ĐỀ THI VÀO LỚP 10 CHUYÊN TOÁN TRƯỜNG PHỔ THÔNG NĂNG KHIẾU 2021

Bài 1. Cho hệ phương trình: $\left\{\begin{array}{l}\sqrt{x-2}+\sqrt{y-1}=2 \\ x+y=m\end{array}\right.$

a) Giải hệ với $m=7$

b) Tìm $m$ sao cho hệ có nghiệm $(x, y)$

Bài 2. Cho $M=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}, N=\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}, K=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}$

a) Chứng minh nếu $M K=\frac{a^{2}+b^{2}+c^{2}}{a b c}$ thì $N=0$

b) Cho $M=K=4, N=1$. Tính tích $a b c$.

Bài 3. Cho dãy $n$ số thực $x_{1} ; x_{2} ; \ldots ; x_{n}(n \geq 5)$ thỏa: $x_{1} \leq x_{2} \leq \ldots \leq x_{n}$ và $x_{1}+x_{2}+\ldots x_{n}=1$

a) Chứng minh nếu $x_{n} \geq \frac{1}{3}$ thì $x_{1}+x_{2} \leq x_{n}$

b) Chứng minh nếu $x_{n} \leq \frac{2}{3}$ thì tìm được số nguyên dương $k<n$ sao cho

$\frac{1}{3} \leq x_{1}+x_{2}+\ldots+x_{k} \leq \frac{2}{3}$

Bài 4. a) Tìm tất cả các số tự nhiên $n$ sao cho $(2 n+1)^{3}+1$ chia hết cho $2^{2021}$

b) Tìm tất cả số tự nhiên $n$ và số nguyên tố $p$ sao cho $\frac{2 n+2}{p}$ và $\frac{4 n^{2}+2 n+1}{p}$ là các số nguyên. Chứng minh với $n$ và $p$ tìm được, các số nguyên trên không thể đồng thời là số chính phương.

Bài 5. Cho tam giác $A B C$ vuông tại $A$. Các điểm $E, F$ lần lượt thay đổi trên các cạnh $A B, A C$ sao cho $E F | B C$. Gọi $D$ là giao điểm của $B F$ và $C E, H$ là hình chiếu của $D$ lên $E F$. Đường tròn $(I)$ đường kính $E F$ cắt $B F, C E$ tại $M, N$. ( $M$ khác $F, N$ khác $E$ )

a) Chứng minh $A D$ và đường tròn ngoại tiếp $\triangle H M N$ cùng đi qua tâm $I$ của đường tròn tâm $I$.

b) Gọi $K, L$ lần lượt là hình chiếu vuông góc của $E, F$ lên $B C$ và $P, Q$ tương ứng là giao điểm của $E M, F N$ với $B C$. Chứng minh tứ giác $A E P L, A F Q K$ nội tiếp và $\frac{B P \cdot B L}{C Q \cdot C K}$ không đổi khi $E, F$ thay đổi.

c) Chứng minh nếu $E L$ và $F K$ cắt nhau trên đường tròn $(I)$ thì $E M$ và $F N$ cắt nhau trên đường thẳng $B C$.

Bài 6. Cho $N$ tập hợp $(N \geq 6)$, mỗi tập hợp gồm 5 chữ cái khác nhau được lấy từ 26 chữ cái $a$, $b, c, \ldots, x, y, z$.

a) Biết rằng trong $N$ tập hợp đã cho, hai tập hợp bất kỳ có chung đúng 1 chữ cái, và không có chữ cái nào có mặt trong tất cả $N$ tập hợp này.

Chứng minh không có chữ cái nào có mặt trong 6 tập hợp từ $N$ tập đã cho.

b) Biết rằng trong $N$ tập hợp đã cho, hai tập hợp bất kỳ có chung đúng 2 chữ cái, và không có hai chữ cái nào cùng xuất hiện trong $N$ tập hợp này.

Hỏi trong số $N$ tập hợp đã cho, có nhiều nhất bao nhiêu tập hợp có chung đúng 2 chữ cái?

 

LỜI GIẢI

 

Bài 1.

a) $\left\{\begin{array}{l}\sqrt{x-2}+\sqrt{y-1}=2 \\ x+y=m\end{array}\right.$ (1)

ĐKXĐ: $x \geq 2, y \geq 1$

(1) $\Leftrightarrow\left\{\begin{array}{l}x-2+y-1+2 \sqrt{(x-2)(y-1)}=4 \\ x+y=7\end{array}\right.$

$\Leftrightarrow\left\{\begin{array}{l}2 \sqrt{(x-2)(y-1)}=0 \\ x+y=7\end{array}\right.$

$\Leftrightarrow\left[\left\{\begin{array}{l}x-2=0 \\ x+y=7 \\ y-1=0 \\ x+y=7\end{array} \Leftrightarrow\left\{\left\{\begin{array}{l}x=2 \\ y=5 \\ y=1 \\ x=6\end{array}(n)\right.\right.\right.\right.$

Vậy $(x, y) \in[(2 ; 5),(6 ; 1)]$

b) Đặt $u=\sqrt{x-2}, v=\sqrt{y-1}(u, v \geq 0$

Hệ phương trình trở thành: $\left\{\begin{array}{l}u+v=2 \\ u^{2}+v^{2}=m-3\end{array}\right.$

$\Rightarrow 2 u^{2}-4 u+7-m=0$ (2)

Để hệ (1) có nghiệm thì (2) phải có nghiệm không âm, nhỏ hơn hoặc bằng 2 , khi và chỉ khi:

$\left\{\begin{array} { l }{ \Delta ^ { \prime } \geq 0 } \\ { S > 0 } \\ { P \geq 0 } \\ { ( x _ { 1 } – 2 ) ( x _ { 2 } – 2 ) > 0 } \\ { S \leq 4 }\end{array} \Leftrightarrow \left\{\begin{array}{l}m \geq 7 \\ m \leq 7\end{array}\right.\right.$

Vậy $5 \leq m \leq 7$ thì hệ đã cho có nghiệm $(x, y)$

Bài 2.

a) $M K=\frac{a^{2}+b^{2}+c^{2}}{a b c} \Rightarrow N=0$.

$M K =\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right) $

$=\frac{1}{b+c}+\frac{b}{a(c+a)}+\frac{c}{a(a+b)}+\frac{a}{b(b+c)}+\frac{1}{c+a}+\frac{c}{b(a+b)}+$

$ \frac{a}{c(b+c)}+\frac{b}{c(c+a)}+\frac{1}{a+b} $

$=N+\frac{b}{c+a}\left(\frac{1}{a}+\frac{1}{c}\right)+\frac{c}{a+b}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{a}{b+c}\left(\frac{1}{b}+\frac{1}{c}\right) $

$=N+\frac{b}{a c}+\frac{c}{a b}+\frac{a}{b c} $

$=N+\frac{a^{2}+b^{2}+c^{2}}{a b c}$

Mà $M K=\frac{a^{2}+b^{2}+c^{2}}{a b c} \Rightarrow N+\frac{a^{2}+b^{2}+c^{2}}{a b c}=\frac{a^{2}+b^{2}+c^{2}}{a b c} \Rightarrow N=0$

b) Ta có $M=K=4 ; N=1$

Theo câu a) ta được:

$M K=N+\frac{a^{2}+b^{2}+c^{2}}{a b c} \Rightarrow 16=1+\frac{a^{2}+b^{2}+c^{2}}{a b c} \Rightarrow a^{2}+b^{2}+c^{2}=15 a b c $

$\Rightarrow(a+b+c)^{2}-2(a b+b c+c a)=15 a b c(*)$

Ta có:

$K+3=\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}+1=(a+b+c) N \Rightarrow 7=a+b+c $

$M=4 \Rightarrow a b+b c+c a=4 a b c .$

Thay vào $(*) \Rightarrow 7^{2}-2.4 a b c=15 a b c \Rightarrow a b c=\frac{49}{23}$.

Bài 3.

a) Giả sử rằng $x_{1}+x_{2}>x_{n} \geq \frac{1}{3}>0$

$\Rightarrow x_{2}>0 \Rightarrow x_{i}>0, \forall i \geq 2 \text {. }$

Suy ra $x_{1}+x_{2}+x_{n-2}+x_{n-1}+x_{n} \leq x_{1}+x_{2}+\ldots+x_{n-2}+x_{n-1}+x_{n}=1$

Nhưng $x_{1}+x_{2}>\frac{1}{3}$ và $x_{n-1}, x_{n-2}>\frac{1}{2}\left(x_{1}+x_{2}\right)>\frac{1}{6}$ và $x_{n} \geq \frac{1}{3}$ nên khi cộng theo vế, ta có $V T>1$, vô lý.

Vậy điều giả sử là sai hay nếu $x_{n} \geq \frac{1}{3}$ thì $x_{1}+x_{2} \leq x_{n}$

b) Giả sử không tồn tại số $k$ như trên.

Khi đó tồn tại chỉ số $l \leq n-1$ để

$x_{1}+\ldots+x_{l}<\frac{1}{3} \text { và } x_{1}+\ldots+x_{l+1}>\frac{2}{3}$

Suy ra $x_{l+1}>\frac{1}{3} \Rightarrow x_{k}>\frac{1}{3}>0, \forall k \geq l+1$.

Nếu $l<n-1$ thì tồn tại $x_{l+2}$ do $l+2 \leq n$. Ta có

$x_{l+2} \geq x_{l+1}>\frac{1}{3} \Rightarrow\left(x_{1}+x_{2}+\ldots+x_{l+1}\right)+x_{l+2}>1$, vô lý do $x_{1}+\ldots+x_{n}=1$.

Từ đó $l=n-1$. Để ý rằng $x_{n} \leq \frac{2}{3}$ nên $x_{1}+\ldots+x_{n-1}=1-x_{n} \geq 1-\frac{2}{3}=\frac{1}{3}$.

Kết hợp với $l=n-1$ nên $x_{1}+\ldots+x_{n-1}>\frac{2}{3} \Rightarrow x_{n}<\frac{1}{3}$, vô lý.

Vậy điều giả sử là sai hay phải tồn tại chỉ số $k<n$ để:

$\frac{1}{3} \leq x_{1}+x_{2}+\cdots+x_{k} \leq \frac{2}{3}$

Bài 4.

(a) $(2 n+1)^{3}+1 \vdots 2^{2021} $

$\Leftrightarrow(2 n+2)\left(4 n^{2}+2 n+1\right) \vdots 2^{2021} $

$\Leftrightarrow 2(n+1)\left(4 n^{2}+2 n+1\right) \vdots 2^{2021} $

$\Leftrightarrow(n+1)\left(4 n^{2}+2 n+1\right) \vdots 2^{2020} $

$\Leftrightarrow n+1 \vdots 2^{2020} \quad\left(\text { do } 4 n^{2}+2 n+1 \equiv 1(\bmod 2)\right) $

$\Leftrightarrow n=2^{2020} k-1\left(k \in \mathbb{Z}^{+}\right)$

b) Từ $p \mid 2 n+2$ và $p \mid 4 n^{2}+2 n+1$ thì $p$ phải là số lẻ, dẫn đến $p \mid n+1$.

Do $4 n+2+2 n+1=4(n-1)(n+1)+2(n+1)+3$ nên $p \mid 3$, từ đó $p=3$. Kết hợp với điều kiện $p \mid n+1$ thì $n=3 k-1$ với $k \in \mathbb{Z}^{+}$.

Ta chứng minh rằng $\frac{2 n+2}{3}$ và $\frac{4 n+2+2 n+1}{3}$ không cùng là số chính phương. Thật vậy, giả sử rằng ta có điều ngược lại, vì chúng đều là số nguyên dương nên:

$\frac{2 n+2}{3} \cdot \frac{4 n^{2}+2 n+1}{3}=s^{2}\left(s \in \mathbb{Z}^{+}\right)$

Viết lại thành $(2 n+1)^{3}=(3 s-1)(3 s+1)$. Do $s$ là số chẵn nên $(3 s-1,3 s+1)=1$, dẫn đến việc tồn tại các số nguyên $a, b$ để $a b=2 n+1,(a, b)=1$ và:

$\left\{\begin{array}{l}3 s-1=a^{3} \\ 3 s+1=b^{3}\end{array}\right.$

Từ đây $2=(b-a)\left(b^{2}+b a+a^{2}\right)$. Do $b>a$ nên $b-a \in{1,2}$. Xét từng trường hợp và giải ra cụ thể, ta được $(a, b)=(-1,1)$. Tuy nhiên điều này dẫn đến $s=0$, trái với việc $s>0$ từ điều đã giả sử.

Vậy giả sử ban đầu là sai hay hai số đã cho không thể cùng là số chính phương.

Bài 5.

a) a. Qua $D$ vế đường thẳng song song $B C$ cắt $A B, A C$ tại $X, Y$.

Ta có $\frac{D Y}{B C}=\frac{D F}{B F}=\frac{D E}{E C}=\frac{D X}{B C}$.

Suy ra $D X=D Y$. Suy ra $D$ là trung điểm của $X Y$.

Do đó $A D$ qua trung điểm $I$ của $E F$.

Ta có $D H F N, D H E M$ nội tiếp. Suy ra $\widehat{D H N}=\widehat{D F N}=\widehat{M A N}$ và $\widehat{D H M}=$ $\widehat{N E M}=\widehat{N A M}$.

Suy ra $\widehat{M H N}=2 \widehat{M A N}=\widehat{M I N}$.

Suy ra tứ giác $M I H N$ nội tiếp. Ta có điều cần chứng minh.

b) Ta có $\triangle B M P \backsim \triangle B L F$. Suy ra $B M \cdot B F=B P \cdot B L$. Mặt khác $\triangle B A F \backsim \triangle B E M$, suy ra $B E \cdot B A=B M \cdot B E$.

Do đó $B A \cdot B E=B P \cdot B L$.

Từ đó ta có tứ giác $A E P L$ nội tiếp.

Chứng minh tương tự thì tứ giác $A F Q K$ nội tiếp.

Và $\frac{B P \cdot B L}{C Q \cdot C K}=\frac{B E \cdot B A}{C F \cdot C A}=\frac{A B^{2}}{A C^{2}}$.

c) Giả sử $E L, F K$ cắt nhau tại $S$ thuộc $(I)$. Khi đó $\angle E S F=90^{\circ}$ và $E F L K$ là hình vuông. Vẽ $P U \perp A B, Q V \perp A C$.

Ta có $\frac{B P}{B C}=\frac{B U}{B A}=\frac{B K}{B L}$ và $\frac{C Q}{B C}=\frac{C V}{C A}=\frac{C L}{C K}$ Đặt $x=E F=K L$

Ta cần chứng minh $\frac{B K}{B L}+\frac{C L}{C K}=1$.

$\Leftrightarrow B K \cdot C K+B L \cdot C L=B L \cdot C K $

$\Leftrightarrow B K(C L+x)+(B K+x) C L=(B K+x)(C L+x) \Leftrightarrow x^{2}=B K \cdot C L .$

Đúng vì tam giác $B E K$ và $C F L$ đồng dạng.

 

Bài 6.

a) Giả sử có chữ cái $\sigma$ sao cho $\sigma$ có mặt trong 6 tập hợp từ $N$ tập đã cho, chẳng hạn 6 tập $A_{1}, A_{2}, \ldots, A_{6}$.

Vì hai tập hợp bất kỳ có chung đúng một chữ cái nên hai tập hợp bất kỳ trong 6 tập trên bao giờ cũng chỉ có chũ cái chung duy nhất là $\sigma$.

Do đó, tổng số chữ cái có mặt trong 6 tập trên là: $1+6(5-1)=25$.

$-$ Nếu $N=6$ thì vô lý do $\sigma$ không xuất hiện trong tất cả $N$ tập hợp. Do đó $N \geq 7$.

$-$ Với $N \geq 7$, lấy tập $A_{7}$, có 2 khả năng:

$-$ $A_{7}$ chứa $\sigma$ : Vì $A_{7}$ và những tập $A_{1}, A_{2}, \ldots, A_{6}$ có chung đúng một chũ̃ cái $\sigma$ nên $A_{7}$ còn chứa 4 phần tử không nằm trong bất kỳ tập nào thuộc $A_{1}, A_{2}$, …, $A_{6}$.

Suy ra tổng số chữ cái trong 7 tập trên là: $1+7(5-1)=29>26$ (vô lý)

$-$ $A_{7}$ không chứa $\sigma$.

Khi đó $A_{7}$ sẽ có chung đúng 1 phần tử với mỗi tập $A_{1}, A_{2}, \ldots, A_{6}$ và 6 phần tử này phải khác nhau. (vì 6 tập $A_{1}, A_{2}, \ldots, A_{6}$ đã có chung $\sigma$ )

Do đó $A_{7}$ có ít nhất 6 phần tử. (vô lý).

Vậy không có chữ cái nào nằm trong 6 tập hợp từ $N$ tập hợp đã cho.

b) Giả sử có nhiều nhất $k$ tập hợp có chung đúng 2 chữ cái, chẳng hạn $a$ và $b$.

Khi đó dễ thấy $k \geq N-1$ nên tồn tại một tập hợp khác chưa được kể tên trong $k$ tập hợp trên, đặt là tập hợp $X, X$ không chứa ${a, b}$.

  • Nếu $X$ không chứa cả $a$ lẫn $b$. $X$ giao mỗi tập trong $k$ tập kia ở 2 phần tử khác nhau nên $2 k \leq 5 \Rightarrow k \leq 2$

  • Nếu $X$ chỉ chứa $a$, không chứa $b$.

Khi đó 4 phần tử còn lại giao với $k$ tập kia ở các phần tử khác nhau, mà $\mathrm{X}$ có 5 phần tử nên $k \leq 4$.

Vậy có nhiều nhất 4 tập hợp có chung đúng 2 chữ cái.

Để chỉ ra một ví dụ về khả năng có 4 tập hợp, xét $N=6$. Để thuận tiện, thay các chữ cái bằng các con số từ 1 đến 26 . Khi đó chọn bộ $N$ tập hợp như sau:

$\left\{\begin{array}{l}A_{1}={1,2,3,4,5} \ A_{2}={1,2,6,7,8} \\ A_{3}={1,2,9,10,11} \\ A_{4}={1,2,12,13,14} \\ A_{5}={1,3,6,10,13} \\ A_{6}={2,3,6,9,12}\end{array}\right.$

Bộ 6 tập hợp này thỏa mãn tất cả các điều kiện của bài toán.

 

Lời giải được thực hiện bởi nhóm giáo viên Star Education: thầy Nguyễn Tăng Vũ, thầy Nguyễn Ngọc Duy, thầy Vương Trung Dũng, thầy Lê Phúc Lữ, thầy Nguyễn Tấn Phát, Nguyễn Tiến Hoàng, Nguyễn Công Thành, Trần Tín Nhiệm, Châu Cẩm Triều, Lê Quốc Anh.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Leave a Reply

Your email address will not be published. Required fields are marked *