải phương trình nghiệm nguyên giúp mình được nhiều việc.\
Sau đây là bài toán số học, nhưng bản chất số học thì ít mà đại số thì nhiều, chỉ việc biến đổi đại số vài dòng là xong. Tuy vậy nhiều học sinh sau khi đọc đề lại phát hoảng, vì đề bài phát biểu nghe rất “kinh”, đánh lừa được các thí sinh yếu bóng vía. Bài toán sau chế tác từ bài thi của Bungari:
Bài 3. (PTNK 2012 – CT) Số nguyên dương $n$ được gọi là số điều hòa nếu như tổng các bình phương của các ước
của nó ( kể cả 1 và n ) đúng bằng $(n+3)^2$ .

a) Chứng minh rằng số 287 là số điều hòa.
b) Chứng minh rằng số $n = p^3$( $p$ nguyên tố ) không phải là số điều hòa.
c) Chứng minh rằng nếu số $n = pq$ ( $p,q$ là các số nguyên tố khác nhau) là số điều hòa thì $n
+ 2$ là số chính phương.

Nhận xét. Bài toán đưa ra định nghĩa số điều hòa, nghe có vẻ ghê gớm nhưng không có ý nghĩa mấy, hoặc không phù hợp với từ điều hòa hay dùng. Nhiều thí sinh đọc đề mà thuộc dạng yếu bóng vía sẽ bỏ qua, ngay cả bỏ qua câu a rất dễ. Tuy nhiên nếu đã hiểu định nghĩa, việc giải quyết các câu hỏi là điều khá dễ, cũng liên

Lời giải. 

a)  Số $n = 287$ có các ước dương là 1, 7, 41, 287. Ta có $1^2 + 7^2 + 41^2 +287^2 = (287+3)^2$ nên 287 là số điều hòa.
b) Các ước dương của $n = p^3$ là $1, p, p^2, p^3$. Giả sử $n$ là số điều hòa, ta có $(n+3)^2 = 1^2 + p^2 + p^4 + p^6 \Leftrightarrow p^4 + p^2 = 6p^3 + 8$. Suy ra $p|8$ mà $p$ nguyên tố nên $p = 2$. Thử lại thấy không thỏa, vậy $n = p^3$ không phải là số điều hòa với mọi số nguyên tố $p$.
c) Các ước dương của $n = pq$ là $1, p, q, pq$. Vì $n$ là số điều hòa nên ta có:
$1+p^2+q^2+p^2q^2 = (pq+3)^2 \Leftrightarrow p^2 + q^2 = 6pq + 8 \Leftrightarrow (p+q)^2 = 4(pq+2)$. Do 4 là số chính phương nên $pq+2$ cũng là số chính phương hay $n+2$ là số chính phương

Sau đây là một bài khá đẹp, ý tưởng từ phương pháp lùi vô hạn trong giải phương trình nghiệm nguyên, tuy vậy các phải có suy luận một chút khác biệt.
Bài 4.  (PTNK 2014 – CT)

a) Tìm các số nguyên $a, b, c$ sao cho $a+b+c = 0$ và $ab+bc+ac+3=0$.
b) Cho $m$ là số nguyên. Chứng minh rằng nếu tồn tại các số nguyên $a, b, c$ khác 0 sao cho $a+b+c = 0$ và $ab+bc+ac + 4m = 0$ thì cũng tồn tại các số nguyên $a’, b’, c’$ sao cho $a’+b’+c’ = 0$ và $a’b’+b’c’+a’c’ + m = 0$.
c)  Với $k$ là số nguyên dương, chứng minh rằng không tồn tại các số nguyên $a, b, c$ khác 0 sao cho $a+b+c = 0$ và $ab+bc+ac + 2^k = 0$.

Lời giải
a)  Từ $a+b+c = 0, ab+bc+ca = – 3$ ta có $a^2 + b^2 + c^2 = 6$. Do $a, b, c$ vai trò như nhau nên ta có thể giả sử $|a| \geq |b| \geq |c|$. Khi đó $ 1 < |a| < 3$. Suy ra $|a| = 2$, suy ra $a = 2$ hoặc $a = – 2$.
Với $a = 2$ thì $b + c = -2, b^2 + c^2 = 2$ giải ra được $b = c =-1$.Ta có có bộ $(2;-1;-1)$ và các hoán vị. \ Với $a = -2 $ thì $b+c = 2, b^2 + c^2 = 2$, giải ra được $b = c = 1$, ta có bộ $(-2;1;1)$ và hoán vị.
b) Ta có $a + b + c = 0$ chẵn (1)và $ab+bc+ac = -4m$ chẵn.(2)
Nếu 3 số $a, b, c$ đều lẻ, không thỏa (1).
Nếu có 1 chẵn, 2 lẻ thì không thỏa (2).
Do đó 3 số $a, b,c$ đều chẵn. Khi đó đặt $a’ = \dfrac{a}{2}, b’ = \dfrac{b}{2}, c’ = \dfrac{c}{2}$ thì $a’,b’,c’$ thỏa đề bài.
c) Với $k = 0$ ta có $a+b+c = 0, ab+bc+ac = -1$ thì $a^2 + b^2 +c^2 = 2$ (3) . Không có bộ 3 số nguyên $a, b, c$ khác 0 thỏa (3).
Với $k = 1$ thì $a+b+c=0,ab+bc+ac = -2$ khi đó $a^2+b^2+c^2 = 4$ (4). Giả sử $|a|$ nhỏ nhất khi đó $ 1\leq a^2 < 2$ (không có $a$ thỏa). Không tồn tại $a, b, c$ nguyên khác 0 thỏa (4).
Với $k > 1$.
Nếu $k$ chẵn, đặt $k = 2n$ ta có $a+b+c = 0, ab+bc+ac + 4^n = 0$, theo câu b), tồn tại $a_1, b_1, c_1$ nguyên thỏa $a_1 + b_1 +c_1 = 0, a_1b_1+a_1c_1+b_1c_1 + 4^{n-1} = 0$.

Tương tự ta sẽ được $a_n, b_n,c_n$ nguyên thỏa $a_n+b_n+c_n = 0, a_nb_n+b_nc_n+a_nc_n = -1$ (vô nghiệm).
Nếu $k$ lẻ đặt $k = 2n+1$ ta có $a+b+c = 0, ab+bc+ac + 2.4^n = 0$, làm tương tự trên ta được $a_n+b_n+c_n = 0, a_nb_n+b_nc_n+a_nc_n = – 2$ (vô nghiệm).
Vậy không tồn tại các số $a, b, c$ khác 0 thỏa đề bài.

Ngoài ra việc sử dụng đồng dư cũng được khai thác qua các bài toán chia hết hoặc các bài toán phương trình nghiệm nguyên, nhiều khi được sử dụng một cách bất ngờ cũng gây khó khăn cho thí sinh và rất ít thí sinh làm trọn vẹn, sau đây là một ví dụ:
Bài 5. (PTNK 2018 – CT) Cho $ A_n = 2018^n + 2032^n – 1964^n – 1984^n $ với $ n $ là số tự nhiên.

a) Chứng minh với mọi số tự nhiên $ n $ thì $ A_n $ chia hết cho $ 51 $.
b) Tìm tất cả những số tự nhiên $ n $ sao cho $ A_n $ chia hết cho $ 45. $

Nhận xét. Đây là dạng toán khá quen thuộc với học sinh, chỉ là việc xét các trường hợp một cách khéo léo và cẩn thận để giải quyết bài toán.

a) Do $ 2018 \equiv 1964 \quad \text{(mod 3)} \Rightarrow 2018^n \equiv 1964^n \quad \text{(mod 3)} . $
$ 2032 \equiv 1984 \quad \text{(mod 3)} \Rightarrow 2032^n \equiv 1984^n \quad \text{(mod 3)} $.
$ \Rightarrow A_n \ \vdots \ 3. $
Ta lại có $ 2018 \equiv 1984 \quad \text{(mod 17)} \Rightarrow 2018^n \equiv 1984^n \quad \text{(mod 17)} $.
$ 2032 \equiv 1964 \quad \text{(mod 17)} \Rightarrow 2032^n \equiv 1964^n \quad \text{(mod 17)} $.
$ \Rightarrow A_n \ \vdots\ 17. $
Do $ (3; 17) = 1 $ nên $ A_n \ \vdots \ 51 \quad \forall n$
b) $ A_n = 2018^n + 2032^n – 1964^n – 1984^n. $

  • Ta xét các trường hợp của $ n $ để $ A_n \ \vdots \ 5. $
    Ta có $ A_n \equiv (-2)^n + 2^n -2\cdot(-1)^n $ (mod 5).
    Do đó nếu $ n $ lẻ $ \Rightarrow A_n \equiv 2 \quad $(mod 5)$ \quad \text{(loại)}$.
  • Nếu $ n = 4k \Rightarrow A_n \equiv 2\cdot 2^{4k} -2 \equiv 2-2 \equiv 0 \quad$ (mod 5) (nhận)
  • Nếu $ n = 4k + 2 \Rightarrow A_n \equiv 2\cdot 2^{4k+2} -2 \equiv 8 – 2 \equiv 6$ (mod 5) (loại).
    Vậy $ A_n \ \vdots \ 5 \Leftrightarrow n \ \vdots \ 4. $
    Ta xét các trường hợp của $ n $ để $ A_n \ \vdots \ 9. $
    Ta có
  • $A_n \equiv 2^n + (-2)^n – 2^n – 4^n \quad \text { (mod 9)}$

$\equiv 2^n -4^n \quad \text { (mod 9) \quad (Do n chẵn).} $
$\equiv 2^n(1-2^n) \quad \text { (mod 9)}$

Vì $ (2;9 ) = 1 \Rightarrow 2^n – 1 \ \vdots \ 9$.
Xét $ n= 3k $ với $ k \in \mathbb{N} $. Ta có $ A_n \equiv 2^{3k} – 1 \equiv (-1)^k – 1 \quad \text { (mod 9)} \Rightarrow k$ chẵn
Xét $ n= 3k + 1 $ với $ k \in \mathbb{N} $. Ta có $ A_n \equiv 2^{3k + 1} – 1 \equiv 2\cdot(-1)^k – 1 \quad \text { (mod 9) \quad (loại)}. $
Xét $ n= 3k + 2 $ với $ k \in \mathbb{N} $. Ta có $ A_n \equiv 2^{3k + 2} – 1 \equiv 4\cdot(-1)^k – 1 \quad \text { (mod 9) \quad (loại)}. $

Vậy $ A_n \ \vdots \ 45 \Leftrightarrow n \ \vdots \ 12. $

Tóm lại bài toán số học thi vào lớp 10 Chuyên Toán luôn là bài toán khó, nhưng không phải không kiếm được điểm, chỉ cần thí sinh bình tĩnh vận dụng được kiến thức đã học có thể giải quyết được các ý a, ý b thì phức tạp hơn đòi hỏi phải phân tích và xử lí khéo léo cẩn thận hơn, âu cũng hợp lí cho đề thi chọn học sinh có năng khiếu toán.\
Sau đây có một số bài tập cho các em rèn luyện trước kì thi cam go này.

Bài tập rèn luyện

Bài 1. (Tuyển sinh vào lớp 10 Chuyên Toán trường PTNK 1997)
a) Tìm tất cả các số nguyên dương $n$ sao cho $n2^n + 3^n$ chia hết cho 5.
b) Tìm tất cả các số nguyên dương $n$ sao cho $n2^n + 3^n $ chia hết cho 25.

Bài 2. (Tuyển sinh vào lớp 10 Chuyên Toán trường PTNK 1997)
a) Tìm tất cả các số nguyên dương sao cho $2^n – 1$ chia hết 7.
b) Cho số nguyên tố $p \geq 5$. Đặt $A = 3^p – 2^p – 1$. Chứng minh $A$ chia hết cho $42p$.

Bài 3. Cho $n$ là số tự nhiên. Chứng minh rằng $3^nn^3+1$ chia hết cho 7 khi và chỉ khi $3^n + n^3$ chia hết cho 7.

Bài 4. Tìm tất cả các số tự nhiên x, y thỏa: ${5^x} = {y^4} + 4y + 1$.

Bài 5. Chứng minh rằng phương trình ${y^2} + y = x + {x^2} + {x^3}$ không có nghiệm nguyên dương.