ĐỀ THI VÀO LỚP 10 CHUYÊN TOÁN TRƯỜNG PHỔ THÔNG NĂNG KHIẾU 2012

Bài 1. (a) Giải hệ phương trình $\left\{\begin{array}{l}(x-y)^{2}=2 z-z^{2} \\ (y-z)^{2}=2 x-x^{2} \\ (z-x)^{2}=2 y-y^{2}\end{array}\right.$

(b) Cho hình vuông $A B C D$ cạnh $a$. $M$ và $N$ là hai điểm lần lượt nằm trên các cạnh $A B$ và $B C$ sao cho $\frac{A M}{A B}=\frac{C N}{C B}=x$ với $0<x<1$. Các đường thẳng qua $M, N$ song song với $B D$ lần lượt cắt $A D$ tại $Q$ và $C D$ tại $P$. Tính diện tích tứ giác $M N P Q$ theo $a$ và $x$ và tìm $x$ sao cho diện tích này lớn nhất.

Bài 2. Số nguyên dương $n$ được gọi là số điều hòa nếu như tổng các bình phương của các ước của nó ( kể cả 1 và $\mathrm{n}$ ) đúng bằng $(n+3)^{2}$.

(a) Chứng minh rằng số 287 là số điều hòa.

(b) Chứng minh rằng số $n=p^{3}$ ( $p$ nguyên tố ) không phải là số điều hòa.

(c) Chứng minh rằng nếu số $n=p q(p, q$ là các số nguyên tố khác nhau) là số điều hòa thì $n+2$ là số chính phương.

Bài 3. (a) Tìm tất cả các số thực $x$ thỏa $x^{2}-5 x+4+2 \sqrt{x-1} \geq 0$.

(b) Chứng minh rằng với các số không âm $a, b, c$ thỏa $a+b+c=3$ thì ta có bất đẳng thức $\sqrt{a}+\sqrt{b}+\sqrt{c} \geq a b+b c+a c$.

Bài 4. Cho tam giác $A B C$ vuông tại $A$. Trên đường thẳng vuông góc với $A B$ tại $B$ ta lấy điểm $D$ di động nằm cùng phía với $C$ đối với đường thẳng $A B$.

(a) Chứng minh rằng nếu $A C+B D<C D$ thì trên cạnh $A B$ tồn tại hai điểm $\mathrm{M}$ và $\mathrm{N}$ sao cho $\angle C M D=\angle C N D=90^{\circ}$

(b) Giả sử điều kiện trên được thỏa mãn. Đường thẳng qua $A$ song song với $M D$ cắt đường thẳng qua $B$ song song với $M C$ tại $E$. Chứng minh rằng đường thẳng $D E$ luôn đi qua một điểm cố định .

Bài 5. Cho đa giác đều n cạnh . Dùng 3 màu xanh, đỏ, vàng tô màu các đỉnh đa giác một cách tùy ý ( mỗi đỉnh được tô bởi một màu và tất cả các đỉnh đều được tô màu). Cho phép thực hiện thao tác sau đây : chọn hai đỉnh kề nhau bất kì ( nghĩa là hai đỉnh liên tiếp) khác màu và thay màu của hai đỉnh đó bằng màu còn lại.

(a) Chứng minh rằng bằng cách thực hiện thao tác trên một số lần ta luôn luôn làm cho các đỉnh của đa giác chỉ còn được tô bởi hai màu.

(b) Chứng minh rằng với $\mathrm{n}=4$ và $\mathrm{n}=8$, bằng cách thực hiện thao tác trên một.

số lần ta có thể làm cho các đỉnh của đa giác chỉ còn được tô bởi một màu.

LỜI GIẢI

Bài 1. (a) Giải hệ phương trình $\left\{\begin{array}{l}(x-y)^{2}=2 z-z^{2} \\ (y-z)^{2}=2 x-x^{2} \\ (z-x)^{2}=2 y-y^{2}\end{array}\right.$

(b) Cho hình vuông $A B C D$ cạnh $a$. $M$ và $N$ là hai điểm lần lượt nằm trên các cạnh $A B$ và $B C$ sao cho $\frac{A M}{A B}=\frac{C N}{C B}=x$ với $0<x<1$. Các đường thẳng qua $M, N$ song song với $B D$ lần lượt cắt $A D$ tại $Q$ và $C D$ tại $P$. Tính diện tích tứ giác $M N P Q$ theo $a$ và $x$ và tìm $x$ sao cho diện tích này lớn nhất.

Lời giải.

(a) Lấy (1) trừ (2) ta có:

$(x-2 y+z)(x-z)=x^{2}-z^{2}-2(x-z)=(x-z)(x+z-2) \Leftrightarrow 2(x-z)(y-1)=0 \Leftrightarrow x=z$ hoặc $y=1$.

  • Với $y=1$, ta có $(3) \Leftrightarrow(x-z)^{2}=1 \Leftrightarrow z=x+1, z=x-1$.

$+$ Với $z=x+1$, giải được $x=0, z=1$ và $x=1, z=2$. Khi đó ta có nghiệm $(0,1,1),(1,1,2)$.

$+$ Với $z=x-1$, giải ra được $x=1, z=0$ và $x=2, z=1$. Ta có nghiệm $(1,1,0)$ và $(2,1,1)$.

  • Với $x=z$, từ (3) ta có $y^{2}-2 y=0 \Leftrightarrow y=0, y=2$.

$+$ Với $y=0$ ta có $\left\{\begin{array}{l}x^{2}=2 z-z^{2} \\ z^{2}=2 x-x^{2}\end{array} \Leftrightarrow\left\{\begin{array}{l}2 z^{2}=2 z \\ x-z\end{array}\right.\right.$.

Giải được nghiệm $(0,0,0)$ và $(1,0,1)$.

$+$ Với $y=2$, giải ra được nghiệm $(1,2,1)$ và $(2,2,2)$.

Vậy hệ phương trình có 8 nghiệm.

(b) Chứng minh được $M N P Q$ là hình chữ nhật.

Ta có $\frac{M N}{A C}=\frac{M \dot{B}}{B A}=\frac{A B-A M}{A B}=1-\frac{A M}{A B}=1-x$ suy ra $M N=(1-x) a \sqrt{2}$.

$\frac{M Q}{B D}=\frac{A M}{A B}=x$, suy ra $M Q=x a \sqrt{2}$.

Từ đó $S=M N . M Q=2 a^{2} x(1-x)$ Mà $x(1-x) \leq \frac{1}{4}(x+1-x)^{2}=\frac{1}{4}$. Suy ra $S \leq \frac{a^{2}}{2}$. Đẳng thức xảy ra khi $x=\frac{1}{2}$.

Vậy diện tích đạt giá trị lớn nhất bằng $\frac{1}{2} a^{2}$ khi $M$ là trung điểm $A B$.

Bài 2. Số nguyên dương $n$ được gọi là số điều hòa nếu như tổng các bình phương của các ước của nó ( kể cả 1 và $\mathrm{n}$ ) đúng bằng $(n+3)^{2}$.

(a) Chứng minh rằng số 287 là số điều hòa.

(b) Chứng minh rằng số $n=p^{3}$ ( $p$ nguyên tố ) không phải là số điều hòa.

(c) Chứng minh rằng nếu số $n=p q(p, q$ là các số nguyên tố khác nhau) là số điều hòa thì $n+2$ là số chính phương.

Lời giải.

(a) Số $n=287$ có các ước dương là $1,7,41,287$. Ta có $1^{2}+7^{2}+41^{2}+287^{2}=$ $(287+3)^{2}$ nên 287 là số điều hòa.

(b) Các ước dương của $n=p^{3}$ là $1, p, p^{2}, p^{3}$. Giả sử $n$ là số điều hòa, ta có $(n+3)^{2}=1^{2}+p^{2}+p^{4}+p^{6} \Leftrightarrow p^{4}+p^{2}=6 p^{3}+8$. Suy ra $p \mid 8$ mà $p$ nguyên tố nên $p=2$. Thử lại thấy không thỏa, vậy $n=p^{3}$ không phải là số điều hòa với mọi số nguyên tố $p$.

(c) Các ước dương của $n=p q$ là $1, p, q, p q$. Vì $n$ là số điều hòa nên ta có: $1+p^{2}+q^{2}+p^{2} q^{2}=(p q+3)^{2} \Leftrightarrow p^{2}+q^{2}=6 p q+8 \Leftrightarrow(p+q)^{2}=$ $4(p q+2)$. Do 4 là số chính phương nên $p q+2$ cũng là số chính phương hay $n+2$ là số chính phương.

Bài 3. (a) Tìm tất cả các số thực $x$ thỏa $x^{2}-5 x+4+2 \sqrt{x-1} \geq 0$.

(b) Chứng minh rằng với các số không âm $a, b, c$ thỏa $a+b+C=3$ thì ta có bất đẳng thức $\sqrt{a}+\sqrt{b}+\sqrt{c} \geq a b+b c+a c$.

Lời giải.

(a) Điều kiện $x \geq 1$. Đặt $t=\sqrt{x-1}$. Khi đó $t \geq$ và $x=t^{2}+1$. Ta có bất phương trình:

$\left(t^{2}+1\right)^{2}-5\left(t^{2}+1\right)+4+2 t \geq \Leftrightarrow t^{4}-t^{2}+2 t \geq 0 \Leftrightarrow t(t+2)(t-1)^{2} \geq 0$

đúng với mọi $t \geq 0$.

Vậy nghiệm của bất phương trình là $x \geq 1$.

(b) Ta có $t^{2}-3 t+2 \sqrt{t}=\sqrt{t}(\sqrt{t}+2)(\sqrt{t}-1)^{2} \geq 0$. Suy ra $t^{2}+2 \sqrt{t} \geq 3 t$ với $\operatorname{mọi} t \geq 0$.

Áp dụng ta có $a^{2}+2 \sqrt{a} \geq 3 a, b^{2}+2 \sqrt{b} \geq 3 b, c^{2}+2 \sqrt{c} \geq 3 c$.

Suy ra $a^{2}+b^{2}+c^{2}+2(\sqrt{a}+\sqrt{b}+\sqrt{c}) \geq 3(a+b+c) \Leftrightarrow a^{2}+b^{2}+c^{2}+$ $2(\sqrt{a}+\sqrt{b}+\sqrt{c}) \geq(a+b+c)^{2} \Leftrightarrow \sqrt{a}+\sqrt{b}+\sqrt{c} \geq a b+b c+a c$ (đccm).

Bài 4. Cho tam giác $A B C$ vuông tại $A$. Trên đường thẳng vuông góc với $A B$ tại $B$ ta lấy điểm $D$ di động nằm cùng phía với $C$ đối với đường thẳng $A B$.

(a) Chứng minh rằng nếu $A C+B D<C D$ thì trên cạnh $A B$ tồn tại hai điểm $\mathrm{M}$ và $\mathrm{N}$ sao cho $\angle C M D=\angle C N D=90^{\circ}$

(b) Giả sử điều kiện trên được thỏa mãn. Đường thẳng qua $A$ song song với $M D$ cắt đường thẳng qua $B$ song song với $M C$ tại $E$. Chứng minh rằng đường thẳng $D E$ luôn đi qua một điểm cố định .

Lời giải.

(a) Xét đường tròn đường kính $C D$ có tâm $O$ là trung điểm $C D$. Gọi $I$ là trung điểm $A B$, khi đó $O I \perp A B$ và $O I$ là đường trung bình của hình thang $A C D B$ nên $O I=\frac{1}{2}(A C+B D)<\frac{C D}{2}$.

Do đó khoảng cách từ $O$ đến $A B$ nhỏ hơn bán kính đường tròn đường kính $C D$ nên $A B$ cắt đường tròn đường kính $A B$ tại hai điểm $M, N$. Suy ra $\angle C M D=\angle C N D=90^{\circ}$. Hơn nữa $\angle O C A+\angle O D B=180^{\circ}$ nên có một góc lớn hơn hoặc bằng $90^{\circ}$. Giả sử là $\angle A C D \geq 90^{\circ}$. Suy ra $O A>O C$. Suy ra $A$ nằm ngoài đường tròn $(O)$. Do đó $M, N$ thuộc đoạn $A B$.

(b) Gọi $E^{\prime}$ là giao điểm của đường thẳng qua $A$ song song với $M D$ với $C D$. Gọi $P$ là giao điểm của $M D$ với $A C, Q$ là giao điểm của $M C$ với $B D$. Theo định lý Thalet ta có: $\frac{C E^{\prime}}{C D}=\frac{C A}{C P}, \frac{C A}{C D}=\frac{B Q}{D Q}$. Suy ra $\frac{C E^{\prime}}{C D}=\frac{B Q}{D Q}$. Từ đó ta có $B E^{\prime}|| M C$. Suy ra $C, D, E$ thẳng hàng. Vậy đường thẳng $D E$ luôn qua điểm $C$ cố định.

Bài 5. Cho đa giác đều $n$ cạnh. Dùng 3 màu xanh, đỏ, vàng tô màu các đỉnh đa giác một cách tùy ý ( mỗi đỉnh được tô bởi một màu và tất cả các đỉnh đều được tô màu). Cho phép thực hiện thao tác sau đây : chọn hai đỉnh kề nhau bất kì ( nghĩa là hai đỉnh liên tiếp) khác màu và thay màu của hai đỉnh đó bằng màu còn lại.

(a) Chứng minh rằng bằng cách thực hiện thao tác trên một số lần ta luôn luôn làm cho các đỉnh của đa giác chỉ còn được tô bởi hai màu.

(b) Chứng minh rằng với $n=4$ và $n=8$, bằng cách thực hiện thao tác trên một số lần ta có thể làm cho các đỉnh của đa giác chỉ còn được tô bởi một màu.

Lời giải.

(a) Xét một dãy các đỉnh màu vàng $A V_{1} V_{2} \ldots V_{k} B$ (có thể chỉ gồm một đỉnh) được giới hạn bởi 2 đỉnh $A$ và $B$ (có thể trùng nhau) không phải màu vàng. Sử dụng thao tác đã cho ta đổi màu hai đỉnh $A$ và $V_{1}$ thành màu

thứ ba (hiển nhiên không phải màu vàng). Tiếp tục như thế đổi màu các đỉnh $\mid V_{2}, V_{3}, \ldots, V_{k}$ sang màu không phải vàng. Như vậy ta đã làm mất màu vàng trong dãy các đỉnh ở trên.

Bằng cách thực hiện như trên đối với dãy các điểm màu vàng khác ta suy ra có thể làm cho các đỉnh của đa giác chỉ còn được tô bởi hai màu xanh và đỏ.

(b) Do câu a) ta chỉ xét trường hợp các đỉnh của đa giác được tô bởi hai màu, chẳng hạn xanh và đỏ.

Bằng thao tác đã cho ta có hai kiểu chuyển màu bộ 4 đỉnh liên tiếp như sau:

$d d x x \rightarrow d v v x \rightarrow x x v x \rightarrow x d d x \rightarrow v v v v$ và $d x d x \rightarrow d v v d, d x x d \rightarrow v v v v$ (1)

Do tính đối xứng nên suy ra nếu một bộ 4 đỉnh mà trong đó có hai đỉnh cùng một màu và hai đỉnh còn lại cùng một màu khác thì ta chuyển cả 4 đỉnh về màu thứ ba.

Bằng cách dùng kiểu biến đổi trên ta có:

$d d d x \rightarrow d d v v \rightarrow x x x x$ (dùng (1)) và $d d x d \rightarrow d v v d \rightarrow x x x x(2)$.

Nghĩa là nếu có 3 đỉnh cùng màu, ta chuyển ta chuyển màu của 3 đỉnh đó về cùng màu của đỉnh thứ tư.

Như vậy bằng (1) và (2) ta có thể chuyển mày của mỗi bộ 4 đỉnh liên tiếp về cùng một màu. Điều này chứng minh cho trường hợp $n=4$.

Với $n=8$, ta chia 8 đỉnh thành 2 bộ 4 đỉnh. Như đã chứng minh ở trên, ta có thể làm cho mỗi bộ 4 đỉnh như thế có cùng màu. Nếu màu của hai bộ là như nhau thì ta có điều cần chứng minh. Nếu hai bộ khác nhau, chẳng hạn ta có kiểu tô màu $x x x x d d d d$. Ta có có phép biến đổi hai bộ liên tiếp: $x x x x d d d d \rightarrow x x x v v d d d \rightarrow x x x v \mid v d d d \rightarrow$ vvvvvvvvv(dùng (2)). Vậy ta đã chứng minh cho trường hợp $n=8$.

Leave a Reply

Your email address will not be published. Required fields are marked *