ĐỀ THI VÀO LỚP 10 TRƯỜNG PHỔ THÔNG NĂNG KHIẾU 2015

Bài 1. (a) Giải phương trình $\sqrt{2 x-1}+\sqrt{1-2 x^{2}}=2 \sqrt{x-x^{2}}$.

(b) Cho các số $a$ và $b$ thỏa mãn điều kiện $\sqrt[3]{a}+\sqrt[3]{b}=\sqrt[3]{b-\frac{1}{4}}$. Chứng minh rằng $-1 \leq a<0$.

Bài 2. (a) Tìm các số nguyên $a, b, c$ sao cho $a+b+c=0$ và $a b+b c+a c+3=0$.

(b) Cho $m$ là số nguyên. Chứng minh rằng nếu tồn tại các số nguyên $a, b, c$ khác 0 sao cho $a+b+c=0$ và $a b+b c+a c+4 m=0$ thì cũng tồn tại các số nguyên $a^{\prime}, b^{\prime}, c^{\prime}$ sao cho $a^{\prime}+b^{\prime}+c^{\prime}=0$ và $a^{\prime} b^{\prime}+b^{\prime} c^{\prime}+a^{\prime} c^{\prime}+m=0$.

(c) Với $k$ là số nguyên dương, chứng minh rằng không tồn tại các số nguyên $a, b, c$ khác 0 sao cho $a+b+c=0$ và $a b+b c+a c+2^{k}=0$.

Bài 3. Giả sử phương trình $2 x^{2}+2 a x+1-b=0$ có 2 nghiệm nguyên ( $a, b$ là tham số). Chứng minh rằng $a^{2}-b^{2}+2$ là số nguyên và không chia hết cho 3 .

Bài 4. Cho tam giác $A B C(A B<A C)$ có các góc nhọn, nội tiếp trong đường tròn tâm O. Gọi $M$ là trung điểm của cạnh $B C, E$ là điểm chính giữa của cung nhỏ $B C$, $F$ là điểm đối xứng của $E$ qua $M$.

(a) Chứng minh $E B^{2}=E F$.EO.

(b) Gọi $D$ là giao điểm của $A E$ và $B C$. Chứng minh các điểm $A, D, O, F$ cùng thuộc một đường tròn.

(c) Gọi $I$ là tâm đường tròn nội tiếp tam giác $A B C$ và $P$ là điểm thay đổi trên đường tròn ngoại tiếp tam giác $I B C$ sao cho $P, O, F$ không thẳng hàng. Chứng minh rằng tiếp tuyến tại $P$ của đường tròn ngoại tiếp tam giác POF đi qua một điểm cố định.

Bài 5. Để khuyến khích phong trào học tập, một trường THCS đã tổ chứng 8 đợt thi cho các học sinh. Ở mỗi đợt thi, có đúng 3 học sinh được chọn để trao giải. Sau khi tổ chứng xong 8 đợt thi, người ta nhận thấy rằng với hai đợt thi bât kì thì có đúng 1 học sinh được trao giải ở cả hai đợt thi đó. Chứng minh rằng:

(a) Có ít nhất một học sinh được trao giải ít nhất bốn lần.

(b) Có đúng một học sinh được trao giải ở 8 đợt thi.

LỜI GIẢI

 

Bài 1. (a) Giải phương trình $\sqrt{2 x-1}+\sqrt{1-2 x^{2}}=2 \sqrt{x-x^{2}}$.

(b) Cho các số $a$ và $b$ thỏa mãn điều kiện $\sqrt[3]{a}+\sqrt[3]{b}=\sqrt[3]{b-\frac{1}{4}}$. Chứng minh rằng $-1 \leq a<0$.

Lời giải.

(a) Đặt $a=\sqrt{2 x-1}, b=\sqrt{1-2 x^{2}}$.

Khi đó ta có $a+b=2 \sqrt{\frac{a^{2}+b^{2}}{2}} \Leftrightarrow a=b$.

Khi đó ta có $\sqrt{2 x-1}=\sqrt{1-2 x^{2}} \Leftrightarrow 2 x-1 \geq 0,2 x-1=1-2 x^{2}$.

Giải ra được nghiệm $x=\frac{-1+\sqrt{5}}{2}$.

(b) Ta có $x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$ và $x^{2}+x y+y^{2} \geq 0$ nên $x \geq y \Leftrightarrow$ $x^{3} \geq y^{3}$.

Đặt $x=\sqrt[3]{a}, y=\sqrt[3]{b}$. Ta có $x+y=\sqrt[3]{y^{3}-\frac{1}{4}}$. Suy ra $x=\sqrt[3]{y^{3}-\frac{1}{4}}-y<0$.

Giả sử $x<-1$, ta có $\sqrt[3]{y^{3}-\frac{1}{4}}=y+x<y-1$

$\Leftrightarrow y^{3}-\frac{1}{4}<y^{3}-3 y^{2}+3 y-1$

$\Leftrightarrow y^{2}-y+\frac{1}{4}<0$ $\Leftrightarrow\left(y-\frac{1}{2}\right)^{2}<0$ (vô lý).

Do đó $x \geq-1 \Leftrightarrow a \geq-1$.

Vậy $-1 \leq a<0$.

Bài 2. (a) Tìm các số nguyên $a, b, c$ sao cho $a+b+c=0$ và $a b+b c+a c+$ $3=0$.

(b) Cho $m$ là số nguyên. Chứng minh rằng nếu tồn tại các số nguyên $a, b, c$ khác 0 sao cho $a+b+c=0$ và $a b+b c+a c+4 m=0$ thì cũng tồn tại các số nguyên $a^{\prime}, b^{\prime}, c^{\prime}$ sao cho $a^{\prime}+b^{\prime}+c^{\prime}=0$ và $a^{\prime} b^{\prime}+b^{\prime} c^{\prime}+a^{\prime} c^{\prime}+m=$ 0 .

(c) Với $k$ là số nguyên dương, chứng minh rằng không tồn tại các số nguyên $a, b, c$ khác 0 sao cho $a+b+c=0$ và $a b+b c+a c+2^{k}=0$.

Lời giải.

(a) Từ $a+b+c=0, a b+b c+c a=-3$ ta có $a^{2}+b^{2}+c^{2}=6$. Do $a, b, c$ vai trò như nhau nên ta có thể giả sử $|a| \geq|b| \geq|c|$. Khi đó $1<|a|<3$. Suy ra

$|a|=2$, suy ra $a=2$ hoặc $a=-2$.

Với $a=2$ thì $b+c=-2, b^{2}+c^{2}=2$ giải ra được $b=c=-1$.Ta có có bộ $(2 ;-1 ;-1)$ và các hoán vị.

Với $a=-2$ thì $b+c=2, b^{2}+c^{2}=2$, giải ra được $b=c=1$, ta có bộ $(-2 ; 1 ; 1)$ và hoán vị.

(b) Ta có $a+b+c=0$ chẵn (1)và $a b+b c+a c=-4 m$ chẵn.(2)

Nếu 3 số $a, b, c$ đều lẻ, không thỏa (1).

Nếu có 1 chẵn, 2 lẻ thì không thỏa (2).

Do đó 3 số $a, b, c$ đều chẵn. Khi đó đặt $a^{\prime}=\frac{a}{2}, b^{\prime}=\frac{b}{2}, c^{\prime}=\frac{c}{2}$ thì $a^{\prime}, b^{\prime}, c^{\prime}$ thỏa đề bài.

(c) Với $k=0$ ta có $a+b+c=0, a b+b c+a c=-1$ thì $a^{2}+b^{2}+c^{2}=2$ (3). Không có bộ 3 số nguyên $a, b, c$ khác 0 thỏa (3).

Với $k=1$ thì $a+b+c=0, a b+b c+a c=-2$ khi đó $a^{2}+b^{2}+c^{2}=4$ (4). Giả sử $|a|$ nhỏ nhất khi đó $1 \leq a^{2}<2$ (không có $a$ thỏa). Không tồn tại $a, b, c$ nguyên khác 0 thỏa (4).

Với $k>1$.

  • Nếu $k$ chẵn, đặt $k=2 n$ ta có $a+b+c=0, a b+b c+a c+4^{n}=0$, theo câu a), tồn tại $a_{1}, b_{1}, c_{1}$ nguyên thỏa

$a_{1}+b_{1}+c_{1}=0, a_{1} b_{1}+a_{1} c_{1}+b_{1} c_{1}+4^{n-1}=0$

Tương tự ta sẽ được $a_{n}, b_{n}, c_{n}$ nguyên thỏa $a_{n}+b_{n}+c_{n}=0, a_{n} b_{n}+$ $b_{n} c_{n}+a_{n} c_{n}=-1$ (vô nghiệm).

  • Nếu $k$ lẻ đặt $k=2 n+1$ ta có $a+b+c=0, a b+b c+a c+2.4^{n}=0$, làm tương tự trên ta được $a_{n}+b_{n}+c_{n}=0, a_{n} b_{n}+b_{n} c_{n}+a_{n} c_{n}=-2$ (vô nghiệm).

Vậy không tồn tại các số $a, b, c$ khác 0 thỏa đề bài.

Bài 3. Giả sử phương trình $2 x^{2}+2 a x+1-b=0$ có 2 nghiệm nguyên $(a, b$ là tham số). Chứng minh rằng $a^{2}-b^{2}+2$ là số nguyên và không chia hết cho 3 .

Lới giải.

Theo định lý Viete ta có $x_{1}+x_{2}=-a, x_{1} x_{2}=\frac{1-b}{2}$. Khi đó $Q=a^{2}-$ $b^{2}+2=\left(x_{1}+x_{2}\right)^{2}-\left(2 x_{1} x_{2}-1\right)^{2}+2=x_{1}^{2}+x_{2}^{2}-4 x_{1}^{2} x_{2}^{2}+6 x_{1} x_{2}+1$ là một số nguyên.

Ta chứng minh $Q$ không chia hết cho 3 .

Ta có tính chất sau, với một số nguyên $m$ bât kì thì nếu $m$ chia hết cho 3 thì $m^{2}$ chia hết cho 3 . Nếu $m$ chia 3 dư 1 hoặc 2 thì $m^{2}$ chia 3 dư 1 . Ta có $Q=x_{1}^{2}+x_{2}^{2}-x_{1}^{2} x_{2}^{2}+1-3 x_{1}^{2} x_{2}^{2}+6 x_{1} x_{2}$.

Ta cần chứng minh $Q^{\prime}=x_{1}^{2}+x_{2}^{2}-x_{1}^{2} x_{2}^{2}+1$ không chia hết cho 3 . Xét xác trường hợp sau:Nếu $x_{1}, x_{2}$ không chia hết cho 3 thì $x_{1}^{2}, x_{2}^{2}$ chia 3 dư 1 . Khi đó $Q^{\prime}$ chia 3 dư 2. Nếu $x_{1}$ chia hết cho $3, x_{2}$ không chia hết cho 3 , khi đó $Q^{\prime}$ chia 3 dư 2 .

$x_{1}, x_{2}$ chia hết cho 3 . Khi đó $Q^{\prime}$ chia 3 dư 1 .

Vậy $Q^{\prime}$ không chia hết cho 3 .

Do đó $Q$ không chia hết cho 3 .

Bài 4. Cho tam giác $A B C(A B<A C)$ có các góc nhọn, nội tiếp trong đường tròn tâm $O$. Gọi $M$ là trung điểm của cạnh $B C, E$ là điểm chính giữa của cung nhỏ $B C, F$ là điểm đối xứng của $E$ qua $M$.

(a) Chứng minh $E B^{2}=E F . EO$.

(b) Gọi $D$ là giao điểm của $A E$ và $B C$. Chứng minh các điểm $A, D, O, F$ cùng thuộc một đường tròn.

(c) Gọi $I$ là tâm đường tròn nội tiếp tam giác $A B C$ và $P$ là điểm thay đổi trên đường tròn ngoại tiếp tam giác $I B C$ sao cho $P, O, F$ không thẳng hàng. Chứng minh rằng tiếp tuyến tại $P$ của đường tròn ngoại tiếp tam giác POF đi qua một điểm cố định.

Lời giải.

(a) Ta có $E$ là điểm chính giữa cung $B C$, suy ra $E B=E C$ và $O E \perp B C$ nên $M, O, E$ thẳng hàng.

Vẽ đường kính $E K$. Ta có $E M \cdot E K=E B^{2}$.

Mặt khác $E F=2 E M, E O=\frac{1}{2} E K$. Do đó $E F \cdot E O=E M \cdot E K=E B^{2}$. (1)

(b) Ta có $\angle E B C=\angle E A C=\angle E A B$. Suy ra $\triangle E A B \sim \triangle E B D$. Suy ra $E B^{2}+$ $E D \cdot E A(2)$.

Từ (1) và (2) ta có: $E A \cdot E D=E O \cdot E F$. Suy ra tứ giác $O F D A$ nội tiếp.

(c) Ta có $\angle E I B=\angle E A B+\angle A B I=\frac{1}{2}(\angle A+\angle B)=\angle E B C+\angle C B I=\angle E B I$, suy ra $E B=E I=E C$. Vậy $E$ là tâm đường tròn ngoại tiếp tam giác $B I C$.

Do đó $E P=E B$. Ta có $E P^{2}=E B^{2}=E O \cdot E F$.

Suy ra $\triangle E P F \sim \angle E O P$. Suy ra $\angle E P F=\angle F O P$.

Hơn nữa, do $O, F$ cùng phía đối với $E$ nên $P O, P F$ cùng phía đối với $P E$.

Vẽ tia tiếp tuyến $P x(P F, P O$ cùng phía đối với $P x)$ của đường tròn ngoại tiếp tam giác $P O F$. Khi đó $\angle x P F=\angle F O P=\angle E P x$. Suy ra $P x$ và $P E$ trùng nhau. Vậy $P x$ luôn qua điểm $E$ cố định.

Bài 5. Để khuyến khích phong trào học tập, một trường THCS đã tổ chứng 8 đợt thi cho các học sinh. Ở mỗi đợt thi, có đúng 3 học sinh được chọn để trao giải. Sau khi tổ chứng xong 8 đợt thi, người ta nhận thấy rằng với hai đợt thi bất kì thì có đúng 1 học sinh được trao giải ở cả hai đợt thi đó. Chứng minh rằng:

(a) Có ít nhất một học sinh được trao giải ít nhất bốn lần.

(b) Có đúng một học sinh được trao giải ở 8 đợt thi.

Lời giải.

(a) Giả sử $A_{1}$ là tập 3 bạn đạt giải trong đợt thi thứ nhât. Tương tự với $A_{2}, \ldots, A_{8}$.

Ta có $A_{1}={a, b, c}$. Vị $A_{1} \cap A_{i}, i=\overline{2,8}$ có đúng một học sinh nên các học sinh $a, b, c$ xuất hiện trong 7 tập $A_{2}, \ldots, A_{8}$ và không có hai bàn nào xuất hiện cùng một tập. Do đó theo nguyên lí Đirichlet thì có 1 học sinh thuộc ít nhất 3 tập trong các tập $A_{2}, \ldots, A_{8}$. Khi đó học sinh này có xuất hiện trong ít nhất 4 tập, hay được nhận thưởng ít nhất 4 lần.

(b) Theo câu a, có một học sinh $a$ nhận thưởng được ít nhất 4 lần, giả sử là từ lần 1 đến lần 4 . Hay $a$ thuộc $A_{1}, A_{2}, A_{3}, A_{4}$. Khi đó nếu $a$ không nhận thưởng trong 8 lần, tức là có một lần $a$ không nhận thưởng. Giả sử là lần 8 , tức là $a$ không thuộc $A_{8}$.

Khi đó $A_{1} \cap A_{8}$ là 1 học sinh nên có học $\sinh b \neq a$ thuộc $A_{8}$, tương tự có học sinh $c, d, e$ lần lượt thuộc $A_{2}, A_{3}, A_{4}$ cũng thuộc $A_{8}$. Hơn nữa $b, c, d, e$ phải phân biệt. Do đó $A_{8}$ chứa ít nhất 4 phần tử. (vô lý). Vậy có một học sinh thuộc 8 tập, hay nhận thưởng 8 lần. Và không có hai học sinh nào cùng nhận thưởng hai lần nên chỉ có đúng một học sinh thỏa.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Leave a Reply

Your email address will not be published. Required fields are marked *