ĐỀ THI VÀO LỚP 10 CHUYÊN TOÁN TRƯỜNG PHỔ THÔNG NĂNG KHIẾU 2017

Bài 1. Cho phương trình $x^{2}-2(m+1) x+2 m^{2}+4 m+1=0(1)$ với $m$ là tham số.

(a) Tìm $m$ để phương trình (1) có hai nghiệm phân biệt $x_{1}, x_{2}$. Chứng minh rằng $\left|\frac{x_{1}+x_{2}}{2}\right|<1$.

(b) Giả sử các nghiệm $x_{1}, x_{2}$ khác 0 , chứng minh rằng $\frac{1}{\sqrt{\left|x_{1}\right|}}+\frac{1}{\sqrt{\left|x_{2}\right|}} \geq 2 \geq$ $\left|x_{1}\right|+\left|x_{2}\right|$.

Bài 2. Cho $x, y$ là hai số nguyên với $x>y>0$.

(a) Chứng minh rằng nếu $x^{3}-y^{3}$ chia hết cho 3 thì $x^{3}-y^{3}$ chia hết cho 9 .

(b) Chứng minh rằng nếu $x^{3}-y^{3}$ chia hết cho $x+y$ thì $x+y$ không là số nguyên tố.

(c) Tìm tất cả những giá trị $k$ nguyên dương sao cho $x^{k}-y^{k}$ chia hết cho 9 với mọi $x, y$ mà $x y$ không chia hết cho 3 .

Bài 3. (a) Cho ba số $a, b, c \geq-2$ thỏa mãn $a^{2}+b^{2}+c^{2}+a b c=0$. Chứng minh rằng $a=b=c=0 .$

(b) Trên mặt phẳng $O x y$, cho ba điểm $A, B, C$ phân biệt với $O A=O B=$ $O C=1$. Biết rằng $x_{A}^{2}+x_{B}^{2}+x_{C}^{2}+6 x_{A} x_{B} x_{C}=0$.

Chứng minh rằng $min(x_A, x_B, x_C)<-\frac{1}{3}$ (kí hiệu $x_{M}$ là hoành độ của điểm $M$ ).

Bài 4. Cho tam giác $A B C$ nhọn nội tiếp đường tròn $(O)$ với tâm $O$. Gọi $D$ là điểm thay đổi trên cạnh $B C(D$ khác $B, C)$. Các đường tròn ngoại tiếp các tam giác $A B D$ và $A C D$ lần lượt cắt $A C$ và $A B$ tại $E$ và $F(E, F$ khác $A)$. Gọi $K$ là giao điểm của $B E$ và $C F$.

(a) Chứng minh rằng tứ giác $A E K F$ nội tiếp.

(b) Gọi $H$ là trực tâm $\operatorname{tam} A B C$. Chứng minh rằng nếu $A, O, D$ thẳng hàng thì $H K$ song song với $B C$.

(c) Ký hiệu $S$ là diện tích tam giác $K B C$. Chứng minh rằng khi $D$ thay đổi trên cạnh $B C$ ta luôn có $S \leq\left(\frac{B C}{2}\right)^{2} \tan \frac{\widehat{B A C}}{2}$.

(d) Gọi I là tâm đường tròn ngoại tiếp tam giác $A E F$. Chứng minh rằng $B F . B A-C E . C A=B D^{2}-C D^{2}$ và $I D$ vuông góc với $B C$.

Bài 5. Lớp $9 \mathrm{~A}$ có 6 học sinh tham gia một kỳ thi toán và nhận được 6 điểm số khác nhau là các số nguyên từ 0 đến 20. Gọi $m$ là trung bình cộng các điểm số của 6 học sinh trên. Ta nói rằng hai học sinh (trong 6 hoc sinh trên) lập thành một cặp “hoàn hảo” nếu như trung bình cộng điểm số của hai em đó lớn hơn $m$.

(a) Chứng minh rằng không thể chia 6 học sinh trên thành 3 cặp mà mỗi cặp đều “hoàn hảo”.

(b) Có thể có được nhiều nhất là bao nhiêu cặp “hoàn hảo”?

 

LỜI GIẢI

 

Bài 1. Cho phương trình $x^{2}-2(m+1) x+2 m^{2}+4 m+1=0(1)$ với $m$ là tham số.

(a) Tìm $m$ để phương trình (1) có hai nghiệm phân biệt $x_{1}, x_{2}$. Chứng $\operatorname{minh}$ rằng $\left|\frac{x_{1}+x_{2}}{2}\right|<1$.

(b) Giả sử các nghiệm $x_{1}, x_{2}$ khác 0 , chứng minh rằng $\frac{1}{\sqrt{\left|x_{1}\right|}}+\frac{1}{\sqrt{\left|x_{2}\right|}} \geq$ $2 \geq\left|x_{1}\right|+\left|x_{2}\right|$.

Lời giải.

(a) Để phương trình có hai nghiệm phân biệt thì

$\Delta=(m+1)^{2}-\left(2 m^{2}+4 m+1\right)=-m^{2}-2 m>0 $

$\Leftrightarrow m(m+2)<0 \Leftrightarrow-2<m<0$

  • Khi đó theo định lý Viete ta có $x_{1}+x_{2}=2(m+1)$.

Suy ra $\left|\frac{x_{1}+x_{2}}{2}\right|=|m+1|<1($ do $-2<m<0)$.

(b) Ta có $m^{2}+2 m+1 \geq 0 \Rightarrow 2 m^{2}+4 m+1 \geq-1$.

Và $m(m+2)<0 \Rightarrow 2(m+1)^{2} \geq 0 \Rightarrow 2 m^{2}+4 m+1<1$.

Do đó $\left|2 m^{2}+4 m+1\right| \leq 1 .\left(^{*}\right)$

  • $\left|x_{1}\right|+\left|x_{2}\right| \leq 2 \Leftrightarrow x_{1}^{2}+x_{2}^{2}+2\left|x_{1} x_{2}\right| \leq 4$

$\Leftrightarrow\left(x_{1}+x_{2}\right)^{2}-2 x_{1} x_{2}+2\left|x_{1} x_{2}\right| \leq 4$

$\Leftrightarrow 4(m+1)^{2}-2\left(2 m^{2}+4 m+1\right)+2\left|2 m^{2}+4 m+1\right| \leq 4$

$\left.\Leftrightarrow\left|2 m^{2}+4 m+1\right| \leq 1\left(\operatorname{do}{ }^{*}\right)\right)$.

  • Ta có $\frac{1}{\sqrt{\left|x_{1}\right|}}+\frac{1}{\sqrt{\left|x_{2}\right|}} \geq 2 \sqrt{\frac{1}{\sqrt{\left|x_{1} x_{2}\right|}}} \geq 2$ (đúng vì $\left|x_{1} x_{2}\right|=\mid 2 m^{2}+$ $4 m+1 \mid \leq 1$ ).

  • Vậy $\frac{1}{\sqrt{\left|x_{1}\right|}}+\frac{1}{\sqrt{\left|x_{2}\right|}} \geq 2 \geq\left|x_{1}\right|+\left|x_{2}\right|$.

Bài 2. Cho $x, y$ là hai số nguyên với $x>y>0$.

(a) Chứng minh rằng nếu $x^{3}-y^{3}$ chia hết cho 3 thì $x^{3}-y^{3}$ chia hết cho 9 .

(b) Chứng minh rằng nếu $x^{3}-y^{3}$ chia hết cho $x+y$ thì $x+y$ không là số nguyên tố.

(c) Tìm tất cả những giá trị $k$ nguyên dương sao cho $x^{k}-y^{k}$ chia hết cho 9 với mọi $x, y$ mà $x y$ không chia hết cho 3 .

Lời giải.

(a) Ta có $x^{3}-y^{3}$ chia hết cho 3 mà $x^{3}-y^{3}=(x-y)^{3}+3 x y(x-y) \vdots, 3$ nên $(x-y)^{3}$ :3. Hơn nữa 3 là số nguyên tố nên $\Rightarrow(x-y)$ :3. Suy ra $\left\{\begin{array}{l}(x-y)^{3}: 9 \\ 3 x y(x-y) \vdots 9\end{array} \Rightarrow x^{3}-y^{3} \vdots, 9\right.$

(b) Giả sử ngược lại $x+y$ nguyên tố.

Ta có $x^{3}-y^{3}=(x-y)\left[(x+y)^{2}-x y\right]=(x-y)(x+y)^{2}-x y(x-$ $y) \vdots(x+y)$.

$\Rightarrow(x-y) x y \vdots(x+y)$, mà $x+y$ nguyên tố nên $\left[\begin{array}{l}(x-y) \vdots(x+y) \\ x \vdots(x+y) \\ y \vdots(x+y)\end{array}\right.$ (vô lí vì $0<x, y, x-y<x+y)$.

(c) Cho $x=2, y=1 \Rightarrow x y$ không chia hết cho 3 . $\Rightarrow x^{k}-y^{k}=2^{k}-1 \vdots 9 \Rightarrow 2^{k}-1 \vdots 3 .$

Do $2 \equiv-1(\bmod 3) \Rightarrow 2^{k}-1 \equiv(-1)^{k}-1(\bmod 3)$ nên $k$ chẵn.

Ta chứng $\operatorname{minh} k=6 n,\left(n \in \mathbb{N}^{*}\right)$

Với $k=6 n+2 \Rightarrow 2^{k}-1 \equiv 2^{6 n+2}-1 \equiv 3(\bmod 9)$. $\Rightarrow k=6 n+2$ (không thỏa).

Với $n=6 k+4 \Rightarrow 2^{k}-1=2^{6 n+4}-1 \equiv 6(\bmod 9)$. $\Rightarrow k=6 n+4$ (không thỏa).

Nên $k=6 n$.

Lại có $x^{k}-y^{k}=x^{6 n}-y^{6 n}=\left(x^{6}\right)^{n}-\left(y^{6}\right)^{n}:\left(x^{6}-y^{6}\right)$

Do $x y$ không chia hết cho 3 nên cả $x$ và $y$ đều không chia hết cho 3 .

  • Trường hợp 1. $x \equiv y(\bmod 3) \Rightarrow x^{3}-y^{3}: 3$

Theo câu (a) $\Rightarrow x^{3}-y^{3}: 9 \Rightarrow x^{k}-y^{k}: 9$.

  • Trường hợp 2. $x$ không đồng dư với $y \bmod 3$.

Không mất tính tổng quát, giả sử $\left\{\begin{array}{l}x=3 a+1 \\ y=3 b+2\end{array}\right.$

Ta có $x^{3}+y^{3}=(3 a+1)^{3}+(3 b+2)^{2}=27 a^{3}+27 a^{2}+9 a+27 b^{3}+$ $27 b^{2}+9 b+9 \vdots 9$

Suy ra $x^{6}-y^{6}=\left(x^{3}-y^{3}\right)\left(x^{3}+y^{3}\right) \vdots 9 \Rightarrow x^{k}-y^{k} \vdots 9$.

Vậy tập tất cả các số thỏa đề bài là $k=6 n$ với $n$ tự nhiên.

Bài 3. (a) Cho ba số $a, b, c \geq-2$ thỏa mãn $a^{2}+b^{2}+c^{2}+a b c=0$. Chứng minh rằng $a=b=c=0$.

(b) Trên mặt phẳng $O x y$, cho ba điểm $A, B, C$ phân biệt với $O A=O B=$ $O C=1$. Biết rằng $x_{A}^{2}+x_{B}^{2}+x_{C}^{2}+6 x_{A} x_{B} x_{C}=0$.

Chứng minh rằng $\min(x_{A}, x_{B}, x_{C})<-\frac{1}{3}$ (kí hiệu $x_{M}$ là hoành độ của điểm $M$ ).

Lời giải.

(a) – Trong ba số $a, b, c$ phải có ít nhất 2 số cùng dấu. Không mất tính tổng quát, giả sử hai số đó là $a$ và $b$.

Ta có $a^{2}+b^{2}+c^{2}+a b c=0$

$\Leftrightarrow(a-b)^{2}+c^{2}+a b(c+2)=0(*)$

Do $(a-b)^{2}, c^{2}, a b(c+2) \geq 0$

Nên $(*) \Leftrightarrow\left\{\begin{array}{l}a=b \\ c=0 \ a b=0\end{array} \Leftrightarrow a=b=c=0\right.$

(b) –  Giả sử ngược lại $\min(x_{A}, x_{B}, x_{C}) \geq-\frac{1}{3} \Rightarrow x_{A}, x_{B}, x_{C} \geq-\frac{1}{3}$ Trong 3 số $x_{A}, x_{B}, x_{C}$ có 2 số cùng dấu, giả sử $x_{A}, x_{B}$.

$-$ Ta có $x_{A}^{2}+x_{B}^{2}+x_{C}^{2}+6 x_{A} x_{B} x_{C}=\left(x_{A}-x_{B}\right)^{2}+x_{C}^{2}+2 x_{A} x_{B}\left(3 x_{C}+1\right)=0$ $\Rightarrow x_{A}=x_{B}=x_{C}=0$, suy ra $A, B, C$ dều thuộc trục tung. Hơn nữa $O A=O B=O C=1$ nên có ít nhất hai điểm trùng nhau (vô lý). Vậy ta có điều phải chứng minh.

Bài 4. Cho tam giác $A B C$ nhọn nội tiếp đường tròn $(O)$ với tâm $O$. Gọi $D$ là điểm thay đổi trên cạnh $B C(D$ khác $B, C)$. Các đường tròn ngoại tiếp các tam giác $A B D$ và $A C D$ lần lượt cắt $A C$ và $A B$ tại $E$ và $F(E, F$ khác $A)$. Gọi $K$ là giao điểm của $B E$ và $C F$.

(a) Chứng minh rằng tứ giác $A E K F$ nội tiếp.

(b) Gọi $H$ là trực tâm tam $A B C$. Chứng minh rằng nếu $A, O, D$ thẳng hàng thì $H K$ song song với $B C$.

(c) Ký hiệu $S$ là diện tích tam giác $K B C$. Chứng minh rằng khi $D$ thay đổi trên cạnh $B C$ ta luôn có $S \leq\left(\frac{B C}{2}\right)^{2} \tan \frac{\widehat{B A C}}{2}$.

(d) Gọi $I$ là tâm đường tròn ngoại tiếp tam giác $A E F$. Chứng minh rằng $B F . B A-C E . C A=B D^{2}-C D^{2}$ và $I D$ vuông góc với $B C$.

Lời giải.

(a) $-$Tứ giác $A E D B$ nội tiếp suy ra $\widehat{A E B}=\widehat{A D B}$, tứ giác $A F D C$ nội tiếp suy ra $\widehat{A F C}=\widehat{A D C}$.

Khi đó $\widehat{A E K}+\widehat{A F D}=\widehat{A D B}+\widehat{A D C}=180^{\circ}$. Vậy tứ giác $A E K B$ nội tiếp.

(b) $-$ Ta có $\widehat{B K C}=\widehat{F K E}=180^{\circ}-\widehat{B A C}$ và $\widehat{B H C}=180^{\circ}-\widehat{B A C}$.

Suy ra $\widehat{B K C}=\widehat{B H C} \Rightarrow B H K C$ nội tiếp.

Suy ra $\widehat{F K H}=\widehat{H B C}=\widehat{H A C}$ và $\widehat{K C B}=\widehat{B A D}$ (do $A F D C$ nội tiếp).

$-$ Khi $A, O, D$ thẳng hàng, ta có $\widehat{B A D}=\widehat{B A O}=\widehat{H A C}$. (tự chứng minh, hehe)

Do đó $\widehat{F K H}=\widehat{K C B}$ suy ra $K H / / B C$.

(c) – Ta có $K$ thuộc cung $B H C$ của đường tròn ngoại tiếp tam giác $B H C$ tâm $T$.

Gọi $M$ là trung điểm của $B C$ và $N$ là điểm chính giữa cung $B H C$ và $X$ là giao điểm của $T K$ và $B C$.

$-$ Dựng $K L \perp B C$. Ta có $K L \leq K X=T K-T D \leq T N-T M=M N$. Ta có $\widehat{B N C}=\widehat{B H C}=180^{\circ}-\widehat{B A C}$, suy ra $\widehat{N B M}=90^{\circ}-\widehat{B N M}=$ $90^{\circ}-\frac{1}{2} \widehat{B N C}=\frac{1}{2} \widehat{B A C}$.

Khi đó $\frac{M N}{B M}=\tan \frac{\widehat{N B M}}{2}=\tan \frac{\widehat{B A C}}{2}$, suy ra $M N=\tan \frac{\widehat{B A C}}{2} \cdot \frac{B C}{2}$.

Do đó $S_{B K C}=\frac{1}{2} . K L . B C \leq \frac{B C^{2}}{4} \tan \frac{\widehat{B A C}}{2}$.

(d) – Xét tam giác $B C F$ và tam giác $B A D$ có $\widehat{B C F}=\widehat{B A D}$ và góc $B$ chung. Suy ra $\Delta B C F \backsim \Delta B A D \Rightarrow \frac{B D}{B A}=\frac{B F}{B C} \Rightarrow B F . B A=B D . B C$.

$-$ Chứng minh tương tự ta có $C E . C A=C B . C D$.

Suy ra $B F . B A-C E . C A=B C . B D-B C . C D=B C(B D-C D)=$ $(B D+B C)(B D-B C)=B D^{2}-C D^{2} .$

$-$ Ta có $\widehat{A D F}=\widehat{A C F}=\widehat{A E B}-\widehat{E K C}=\widehat{A E B}-\widehat{A}$ và $\widehat{A D E}=\widehat{A B E}=\widehat{A F C}-\widehat{B A C}$, suy ra $\widehat{E D F}=\widehat{A D F}+\widehat{A D E}=\widehat{A E B}+\widehat{A F C}-2 \widehat{A}=180^{\circ}-2 \widehat{B A C}=$ $\widehat{E I F}$. Do đó tứ giác $I E D F$ nội tiếp, hơn nữa $I E=I F$ nên $D I$ là phân giác $\widehat{E D F}$.

Mặt khác $\widehat{F D B}=\widehat{B A C}=\widehat{C D E}$.

Suy ra $D B, D I$ lần lượt là phân giác ngoài và phân giác trong của $\widehat{E D F}$ nên $I D \perp B C$.

Vậy ta có điều phải chứng minh.

Bài 5. Lớp $9 \mathrm{~A}$ có 6 học sinh tham gia một kỳ thi toán và nhận được 6 điểm số khác nhau là các số nguyên từ 0 đến 20. Gọi $m$ là trung bình cộng các điểm số của 6 học sinh trên. Ta nói rằng hai học sinh (trong 6 hoc sinh trên) lập thành một cặp “hoàn hảo” nếu như trung bình cộng điểm số của hai em đó lớn hơn $m$.

(a) Chứng minh rằng không thể chia 6 học sinh trên thành 3 cặp mà mỗi cặp đều “hoàn hảo”.

(b) Có thể có được nhiều nhất là bao nhiêu cặp “hoàn hảo”?

Lời giải.

(a) Giả sử có thể chia 6 học sinh thành 3 cặp đều “hoàn hảo”. Gọi số điểm của các cặp học sinh này là $\left(x_{1} ; x_{2}\right),\left(x_{3} ; x_{4}\right),\left(x_{5} ; x_{6}\right)$.

Ta có $\frac{x_{1}+x_{2}}{2}>m ; \frac{x_{3}+x_{4}}{2}>m ; \frac{x_{5}+x_{6}}{2}>m$

Suy ra $\frac{x_{1}^{2}+x_{2}}{2}+\frac{x_{3}+x_{4}}{2}+\frac{x_{5}+x_{6}}{2}>3 m$

$\Leftrightarrow \frac{x_{1}+x_{2}+x_{3}+x_{4}^{2}+x_{5}+x_{6}^{2}}{2}>3 . \frac{x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}}{6}$ (vô

lý).

Vậy ta có điều phải chứng minh.

(b) – Xét tập $A={0,16,17,18,19,20}$ với $m=15$ có 10 cặp hoàn hảo. (1)

$-$ Giả sử có nhiều hơn hoặc bằng 11 cặp “hoàn hảo”. Gọi tên 6 thí sinh là $A, B, C, D, E, F$.

Với tổng 15 cặp thí sinh. Ta chia thành các nhóm như sau:

Nhóm 1. $(A B ; C D ; E F)$

Nhóm 2. $(A C ; B E ; D F)$

Nhóm 3. $(A D ; C E ; B F)$

Nhóm 4. $(A E ; B D ; C F)$

Nhóm 5. $(A F ; B E ; C D)$

$-$ Do có ít nhất 11 cặp “hoàn hảo” mà chỉ có 5 nhóm nên theo nguyên lý Đi-rích-lê, có ít nhất 1 nhóm đủ 3 cặp thí sinh.

Mà theo câu (a), điều này vô lí (2)

$-$ Từ (1) và (2̃) thì có nhiều nhất 10 cặp “hoàn hảo”.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Leave a Reply

Your email address will not be published. Required fields are marked *