Tag Archives: Chuyen

Phương trình vô tỉ – Phương pháp lũy thừa

Phương trình vô tỉ (phương trình chứa căn thức) là một trong những nội dung quan trọng nhất của đại số 9, xuất hiện trong hầu hết các đề thi học sinh giỏi cũng như đề thi tuyển sinh. Kĩ năng giải phương trình cũng là một trong kĩ năng quan trọng của học sinh chuyên toán. Có rất nhiều dạng phương trình và nhiều phương pháp giải khác nhau cho phương trình vô tỉ, tựu chung lại cũng là phương pháp hữu tỉ hóa các phương trình, tức là đưa về phương trình dạng đa thức đã biết cách giải ở lớp 8.Trong chương này đưa ra một vài dạng phương trình vô tỉ cùng với đó là các phương pháp cơ bản nhất, không đi sâu quá nhiều vào các kĩ thuật và các dạng khó.

1. Lý thuyết

Nếu $A(x)$, $B(x)$ là các biểu thức chứa $x$, khi đó ta có các phương trình dạng $\sqrt{A} = \sqrt{B}$ và $\sqrt{A}=B$ là các phương trình vô tỉ cơ bản nhất, được giải bởi các tính chất sau.

  • Tính chất 1.  $\sqrt{A} = \sqrt{B} \Leftrightarrow \left\{\begin{array}{l}A \geq 0 \\ A = B\end{array} \right.$
  • Tính chất 2. $\sqrt{A} = B \Leftrightarrow \left\{\begin{array}{l}B \geq 0\\ A = B^2\end{array}\right.$

2. Phương pháp lũy thừa

Phương pháp lũy thừa là phương pháp tự nhiên nhất và kinh điển nhất để giải phương trình vô tỉ, nhằm mục đích đưa phương trình đã cho về dạng cơ bản hoặc đưa về phương trình hữu tỉ, việc lũy thừa đòi hỏi sự khéo léo để không làm cho bậc của biểu thức quá cao, và trong quá trình lũy thừa ta chú ý là tạo ra phương trình mới tương đương phương trình đã cho hay chỉ là hệ quả của phương trình đã cho, nếu là hệ quả thì phải có bước thử lại nghiệm.

Chú ý: $A = B \Leftrightarrow A^2 = B^2$ đúng khi và chỉ khi $A, B$ cùng dấu.

Còn $A = B\ (1) \Rightarrow A^2 = B^2\ (2)$ thì phương trình $(2)$ là phương trình hệ quả của phương trình $(1)$.

Ví dụ 1: Giải phương trình:

a) $\sqrt{-x^2+4x-3}=2x-5$

b) $\sqrt{x+1}+\sqrt{x-2} = \sqrt{3x}$

Giải

a) Ta có $ \sqrt{-x^2+4x-3} =2x-5  \Leftrightarrow \left\{ \begin{array}{l} 2x-5 \ge 0\\ -x^2+4x-3=(2x-5)^2 \end{array}\right. $

$\Leftrightarrow \left\{ \begin{array}{l} x \ge \dfrac{5}{2}\\ 5x^2-24x+28=0 \end{array}\right.$  $  \Leftrightarrow \left\{ \begin{array}{l} x \ge \dfrac{5}{2} \\ x=2 \ \text{hoặc} \ x=\dfrac{14}{5} \end{array}\right. $  $\Leftrightarrow x=\dfrac{14}{5}$

Vậy phương trình có nghiệm $x=\dfrac{14}{5}$.

b) Điều kiện $x \geq 2$. Phương trình tương đương với

$x+1+2\sqrt{(x+1)(x-2)}+x-2 = 3x$

$\Leftrightarrow 2\sqrt{x^2-x-2} = x + 1$

$\Leftrightarrow 4(x^2-x-2) = x^2+2x+1$

$\Leftrightarrow 3x^2 – 6x – 9 = 0 $

$\Leftrightarrow \left[\begin{array}{l}x = 3\ \text{ (nhận) }\\ x=-1 \ \text{ (loại) } \end{array}\right.$

Vậy phương trình có nghiệm $x = 3$.

Ví dụ 2: Giải phương trình $\sqrt{7-x^2+x\sqrt{x+5}}=\sqrt{3-2x-x^2}.$

Giải
  • Ta có $\sqrt{7-x^2+x\sqrt{x+5}}=\sqrt{3-2x-x^2}$

$\Leftrightarrow \left\{ \begin{array}{l} 3-2x-x^2 \ge 0\\ 7-x^2+x\sqrt{x+5}=3-2x-x^2 \ (2)\end{array}\right. $

  •  $(2) \Leftrightarrow x\sqrt{x+5} = -2x -4$

Nhận thấy $x=0$ không là nghiệm của $(2)$. Ta xét $x\ne 0$, khi đó phương trình tương đương

$\sqrt{x+5} = -\dfrac{2x+4}{x}$ $\Leftrightarrow \left\{ \begin{array}{l} -\dfrac{2x+4}{x} \ge 0\\ x+5 = \dfrac{(2x+4)^2}{x^2} \ (3) \end{array}\right. $

  •  $(3) \Leftrightarrow  x^2(x+5) = (2x+4)^2$

$\Leftrightarrow  x^3 +x^2 -16x -16 =0 \Leftrightarrow  \left[ \begin{array}{l} x=4 \ \text{ (loại) }\\ x=-1\ \text{ (nhận) }\\ x=-4 \ \text{ (loại) } \end{array}\right. $

  •  Vậy phương trình có nghiệm $x = -1$.

Ví dụ 3: Giải phương trình $\sqrt{x+1}-1=\sqrt{x-\sqrt{x+8}}$.

Giải
  •  Điều kiện $\left\{ \begin{array}{l} x \ge -1\\ \sqrt{x+1}-1 \ge 0\\ x-\sqrt{x+8} \ge 0 \end{array}\right.  (*)$.
  •  Khi đó phương trình tương đương:

$\sqrt{x+1}=1+\sqrt{x-\sqrt{x+8}}$

$\Leftrightarrow x+1=1+x-\sqrt{x+8}+2\sqrt{x-\sqrt{x+8}}$

$\Leftrightarrow \sqrt{x+8}=2\sqrt{x-\sqrt{x+8}}$

$\Leftrightarrow x+8=4(x-\sqrt{x+8})$

$\Leftrightarrow 4\sqrt{x+8}=3x-8$

$\Leftrightarrow  \left\{ \begin{array}{l} x \ge \dfrac{8}{3} \\ 16(x+8)=(3x-8)^2 \end{array}\right. $

$\Leftrightarrow \left\{ \begin{array}{l} x \ge \dfrac{8}{3}\\ 9x^2-64x-64=0 \end{array}\right. $

$\Leftrightarrow x=8.$

  •  Vậy phương trình có nghiệm duy nhất $x=8.$

Ví dụ 4: Giải phương trình $\sqrt{x(x-1)}+\sqrt{x(x+2)}=2\sqrt{x^2}.$

Giải
  •  Điều kiện $\left\{ \begin{array}{l} x(x-1) \ge 0\\ x(x+2) \ge 0\\  x \ge 0 \end{array}\right.  \Leftrightarrow x=0 \ \text{ hoặc } \ x \ge 1.$
  •  Dễ thấy $x=0$ là một nghiệm của phương trình.
  •  Xét $x \ge 1.$ Khi đó phương trình tương đương
  •  $\sqrt{x-1}+\sqrt{x+2}=2\sqrt{x}$

$\Leftrightarrow x-1+x+2+2\sqrt{(x-1)(x+2)}=4x$

$\Leftrightarrow \sqrt{(x-1)(x+2)}=x-\dfrac{1}{2}$

$\Leftrightarrow \left\{ \begin{array}{l} x \ge \dfrac{1}{2}\\ x^2+x-2=x^2-x+\dfrac{1}{4} \end{array}\right. $

$\Leftrightarrow \left\{ \begin{array}{l} x \ge \dfrac{1}{2}\\ x=\dfrac{9}{8} \end{array}\right. $

$\Leftrightarrow x=\dfrac{9}{8}$

  •  Vậy phương trình có nghiệm $x=\dfrac{9}{8}$ hoặc $x=0$.

Ví dụ 5: Giải phương trình $\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\dfrac{x+3}{2}$.

Giải
  •  Điều kiện $x \ge 1.$
  •  Khi đó phương trình tương đương

$\sqrt{(\sqrt{x-1})^2+2\sqrt{x-1}+1}+\sqrt{(\sqrt{x-1})^2-2\sqrt{x-1}+1}=\dfrac{x+3}{2}$

$\Leftrightarrow \sqrt{(\sqrt{x-1}+1)^2}+\sqrt{(\sqrt{x-1}-1)^2}=\dfrac{x+3}{2}$

$\Leftrightarrow |\sqrt{x-1}+1|+|\sqrt{x-1}-1|=\dfrac{x+3}{2}$

  •  Với $1 \le x \le 2$ thì phương trình tương đương

$\sqrt{x-1}+1+1-\sqrt{x-1}=\dfrac{x+3}{2} \Leftrightarrow x=1.$

  •  Với $x>2$ thì phương trình tương đương

$\sqrt{x-1}+1+\sqrt{x-1}-1=\dfrac{x+3}{2}$

$\Leftrightarrow 4\sqrt{x-1}=x+3$

$\Leftrightarrow \left\{ \begin{array}{l} x \ge -3\\ 16x-16=x^2+6x+9 \end{array}\right.   \Leftrightarrow x=5.$

  •  Vậy phương trình có nghiệm $x=1$ hoặc $x=5$.

 

Ví dụ 6: Giải phương trình $\sqrt{x+3}+\sqrt{3x+1}=2\sqrt{x}+\sqrt{2x+2}$.

Giải
  •  Điều kiện $\begin{cases} x+3 \ge 0&\\ 3x+1 \ge 0&\\ x \ge 0&\\ 2x+1 \ge 0 \end{cases} \Leftrightarrow x \ge 0.$

 Phương trình trở thành

 $\sqrt{3x+1}-\sqrt{2x+2}=\sqrt{4x}-\sqrt{x+3}$

$\Rightarrow 3x+1+2x+2-2\sqrt{(3x+1)(2x+2)}=4x+x+3-2\sqrt{4x(x+3)}$

$\Rightarrow \sqrt{(3x+1)(2x+2)}=\sqrt{4x(x+3)}$

$\Rightarrow 6x^2+8x+2=4x^2+12x$

$\Rightarrow x=1.$

  •  Thử lại ta thấy $x=1$ là nghiệm của phương trình.
  •  Vậy phương trình có nghiệm duy nhất $x=1.$
  • Chú ý: Trong ví dụ trên, ta dùng dấu “$\Rightarrow$” thay cho “$\Leftrightarrow$”, tức là phương trình sau chỉ là hệ quả của phương trình trước chứ không phải là tương đương. Do đó khi giải ra nghiệm ta phải thử lại phương trình ban đầu để nhận hay loại nghiệm.

Ví dụ 7: Giải phương trình $\sqrt[3]{x+5}+\sqrt[3]{x+6}=\sqrt[3]{2x+11}$.

Giải
  •  Sử dụng hằng đẳng thức $(a+b)^3=a^3+b^3+3ab(a+b)$. Ta được

$ \sqrt[3]{x+5}+\sqrt[3]{x+6}=\sqrt[3]{2x+11}$

$\Leftrightarrow 2x+11+3\sqrt[3]{x+5}.\sqrt[3]{x+6}(\sqrt[3]{x+5}+\sqrt[3]{x+6})=2x+11$

$\Rightarrow 3\sqrt[3]{x+5}.\sqrt[3]{x+6}.\sqrt[3]{2x+11}=0$

$\Leftrightarrow x=-6 \ \text{hoặc} -5 \ \text{hoặc} \ x=-\dfrac{11}{2}.$

  •  Thử lại ta thấy tất cả đều là nghiệm của phương trình.
  •  Vậy phương trình có ba nghiệm $x=-6$ hoặc $x=-5$ hoặc $x=-\dfrac{11}{2}.$

3. Bài tập rèn luyện

Bài 1. Giải các phương trình sau;

a) $\sqrt{x^2+3x+4}-3x=1$

b) $1+\sqrt{x-1}=\sqrt{6-x}$

c) $\sqrt{-x^2+4x-3}=2x-5$

d) $x-\sqrt{4-x^2}=0$

Bài 2. Giải các phương trình sau:

a) $\sqrt{2x+3}+\sqrt{2x+2}=1$

b) $\sqrt{5x-1}-\sqrt{x-1}=\sqrt{2x-4}$

c) $x^2-2x+4(x-3) \sqrt{\dfrac{x+1}{x-3}}=0$.

d) $\sqrt{x-1-2\sqrt{x-2}}+\sqrt{x+2+4\sqrt{x-2}}+3=0$

Bài 3. Giải các phương trình sau:

a) $\dfrac{x^2}{\sqrt{3x-2}}-\sqrt{3x-2}=1-x$

b) $\sqrt{x}+\sqrt{x+1}-\sqrt{x^2+x}=1$

c) $\sqrt{x(x+1)}+\sqrt{x(x+2)}=2\sqrt{x^2}$

d) $\sqrt{2x^2+8x+6}+\sqrt{x^2-1}=2x+2$

Bài 4. Giải các phương trình sau

a) $\sqrt[3]{x+1}+\sqrt[3]{3x+1}=\sqrt[3]{x-1}$

b) $\sqrt[3]{2x-5}+\sqrt[3]{3x+7}=\sqrt[3]{5x+2}$

Bài 5. Giải các phương trình sau:

a) $\sqrt{x^2 – 3x + 4} + 1 – x – \sqrt{3 – x}=0$

b) $\sqrt{x^2+3x+4}+1+x-\sqrt{3+x}=0$

c) $\sqrt{x^2-3x+3}+1-x-\sqrt{2-x}=0$

d) $\sqrt{4x^2-10x+7}+2-2x-\sqrt{3-2x}=0$

Đề ôn thi vào lớp 10 Chuyên Toán.

Thời gian làm bài 150 phút.

Bài 1. (1, 5 điểm) Cho phương trình $(\sqrt{x} – 1)(x^2 – (m^2+1)x + 1) = 0$
a) Giải phương trình khi $m = -2$.
b) Tìm $m$ để phương trình có 3 nghiệm phân biệt $x_1<x_2<x_3$ và thỏa $x_1^2 + 4x_2^2+x_3^2 = 27$.

Bài 2. (2 điểm) Cho các số dương $a, b, c$ thỏa $a+ b+ c = abc$.
a) Tìm $a, b, c$ nếu $a, b, c$ là các số nguyên dương.
b) Chứng minh $ab+ac+bc \geq 9$ và $ab+ac+bc\geq 3 + \sqrt{1+a^2}+\sqrt{1+b^2}+\sqrt{1+c^2}$.

Bài 3.  (1, 5 điểm) Số nguyên dương $n$ được gọi là số đẹp nếu tồn tại các số nguyên dương $x, y, z$ không nhất thiết phải khác nhau sao cho: $$n = \left[ {x;y} \right] + \left[ {y;z} \right] + \left[ {z;x} \right]$$ với $\left[ {a;b} \right]$ là bội chung nhỏ nhất của hai số $a, b$
a) Chứng minh rằng $n=2021$ là số đẹp.
b) Chứng minh rằng mọi số lẻ khác 1 đều là số đẹp.
c) Chứng minh rằng $n=2^{2021}$ không phải là số đẹp.

Bài 4. (3 điểm) Cho đoạn thẳng $BC$ cố định và điểm $A$ thay đổi sao cho $\angle BAC = \alpha < 60^\circ$ không đổi và $AB, AC >BC$. Trên $BC$ lấy các điểm $M, N$ sao cho $BM = MN = NC$. Đường tròn ngoại tiếp các tam giác $ABN$ và $ACM$ cắt nhau tại $D$ và cắt các cạnh $AC, AB$ lần lượt tại $E, F$.

a) Tìm vị trí của $A$ sao cho $AE \cdot AC + AF \cdot AB$ lớn nhất.

b) Chứng minh rằng $\dfrac{DB}{DC} = \dfrac{AC}{AB}$.

c) Gọi $I$ là tâm đường tròn ngoại tiếp tam giác $AEF$. Chứng minh $I$ luôn thuộc một đường cố định.

Bài 5. (2 điểm) Một giải đấu bóng đá gồm 8 đội đá với nhau. Mỗi lượt, 8 đội chia làm 4 cặp đấu, thắng được 3 điểm, hòa 1 điểm và thua 0 điểm.
a) Giải đấu diễn ra hai lượt.
i)  Chứng minh rằng có 2 đội có điểm bằng nhau.
ii) Chứng minh rằng có thể tìm được 4 đội $A, B, C, D$ đôi một chưa đấu với nhau.
b) Kết thúc giải người ta thấy rằng không có trận nào kết thúc với tỉ số hòa. Chứng minh rằng có thể tồn tại 5 đội $A, B, C, D, E$ xếp thành một hàng sao cho đội đứng trước thắng đội đứng sau.

HẾT

Lời giải

Bài 1. 

a) Khi $m = -2$ ta có phương trình $(\sqrt{x}-1)(x^2-5x+1) = 0$.

Giải phương trình ta có nghiệm $x = 1, x = \dfrac{5+\sqrt{21}}{2}, x= \dfrac{5-\sqrt{21}}{2}$.

b) Điều kiện $x \geq 0$. Ta có $x = 1$ là một nghiệm của phương trình.

Phương trình (1) có ba nghiệm phân biệt khi và chỉ khi phương trình

$x^2-(m^2+1)x + 1 = 0$. (2) có hai nghiệm phân biệt không âm và khác 1.

  • $\Delta (m^2+1)^2 – 4 = (m^2-1)(m^2+3) > 0$.
  • $1^2 -(m^2+1)1 + 1 \neq 0 \Leftrightarrow m \neq \pm 1$.

Khi đó phương trình có hai nghiệm là $a<b$ thỏa $a+b = m^2+1 > 0, ab = 1$.

Do đó $a, b > 0$ và có tích bằng 1, nên một số nhỏ hơn 1, 1 số lớn hơn 1.

Từ đó ta có $x_2 = 1$, $x_1  =a, x_3 = b$. Khi đó

$x_1^2+4x_2^2 + x_3^2 = 27$

$(a+b)^2 – 2ab = 23$

$m^2 = 25$

$m = \pm 5$. (Nhận)

Bài 2.

a) Do vai trò $a, b, c$ như nhau nên giả sử $a \geq b geq c > 0$. Khi đó

$a + b+ c = abc \Leftrightarrow \dfrac{1}{ab} + \dfrac{1}{bc} + \dfrac{1}{ac} = 1 \leq \dfrac{3}{c^2}$.

Suy ra $c = 1$. Khi đó $ab = a+b +1 \Leftrightarrow (a-1)(b-1) = 2$. Giải ra được $a = 3, b=2$.

Vậy phương trình có nghiệm $(3;2;1)$ và các hoán vị.

b)

Áp dụng bdt $(x+y+z)(\dfrac{1}{x} + \dfrac{1}{y}+ \dfrac{1}{z}) \geq 9$ và từ $\dfrac{1}{ab} + \dfrac{1}{bc} + \dfrac{1}{ac} = 1$.

Suy ra $ab+bc+ac \geq 9$.

Ta có bdt $3(x^2+y^2+z^2) \geq (x+y+z)^2 \geq 3(xy+yz+xz)$. (Tự chứng minh)

Ta có $P = (ab+bc+ac-3)^2 = (ab+bc+ac)^2 – 6(ab+bc+ac)+9$.

Mà $(ab+bc+ac)^2 \geq 3abc(a+b+c)$ và $abc = a+b+c$.

Suy ra $(ab+bc+ac)^2 \geq 3(a+b+c)^2$.

Do đó $P \geq 3(a^2+b^2+c^2) + 9 \geq (\sqrt{1+a^2} + \sqrt{1+b^2}+\sqrt{1+c^2})^2$.

Từ đó

$ab+bc+ac-3 \geq \sqrt{1+a^2} + \sqrt{1+b^2}+\sqrt{1+c^2}$

$ab+bc+ac \geq 3+\sqrt{1+a^2} + \sqrt{1+b^2}+\sqrt{1+c^2}$.

Bài 3. 

a) $ 2021 = [1;1] + [1010;1] + [1010;1]$.

b) Nếu $ n = 2k + 1$ và $k \geq 1$. Chọn $x = y =1,z=k$ ta có $n = [1;1] + [k;1] + [k;1]$.

c) Chú ý các nhận xét sau:

  • Mọi số nguyên dương đều biểu diễn với dạng $p\cdot 2^n$ trong đó $p$ là số lẻ.
  • Bội chung nhỏ nhất của $p\cdot 2^n$ và $q\cdot 2^m$ với $n>m$ là $r\cdot 2^n$ với $r=[p;q]$ lẻ.

Giả sử $n =2^{2021}$ là số đẹp, tức là tồn tại $x, y, z$ nguyên dương sao cho $2^{2021} = [x;y] + [y;z] + [z;x]$.

Do $2^{2021}$ là số chẳn nên chỉ có hai trường hợp xảy ra, hoặc cả ba số $\left[ {x;y} \right],\left[ {y;z} \right],\left[ {z;x} \right]$ đều là số chẳn, hoặc trong ba số này có hai số lẻ và một số chẳn.

Nếu 3 số $x, y, z$ lẻ thì $[x;y] + [y;z] + [z;x]$ lẻ vô lý.

Nếu 1 số lẻ, hai số chẵn cũng tương tự.

Trường hợp 2 số chẵn. Giả sử $x, y$ chẵn. Ta xét các trường hợp sau:

  • Nếu $z$ lẻ. Khi đó ta có: $\left[ {x;y} \right] = {2^a}{m_1}$ với $m_1$ là số lẻ, $\left[ {y;z} \right] = {2^b}{m_2}$, với $m_2$ là số lẻ, $\left[ {z;x} \right] = {2^a}{m_3}$, với $m_2$ là số lẻ. Dễ thấy $a, b < 2021$.
    • Từ đó: ${2^a}{m_1} + {2^b}{m_2} + {2^a}{m_3} = {2^{2021}} \Leftrightarrow {2^b}\left( {{2^{a – b}}{m_1} + {m_2} + {2^{a – b}}{m_3}} \right) = {2^{2021}} \Leftrightarrow {2^{a – b}}{m_1} + {m_2} + {2^{a – b}}{m_3} = {2^{2021 – b}}$. Do vế trái của đẳng thức là một số lẻ, vế phải là một số chẳn. Từ đó ta có trường hợp này không thể xảy ra.
  • Nếu $z$ là số chẵn. Như vậy, $x, y, z$ đều là số chẳn, đặt: $z=2^{c}t_{3}$, với ($t_{3}$ là số tự nhiên lẻ) không mất tính tổng quát, giả sử: $2021 > a \ge b \ge c \ge 0$. Vậy: $\left[ {x;y} \right] = {2^a}{m_1}$, $\left[ {y;z} \right] = {2^b}{m_2}$, $\left[ {z;x} \right] = {2^a}{m_3}$ với $m_1, m_2, m_3$ là ba số tự nhiên lẻ.
    • Từ đó: ${2^a}{m_1} + {2^b}{m_2} + {2^a}{m_3} = {2^{2021}} \Leftrightarrow {2^b}\left( {{2^{a – b}}{m_1} + {m_2} + {2^{a – b}}{m_3}} \right) = {2^{2021}} \Leftrightarrow {2^{a – b}}{m_1} + {m_2} + {2^{a – b}}{m_3} = {2^{2021 – b}}$. Do vế trái của đẳng thức là một số lẻ, vế phải là một số chẳn. Từ đó ta có trường hợp này không thể xảy ra.

Bài 4. 

a) Ta có $BF\cdot BA = BM \cdot BC = \dfrac{1}{3}BC^2$ và $CE \cdot CA = \dfrac{1}{3}BC^2$.

Do $AB, AC > BC$ nên $F, E$ nằm giữa $AB$ và $AC$.

Khi đó $X = AF \cdot AB + AE \cdot AC = AB^2-BF \cdot BC + AC^2-CE \cdot CA = AB^2+AC^2-\dfrac{2}{3}BC^2$.

Do đó $X$ lớn nhất khi và chỉ khi $AB^2+AC^2$ lớn nhất.

Ta có $BC^2=BH^2+CH^2 = (AB\sin \alpha)^2+(AC – AB \cos \alpha)^2$

$= AB^2+AC^2-2AB\cdot AC \cos \alpha$

$\geq (AB^2+AC^2) – (AB^2+AC^2)\cos \alpha$.

$\geq (AB^2+AC^2)(1-\cos \alpha)$

Suy ra $AB^2+AC^2$ lớn nhất bằng $\dfrac{BC^2}{1-\cos\alpha}$ khi $AB = AC$.

Vậy $AF \cdot AB + AE \cdot AC $ lớn nhất khi và chỉ khi $AB = AC$.

b) Ta có $\angle DBF  = \angle DEC, \angle DFB = \angle DCE$.

Suy ra $\triangle DBF = \triangle DCE$, do đó $\dfrac{DB}{DC} = \dfrac{BF}{CE}$ (1)

Mà $BF \cdot AB = CE \cdot AC = \dfrac{1}{3}BC^2$.

Suy ra $\dfrac{BF}{CE} = \dfrac{AC}{AB}$. (2)

Từ (1) và (2) ta có $\dfrac{DB}{DC} = \dfrac{AC}{AB}$.

c) Gọi $K$ là giao điểm thứ hai của $(AEF)$ và $(ABC)$. Khi đó

$\triangle KFB \backsim \triangle KEC$, suy ra $\dfrac{KB}{KC} = \dfrac{BF}{CE}$.

Mà $\dfrac{BF}{CE} = \dfrac{AC}{AB}$. Suy ra $\dfrac{KB}{KC} = \dfrac{AC}{AB}$.

Do đó $\triangle KBC \backsim \triangle ACB$, suy ra $KB = AC, KC = AB$.

từ đó $AKCB$ là hình thang cân, nên trung trực của $AK$ và $BC$ trùng nhau.

Do đó tâm $I$ của đường tròn ngoại tiếp tam giác $AEF$ thuộc trung trực của $AK$ hay thuộc trung trực $BC$ cố định.

Bài 5.

a) Nếu mỗi đội đá nhau được 2 trận.

  • Thì số điểm mội đội có thể nhận là $0, 1, 2, 3, 4, 6$. Do đó theo nguyên lý Dirichlet cho ít nhất 2 đội có cùng số điểm.
  • Gọi 8 đội là $A, B, C, D, E, F, G, H$, sau hai vòng mỗi đội đá đúng hai trận.
    • Không có ba đội nào đôi một đá với nhau, vì giả sử $A, B, C$ đôi một đá với nhau, thì vòng 1, $A$ đá với $B$ thì $C$ không đá với ai, nên phải cần ít nhất 3 vòng để điều này xảy ra.
    • Giả sử $A$ đá với $B, C$ thì $BC$ không đá với nhau nên $B, C$ đá với đội khác.
      • Nếu $B, C$ đá cùng một đội $D$. Khi đó nhóm $E, F, G, H$ cũng có hai đội chưa đá với nhau và cũng không đá với nhóm $A, B, C, D$. Giả sử là $E, F$ chưa đá với nhau. Khi đó 4 đội $A, D, E, F$ đôi một chưa đá với nhau trận nào.
      • Nếu $B, C$ đá với hai đội khác nhau là $D, E$. Lý luận tương tự ta chỉ suy ra được là $E, D$ cùng đấu với $F, G$ và $G,F$ đấu với $H$. Khi đó $A – B  – D – F – H – G – E – C – A$. Chọn 4 đội $A, D, H, E$ thỏa đề bài.

b)  Xét đội $A$ thắng nhiều nhất trong đó thắng $B, C$, xét đội $B$ và $C$ thì nếu $B$ thắng $C$ ta có $A – B – C$ là dãy mà đội trước thắng đội sau, ngược lại ta có dãy $A – C – B$.

Vậy giả sử ta có $A$ thắng $B$,$B$ thắng $C$, ta kí hiệu $A -> B -> C$.

Xét tới đội $D$ nào đó. Có các trường hợp sau:

  • $D -> A$ hoặc $C -> D$. Khi đó ta có $D ->A->B->C$ hoặc $A-> B -> C-> D$.
  • Nếu không có điều này, thì $A ->D$ và $D->C$. Khi đó $B, D$.
    • Nếu $D->B$ thì ta có $A->D->B->C$.
    • Nếu $B ->D$ thì ta có $A -> B ->D ->C$.

Trong các trường hợp ta đều có dãy 4 người mà người này thắng người kia. Vậy ta đã có $A-> B-> C->D$.

Xét $E$, tương tự như $D$.

  • Nếu $E$ thắng $A$ hoặc $D$ thắng $E$ thì bài toán được chứng minh.
  • Ngược lại, $A$ thắng $E$ và $E$ thắng $D$. Khi đó ta xét mối quan hệ giữa $E$ và $B,C$.
    • Nếu $E$ thắng $B$. Khi đó ta có $A-E-B-C-D$.
    • Nếu $E$ thua $B, C$, khi đó $A-B-C-E-D$.
    • Nếu $E$ thua $B$ và thắng $C$, khi đó $A-B-E-C-D$.

Vậy lúc nào cũng tìm được 5 đội xếp thành một hàng mà đội trước thắng đội sau.

 

Tập san Star Education – Số 3 năm 2019

Tập san Star Education là tập hợp các chuyên đề bài viết về toán do các giáo viên của Star Education biên soạn, ngoài ra còn có sự hợp tác của giáo viên học sinh khác nhằm đem đến cho bạn đọc một nguồn tài liệu mới tham khảo.

Tập san ra định kì mỗi năm hai số, tháng 11 và tháng 05.

tap san STAR 03-2019

Tứ giác nội tiếp

Định nghĩa:  Tứ giác có 4 đỉnh cùng thuộc một đường tròn được gọi là tứ giác nội tiếp.

Dấu hiệu nhận biết tứ giác nội tiếp: Một tứ giác là tứ giác nội tiếp khi và chỉ khi:

  1. Tổng hai góc đối bằng $180^o$.
  2. Góc ngoài bằng góc đối trong.
  3. Hai đỉnh kề cùng nhìn một cạnh dưới hai góc bằng nhau.

Ví dụ 1. Cho tam giác $ABC$ nhọn. Các đường cao $AD, BE$ và $CF$ cắt nhau tại $H$. Cho tam giác $ABC$ nhọn. Các đường cao $AD, BE$ và $CF$ cắt nhau tại $H$. (a) Chứng minh các tứ giác $AEHF$, $BDHE$ là tứ giác nội tiếp. (b) Chứng minh các tứ giác $BFEC$, $AEDC$ là tứ giác nội tiếp.

Gợi ý

(a) Xét tứ giác $AEHF$ có $\angle AEH + \angle AFH = 90^\circ + 90^\circ = 180^\circ$, suy ra tứ giác $AEHF$ là tứ giác nội tiếp (hai góc đối bù nhau).

Xét tứ giác $AEHF$ có $\angle AEH + \angle AFH = 90^\circ + 90^\circ = 180^\circ$, suy ra tứ giác $AEHF$ là tứ giác nội tiếp (hai góc đối bù nhau).\\ Xét tứ giác $BDHE$ có $\angle BDH + \angle BEH = 90^\circ + 90^\circ = 180^\circ$ nên là tứ giác nội tiếp (hai góc đối bù nhau).

(b) Xét tứ giác $BFEC$ có $\angle BFC = \angle BEC = 90^\circ$, suy ra tứ giác $BFEC$ nội tiếp (hai đỉnh kề cùng nhìn cạnh với một góc vuông).

Tương tự ta có $\angle AEC = \angle ADC = 90^\circ$, suy ra tứ giác AEDC nội tiếp.

Ví dụ 2. Cho đường tròn tâm $O$ và điểm $A$ nằm ngoài đường tròn. Từ $A$ dựng các tiếp tuyến $AB, AC$ đến $(O)$ với $B, C$ là các tiếp điểm. $OA$ cắt $BC$ tại $H$. (a) Chứng minh rằng tứ giác $OBAC$ nội tiếp. (b) Một đường thẳng qua $A$ cắt $(O)$ tại $D$ và $E$ sao cho $E$ nằm giữa $A$ và $D$. Chứng minh rằng $O, H, D, E$ cùng thuộc một đường tròn.

Gợi ý

(a)Vì $AB, AC$ là tiếp tuyến của $(O)$ tại B và C nên $\angle OBA = \angle OCA = 90^\circ$, suy ra $\angle OBA + \angle OCA = 180^\circ$, nên tứ giác $OBAC$ nội tếp.

Vì $AB, AC$ là tiếp tuyến của $(O)$ tại B và C nên $\angle OBA = \angle OCA = 90^\circ$, suy ra $\angle OBA + \angle OCA = 180^\circ$, nên tứ giác $OBAC$ nội tếp.

(b) Ta có $AB = AC$ (t/c tiếp tuyến) và $OB = OC$, suy ra $OA$ là trung trực của $BC$, suy ra $OA \bot BC$ tại $H$.

Tam giác $ABO$ vuông có $BH$ là đường cao nên $AH.AO = AB^2$. (1)

Mặt khác $\Delta ABD \backsim AEB (g.g)$, suy ra $AD.AE = AB^2$ (2)

Từ (1) và (2), suy ra $AD.AE = AH.AO$, suy ra $\dfrac{AH}{AD} = \dfrac{AE}{AO}$.

Xét tam giác AHE và tam giác EDO có $\angle DAO$ chung và $\dfrac{AH}{AD} = \dfrac{AE}{AO}$ nên $\Delta AHE \backsim \Delta ADO$, suy ra $\angle AHE = \angle ADO$, suy ra tứ giác $OHED$ nội tiếp.

Ví dụ 3.  Cho tam giác $ABC$ nhọn, đường cao $AH$. Gọi $D, E$ là hình chiếu vuông góc của $H $ trên $AB$ và $AC$. Chứng minh rằng: (a) $AD.AB = AE.AC$. (b) Tứ giác $BDEC$ là tứ giác nội tiếp.

Gợi ý

(a)  Tam giác $ABH$ vuông tại H có đường cao HD nên $AD.AB = AH^2$. (1)

Tam giác $ACH$ vuông tại H có đường cao $HE$ nên $AE.AC = AH^2$. (2)

Từ (1) và (2) suy ra $AD.AB = AE.AC$.

(b)  Từ $AD.AC = AE.AC \Rightarrow \dfrac{AD}{AC} = \dfrac{AE}{AB}$.

Xét tam giác $ADE$ và $ACB$ có $\angle BAC$ chung và $\dfrac{AD}{AC} = \dfrac{AE}{AB}$ nên $\Delta ADE \backsim \Delta ACB$, suy ra $\angle ADE  = \angle ACB$.

Tứ giác $BDEC$ có $\angle ADE = \angle ACB$ nên là tứ giác nội tiếp (góc ngoài bằng góc đối trong).

Ví dụ 4. Cho tam giác $ABC$, đường tròn tâm $I$ nội tiếp tam giác tiếp xúc với $AB, AC$ tại $D$ và $E$. Gọi $M$ là giao điểm của $BI$ và $DE$. Cho tam giác $ABC$, đường tròn tâm $I$ nội tiếp tam giác tiếp xúc với $AB, AC$ tại $D$ và $E$. Gọi $M$ là giao điểm của $BI$ và $DE$.  (a) Chứng minh $\angle AED = \dfrac{180^\circ-\angle A}{2}$. (b) Chứng minh 4 điểm $I, E, M, C$ cùng thuộc một đường tròn. (c) Gọi $N$ là giao điểm của $CI$ và $DE$. Chứng minh 4 điểm $B, N, M, C$ cùng thuộc một đường tròn.

Gợi ý

(a) Ta có $AD, AE$ là tiếp tuyến của $(I)$ nên $AD = AE$. Tam giác $ADE$ cân tại $A$, suy ra $\angle AED = \dfrac{180^\circ – \angle A}{2}$.

(b) Ta có $AD, AE$ là tiếp tuyến của $(I)$ nên $AD = AE$. Tam giác $ADE$ cân tại $A$, suy ra $\angle AED = \dfrac{180^\circ – \angle A}{2}$.

Ta có $\angle MIC = \angle IBC + \angle ICB = \dfrac{1}{2} (\angle B + \angle C) = \dfrac{180^\circ – \angle A}{2}$. (1)\\ Theo câu a ta có $\angle MEC = \angle AED = \dfrac{180^\circ – \angle A}{2}$. (2)

Từ (1) và (2), suy ra $\angle MIC = \angle MEC$, do đó tứ giác $IEMC$ nội tiếp.

(c) Tứ giác $IEMC$ nội tiếp suy ra $\angle IMC = \angle IEC = 90^\circ$.

Chứng minh tương tự ta có $\angle INC = 90^\circ$.

Tứ giác $BCMN$ có $\angle BMC = \angle BNC = 90^\circ$ nên là tứ giác nội tiếp.

Ví dụ 5. Cho tam giác ABC. Trên cạnh BC lấy các điểm D, E sao cho $\angle BAD = \angle CAE$. Gọi $M, N$ là hình chiếu vuông góc của $B$ trên $AD, AE$; $P, Q$ là hình chiếu vuông góc của C trên $AD, AE$. Chứng minh 4 điểm $M, N, P, Q$ cùng thuộc một đường tròn có tâm là trung điểm $BC$.

Gợi ý

Ta có tứ giác $ABMN$ nội tiếp, suy ra $\angle AMN = \angle ABN = 90^\circ – \angle BAE$.(1)

Tứ giác $ACPQ$ nội tiếp, suy ra $\angle APQ = \angle ACP = 90^\circ – \angle CAD$.(2)

Ta lại có $\angle DAB = \angle CAE $ nên $\angle BAE = \angle CAD$.(3)

Từ (1), (2) và (3) ta có $\angle AMN = \angle APQ$, suy ra tứ giác $MNPQ$ nội tiếp.

Gọi $I$ là trung điểm của $BC$, ta có $BM||CP$ nên đường thẳng $d$ qua $I$ song song với $BM$ đi qua trung điểm của $MP$ mà $BM \bot MP$ nên đường thẳng $d$ là trung trực của $MP$. Vậy $IM = IP$.

Tương tự ta cũng có $IN  = IQ$.

Hơn nữa tứ giác $MNPQ$ là tứ giác nội tiếp khác hình thang nên $I$ chính là tâm của đường tròn ngoại tiếp tứ giác.

Ví dụ 6. Cho tam giác $ABC$. Đường tròn đi qua hai đỉnh $B, C$ và cắt các cạnh $AB, AC$ tại $D$ và $E$. Gọi $M$ là giao điểm của $CD$ và $BE$. Gọi $P$ là điểm đối xứng của $M$ qua $AC$ và $Q$ lá điểm đối xứng của $M$ qua trung điểm cạnh $BC$. Chứng minh 4 điểm $A, C, P, Q$ cùng thuộc một đường tròn.

Gợi ý

Gọi $F$ là giao điểm của đường tròn ngoại tiếp tam giác $BMD$ và $AM$. Khi đó ta có $AM.AF = AD.AB = AE.AC$, suy ra $M$ thuộc đường tròn ngoại tiếp của tam giác $MCE$.

Ta có $\angle MFB = \angle ADM = \angle AEM = \angle AFC$ và $\angle FMB = \angle AME = \angle ACF$, suy ra $\Delta FBM \backsim \Delta FAC \Rightarrow \dfrac{BF}{AF} = \dfrac{BM}{AC}$.

Mà $BF = CQ$, suy ra $\dfrac{BF}{AF} = \dfrac{CQ}{AC} \Rightarrow \dfrac{BF}{CQ} = \dfrac{AF}{AC}$.

Xét tam giác $ABF$ và $ACQ$ có $\angle AFB = \angle ACQ$ (cùng bù với $\angle BDC$) và $\dfrac{BF}{CQ} = \dfrac{AF}{AC}$ nên $\Delta ABF \backsim \Delta ACQ$. Suy ra $\angle AQC = \angle ABF$.

Mặt khác $ABF = \angle CMF = 180^\circ – \angle AMC = 180^\circ – \angle APC$.

Nên $AQC = 180^\circ – \angle APC \Rightarrow \angle AQC + \angle APC = 180^\circ$, do đó tứ giác $APCQ$ là tứ giác nội tiếp.

Bài tập. 

  1. Cho tam giác ABC nhọn, đường cao AH. Gọi D, E là hình chiếu vuông góc của H trên AB và AC. Chứng minh rằng: Cho tam giác ABC nhọn, đường cao AH. Gọi D, E là hình chiếu vuông góc của H trên AB và AC. Chứng minh rằng: (a) $AD.AB = AE.AC$. (b) Tứ giác $BDEC$ là tứ giác nội tiếp. [Gợi ý]
  2. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$. Các đường cao $BD, CE$ cắt nhau tại $H$. $M$ là một điểm thuộc cung BC không chứa $A$. $AM$ cắt $DE$ tại $K$. Chứng minh rằng các tứ giác $BEKM, CDKM$ là các tứ giác nội tiếp. [Gợi ý]
  3. Cho tam giác $ABC$ vuông tại $A$, đường cao $AH$ và trung tuyến $BM$. Gọi $D$ là hình chiếu vuông góc vuông góc của $A$ trên $BM$. Chứng minh tứ giác $HDMC$ nội tiếp.[Gợi ý]
  4. Cho tam giác $ABC$ nhọn $(AB < AC)$ nội tiếp đường tròn $(O)$. Các đường cao $AD, BE, CF$ cắt nhau tại $H$. Gọi $M$ là trung điểm cạnh BC và $N$ là trung điểm đoạn thẳng CH.Cho tam giác $ABC$ nhọn $(AB < AC)$ nội tiếp đường tròn $(O)$. Các đường cao $AD, BE, CF$ cắt nhau tại $H$. Gọi $M$ là trung điểm cạnh BC và $N$ là trung điểm đoạn thẳng CH. (a) Chứng minh rằng 5 điểm $D, E, F, M, N$ cùng thuộc một đường tròn. (b) $EF$ cắt $BC$ tại $K$, $AK$ cắt $(O)$ tại $Q$. Chứng minh $AQFE, KQFB$ là các tứ giác nội tiếp. (c) Chứng minh 3 điểm $Q, H, M$ thẳng hàng.[Gợi ý]
  5. Hình bình hành $ABCD$ có góc tù $B$, gọi $O$ là giao điểm của hai đường chéo. Dựng $DE$ vuông góc $AC, DF$ vuông góc $AB, DG$ vuông góc $BC$. Chứng minh 4 điểm $O, E, G, F$ cùng thuộc một đường tròn. [Gợi ý]
  6. Cho hình chữ nhật ABCD. Gọi M là trung điểm cạnh BC, N là trung điểm cạnh CD. AM cắt BN tại E, BN cắt DM tại F và DM cắt AN tại G. Chứng minh rằng tứ giác AEPF nội tiếp. [Gợi ý]
  7. Cho tam giác $ABC$ nhọn nội tiếp đường tròn $(O)$ với $\angle A = 60^\circ$. Gọi $H$, $I$ lần lượt là trực tâm và tâm đường tròn nội tiếp của tam giác $ABC$. Chứng minh 5 điểm $B, C, H, I, O$ cùng thuộc một đường tròn. [Gợi ý]
  8. Cho tam giác $ABC$ nội tiếp đường tròn (O), vẽ đường kính $AD$. Đường thẳng $d$ vuông góc với $AD$ cắt $CD, BD$ tại $E$ và $F$. Chứng minh 4 điểm $B, C, E, F$ cùng thuộc một đường tròn. [Gợi ý]
  9. Cho tứ giác $ABCD$ nội tiếp đường tròn $O$ với $\angle A > 90^\circ$. Đường thẳng qua $A$ vuông góc $AB$ cắt $CD$ tại $E$; đường thẳng qua $A$ vuông góc $AD$ cắt $CB$ tại $F$. Gọi $P$ là điểm đối xứng của $A$ qua đường thẳng $EF$. Cho tứ giác $ABCD$ nội tiếp đường tròn $O$ với $\angle A > 90^\circ$. Đường thẳng qua $A$ vuông góc $AB$ cắt $CD$ tại $E$; đường thẳng qua $A$ vuông góc $AD$ cắt $CB$ tại $F$. Gọi $P$ là điểm đối xứng của $A$ qua đường thẳng $EF$. (a) Chứng minh rằng 4 điểm $E,F , C, P$ cùng thuộc một đường tròn. (b) Chứng minh $P$ thuộc $(O)$ và $E, O, F$ thẳng hàng. [Gợi ý]
  10. Cho tam giác $ABC$ với $AB < AC$. Phân giác trong góc $A$ và trung trực đoạn $BC$ cắt nhau tại $D$. Chứng minh rằng $ABDC$ là tứ giác nội tiếp. [Gợi ý]
  11. Cho tam giác $ABC$ vuông tại $A$ ($AB < AC$) nội tiếp đường tròn tâm $O$.Vẽ đường cao $AH$. Đường tròn đường kính $AH$ cắt $AB, AC$ tại $D$ và $E$ và cắt $(O)$ tại điểm $P$ khác $A$. $AP$ cắt $BC$ tại điểm $K$.Cho tam giác $ABC$ vuông tại $A$ ($AB < AC$) nội tiếp đường tròn tâm $O$.Vẽ đường cao $AH$. Đường tròn đường kính $AH$ cắt $AB, AC$ tại $D$ và $E$ và cắt $(O)$ tại điểm $P$ khác $A$. $AP$ cắt $BC$ tại điểm $K$. (a) Chứng minh các tứ giác $KPEC, KPDB$ nội tiếp. (b) Chứng minh $K, D, E$ thẳng hàng. [Gợi ý]
  12. Cho tam giác $ABC$. Đường tròn đi qua hai đỉnh $B, C$ và cắt các cạnh $AB, AC$ tại $D$ và $E$. Gọi $M$ là giao điểm của $CD$ và $BE$. Gọi $P$ là điểm đối xứng của $M$ qua $AC$ và $Q$ lá điểm đối xứng của $M$ qua trung điểm cạnh $BC$. Chứng minh 4 điểm $A, C, P, Q$ cùng thuộc một đường tròn.[Gợi ý]