Tag Archives: DeThi

Đề thi và đáp án thi vào lớp 10 TPHCM 2014

I. ĐỀ thi vào lớp 10 TPHCM 2014

Bài 1. Giải các phương trình và hệ phương trình sau:
a) $x^2-7x+12 = 0$
b) $x^2-(\sqrt{2}+1)x+\sqrt{2} = 0$
c) $x^4-9x^2+20=0$
d) $3x-2y=4$ và $ 4x-3y=5. $

Bài 2.
a) Vẽ đồ thị (P) của hàm số $y = x^2$ và đường thẳng $(D):y=2x+3$ trên cùng một hệ trục tọa độ.
b) Tìm tọa độ giao điểm của (P) và (D) ở câu trên bằng phép tính.
Bài 3. Thu gọn các biểu thức sau:
a) $A = \frac{{5 + \sqrt 5 }}{{\sqrt 5 + 2}} + \frac{{\sqrt 5 }}{{\sqrt 5 – 1}} – \frac{{3\sqrt 5 }}{{3 + \sqrt 5 }}$
b) $B = \left( {\frac{x}{{x + 3\sqrt x }} + \frac{1}{{\sqrt x + 3}}} \right):\left( {1 – \frac{2}{{\sqrt x }} + \frac{6}{{x + 3\sqrt x }}} \right)$ với $x > 0$.
Bài 4. Cho phương trình $x^2-mx-1=0$ (1) ($x$ là ẩn).

a) Chứng minh phương trình (1) luôn có hai nghiệm trái dấu.
b) Gọi $x_1, x_2$ là các nghiệm của phương trình (1). Tính giá trị của biểu thức $P = \dfrac{x_1^2+x_1-1}{x_1} – \dfrac{x_2^2+x_2-1}{x_2}$.
Bài 5. Cho tam giác $ABC$ có ba góc nhọn, nội tiếp đường tròn tâm $O$ $(AB < AC)$. Các đường cao $AD$ và $CF$ của tam giác $ABC$ cắt nhau tại $H$.
a) Chứng minh tứ giác $BFHD$ nội tiếp. Suy ra $\angle AHC = 180^o – \angle ABC$.
b) Gọi $M$ là điểm bất kì trên cung nhỏ $BC$ của đường tròn $(O)$. ($M$ khác $B$ và $C$) và $N$ là điểm đối xứng của $M$ qua $AC$. Chứng minh tứ giác $AHCN$ nội tiếp.
c) Gọi $I$ là giao điểm của $AM$ và $HC$. $J$ là giao điểm của $AC$ và $HN$. Chứng minh $\angle AJI = \angle ANC$.
d) Chứng minh rằng $OA$ vuông góc với $IJ$.

II. ĐÁP ÁN

Bài 1.
a) $x^2 – 7x +12 =0$
$\Delta =1 $
Hai nghiệm của phương trình là $x_1 = 3$; $x_2 =4$
b)  $x^2 – \left( \sqrt{2}+1 \right) + \sqrt{2} = 0 $
Phương trình có $a+b+c = 0$ nên hai nghiệm là $x_1=1$; $x_2 = \sqrt{2}$
c)  $x^4 – 9x^2 +20 =0$
Đặt $t= x^2 \ge 0$
Phương trình trở thành: $t^2 -9t +20 =0$
$\Delta =1 $
$t_1 =4$ (nhận) và $t_2 =5$ (nhận)
Với $t=4 \Rightarrow x= \pm 2$; với $t=5 \Rightarrow x= \pm \sqrt{5}$
d)  $3x-2y=4  (1) $ và $4x-3y =5  (2)$
$\Leftrightarrow  3x-2y=4  (1) $ và  $x= 2  (3\cdot (1) – 2 \cdot (2))$
$\Leftrightarrow  x=2$ và $y=1$.

Bài 2.
a) Đồ thị:

Lưu ý: $(P)$ đi qua $O(0;0)$, $( \pm 1 ;1)$, $\pm 2; 4 )$
$(D)$ đi qua $(-1;1)$, $(0;3)$
b) Phương trình hoành độ giao điểm của $(P)$ và $(D)$ là:
$x^2 = 2x+3 \Leftrightarrow x^2 -2x -3 =0$

$\Leftrightarrow  x = -1$ và $x= 3$
$y(-1) = 1$; $y(3) =9 $
Vậy tọa độ giao điểm của $(P)$ và $(D)$ là $(-1;1)$, $(3;9)$.
Bài 3.
a) $A= \dfrac{5+ \sqrt{5}}{\sqrt{5}+2} + \dfrac{\sqrt{5}}{\sqrt{5}-1}- \dfrac{3\sqrt{5}}{3+ \sqrt{5}} $
$= \dfrac{\left( 5+ \sqrt{5} \right) \left( \sqrt{5}-2 \right) }{1} + \dfrac{\sqrt{5}\left( \sqrt{5}+1 \right) }{4} – \dfrac{3\sqrt{5}\left( 3- \sqrt{5} \right) }{4} $
$= 3\sqrt{5}-5 + \dfrac{5+ \sqrt{5}-9\sqrt{5}+15}{4} $
$=3\sqrt{5}-5 + 5 -2\sqrt{5} = \sqrt{5}$.
b) $B=\left( \dfrac{x}{x+ 3\sqrt{x}}+ \dfrac{1}{\sqrt{x}+3} \right) : \left( 1- \dfrac{2}{\sqrt{x}} + \dfrac{6}{x+ 3\sqrt{x}} \right) \hspace{1.5cm} (x > 0) $
$= \left( \dfrac{\sqrt{x}}{\sqrt{x}+3} + \dfrac{1}{\sqrt{x}+3} \right) : \left( \dfrac{x+ 3\sqrt{x}- 2 \left( \sqrt{x} + 3 \right) + 6}{\sqrt{x} \left( \sqrt{x}+ 3 \right) } \right) $
$= \left( \dfrac{\sqrt{x}+ 1}{\sqrt{x} + 3} \right) : \left( \dfrac{\sqrt{x}+ 1}{\sqrt{x}+3} \right) =1$
Bài 4.

a) $x^2 – mx -1 =0$ $(1)$
$\Delta = m^2 + 4 >0$
Do đó phương trình luôn có hai nghiệm phân biệt với mọi $m$.
Theo Viet, ta có: $P = x_1 \cdot x_2 = \dfrac{c}{a} = -1 <0 $
Vậy phương trình luôn có hai nghiệm trái dấu.
b) Theo Viet, ta có:

$S= x_1 + x_2 = m $ và  $P = x_1 \cdot x_2 = -1$
$P = \dfrac{x_1^2 + x_1 -1}{x_1} – \dfrac{x_2^2 + x_2 -1}{x_2} $
$= \dfrac{x_1^2 + x_1 + x_1 x_2}{x_1} – \dfrac{x_2^2 + x_2 + x_1 x_2 }{x_2} $
$= x_1 + 1 + x_2 – x_2 -1 -x_1 =0$
Bài 5.


a) Ta có:
$\angle BFC = \angle BDA = 90^ \circ$ ($AD$, $CF$ là các đường cao)
$\Rightarrow \angle BFC + \angle BDA =180^ \circ \Rightarrow $ tứ giác $BFHD$ nội tiếp
$\Rightarrow \angle ABC + \angle DHF =180 ^\circ $
$\angle ABC + \angle AHC = 180 ^\circ $
$\angle AHC = 180 ^\circ – \angle ABC$.
b) Ta có $\angle AMC = \angle ABC$ ( cùng chắn cung $AC$)
$\angle AMC = \angle ANC$ (tính chất đối xứng)
$\Rightarrow \angle ANC = \angle ABC$
Mà $\angle AHC + \angle ABC = 180 ^\circ$
$\Rightarrow \angle AHC + \angle ANC = 180 ^\circ$
$\Rightarrow $ $AHCN$ nội tiếp.
c) Ta có $\angle MAC = \angle NAC$ ( tính chất đối xứng)
$\angle NAC = \angle NHC $ (cùng chắn cung $NC$)
$\Rightarrow \angle MAC = \angle NHC$ hay $\angle IAJ = \angle IHJ $
$\Rightarrow $ $AHIJ$ nội tiếp (2 đỉnh kề cùng nhìn cạnh dưới góc bằng nhau)
$\Rightarrow \angle AJI = 180 ^\circ \angle AHC = \angle ANC$.
d) Vẽ tiếp tuyến $xy$ của $(O)$ tại $A$ $\Rightarrow OA \bot xy$
$\angle AJI = \angle ANC = \angle AMC = \angle yAC \Rightarrow IJ // xy $
$\Rightarrow OA \bot IJ$.

Đề thi và đáp án thi vào lớp 10 TPHCM 2013

I. Đề thi vào lớp 10 TPHCM 2013

Bài 1. Giải các phương trình và hệ phương trình sau:
a) $x^2-5x+6 = 0$.
b) $x^2-2x-1=0$
c) $x^4+3x^2-4=0$
d) $2x-y=3$ và $ x+2y=-1 $

Bài 2.
a) Vẽ đồ thị (P) của hàm số $y = x^2$ và đường thẳng $(D): y = -x+2$ trên cùng một hệ trục tọa độ.
b) Tìm tọa độ các giao điểm của $(P)$ và $(D)$ ở câu trên bằng phép tính.
Bài 3. Thu gọn các biểu thức sau:
a) $A = \left( {\dfrac{{\sqrt x }}{{\sqrt x + 3}} + \dfrac{3}{{\sqrt x – 3}}} \right).\dfrac{{\sqrt x + 3}}{{x + 9}}$ với $x \ge 0,x \ne 9$
b) $B = 21{\left( {\sqrt {2 + \sqrt 3 } + \sqrt {3 – \sqrt 5 } } \right)^2} – 6{\left( {\sqrt {2 – \sqrt 3 } + \sqrt {3 + \sqrt 5 } } \right)^2} – 15\sqrt {15} $
Bài 4. Cho phương trình $8x^2-8x+m^2+1=0$ (1) ($x$ là ẩn số).

a) Định $m$ để phương trình (1) có nghiệm $x = \dfrac{1}{2}$.
b) Định $m$ để phương trình (1) có hai nghiệm $x_1, x_2$ thỏa điều kiện $x_1^4 -x_2^4 =x_1^3- x_2^3$.
Bài 5. Cho tam giác $ABC$ không có góc tù $(AB < AC)$, nội tiếp đường tròn $(O;R)$. $B, C$ cố định, $A$ di động trên cung lớn $BC$). Các tiếp tuyến tại $B$ và $C$ cắt nhau tại điểm $M$. Từ $M$ kẻ đường thẳng song song với $AB$, đường thẳng này cắt $(O)$ tại $D$ và $E$ ($D$ thuộc cung nhỏ $BC$), cắt $BC$ tại $F$, cắt $AC$ tại $I$.
a) Chứng minh $\angle MBC = \angle BAC$. Từ đó suy ra $MBIC$ nội tiếp.
b) Chứng minh $FI.FM = FD.FE$.
c) Đường thẳng $OI$ cắt $(O)$ tại $P$ và $Q$ với $P$ thuộc cung nhỏ $AB$. Đường thẳng $QF$ cắt $(O)$ tại $T$ khác $Q$. Chứng minh ba điểm $P, T, M$ thẳng hàng.
d) Tìm vị trí điểm $A$ trên cung lớn $BC$ sao cho tam giác $IBC$ có diện tích lớn nhất.

II. ĐÁP ÁN

Bài 1.
a) $x^2 – 5x+6=0$
$\Delta = 25-24 =1 $
$\Leftrightarrow  x=\dfrac{5-1}{2}=2 $ hoặc $x=\dfrac{5+1}{2} =3 $
b)  $x^2 -2x -1 =0 $
$\Delta ‘ = 1+1 =2 $
$\Leftrightarrow x= 1- \sqrt{2}  hoặc x=1+ \sqrt{2}  $
c) Đặt $u= x^2 \ge 0$ phương trình trở thành:
$u^2 +3u-4=0$

$\Leftrightarrow u=1  hoặc u=-4  (l)$
Do đó phương trình $\Leftrightarrow x^2 =1 \Leftrightarrow x= \pm 1 $
Cách khác:
Phương trình tương đương: $\left( x^2 -1 \right) \cdot \left( x^2 + 4 \right) =0$

$\Leftrightarrow x^2 -1 =0 \Leftrightarrow x= \pm 1$
d)  $2x-y=3  (1)$  và   $x+ 2y = -1  (2)$
$\Leftrightarrow  2x-y=3  (1) và   5x=5 (3)\left( (2)+2(1) \right) $
$\Leftrightarrow  x=1 $ và   $y=-1$.

Bài 2.
a) Đồ thị:

Lưu ý: $(P)$ đi qua $O(0;0)$, $( \pm 1 ;1)$, $( \pm 2; 4 )$
$(D)$ đi qua $(1;1)$, $(0;2)$
b) Phương trình hoành độ giao điểm của $(P)$ và $(D)$ là:
$x^2 = -x + 2 \Leftrightarrow x^2 +x-2=0 $

$\Leftrightarrow  x=1 hoặc x=-2$
$y(1) = 1$, $y(-2)=4$
Vậy tọa độ giao điểm của $(P)$ và $(D)$ là $(-2;4)$, $(1;1)$.
Bài 3. Thu gọn các biểu thức sau:
a) Với $x \ge 0;  x\ne 9$
$A=\left( \dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{3}{\sqrt{x}-3} \right) \cdot \dfrac{\sqrt{x}+3}{x+9}$
$A= \dfrac{x-3\sqrt{x}+3\sqrt{x}+9}{\left( \sqrt{x}+3 \right) \cdot \left( \sqrt{x}-3 \right) } \cdot \dfrac{\sqrt{x}+3}{x+9} $
$=\dfrac{1}{\sqrt{x}-3}$

b) $B=21 \left( \sqrt{2+ \sqrt{3}} + \sqrt{3- \sqrt{5}} \right) ^2 -6 \left( \sqrt{2-\sqrt{3}} + \sqrt{3+\sqrt{5}} \right) ^2 -15\sqrt{15}$
$= \dfrac{21}{2}\left( \sqrt{4+2\sqrt{3}} + \sqrt{6-2\sqrt{5}} \right) ^2 -3 \left( \sqrt{4-2\sqrt{3}} + \sqrt{6+2\sqrt{5}} \right) ^2 – 15\sqrt{15} $
$=\dfrac{21}{2} \left( \sqrt{3}+1+\sqrt{5}-1 \right) ^2 -3 \left( \sqrt{3} -1 + \sqrt{5}+1 \right) ^2 – 15\sqrt{15} $
$= \dfrac{15}{2}\left( \sqrt{3}+\sqrt{5}\right) ^2 – 15 \sqrt{15}=60$
Bài 4.

a) Phương trình (*) có nghiệm $x=\dfrac{1}{2} \Leftrightarrow 2-4+m^2+1=0$

$\Leftrightarrow m^2=1 \Leftrightarrow m= \pm 1$
b) $\Delta ‘ = 16-8m^2 -8 = 8 \left( 1-m^2 \right) $
Khi $m= \pm 1$ thì ta có $\Delta ‘ =0 $ tức là: $x_1=x_2$ khi đó $x_1^4 – x_2^4 = x_1^3 -x_2^3$ (thỏa điều kiện).
Để phương trình có hai nghiệm phân biệt thì $m^2 <1 \Leftrightarrow -1 < m < 1$.
Khi đó ta có:
$x_1^4 – x_2^4 = x_1^3-x_2^3 $

$\Leftrightarrow \left( x_1^2 -x_2 ^2 \right) \left( x_1 ^2 + x_2 ^2 \right) = \left( x_1 -x_2 \right) \left( x_1 ^2 + x_2 ^2 +x_1 x_2 \right) $

$\Leftrightarrow \left( x_1 + x_2 \right) \left( x_1 ^2 + x_2 ^2 \right) = \left( x_1 ^2 + x_2 ^2 + x_1 x_2 \right) \;\; \left( \text{Do } x_1 \text{ khác } x_2 \right) $
$\Leftrightarrow \left( x_1 + x_2 \right) \left[ \left( x_1 + x_2 \right) ^2 – 2x_1 x_2 \right] = \left( x_1 + x_2 \right) ^2 – x_1 x_2 $
$\Leftrightarrow S\left( S^2 -2P \right) = S^2 – P $
$\Leftrightarrow 1 \left( 1^2 -2P \right) = 1^2 – P  \left( Vì  S=1 \right) $
$\Leftrightarrow P=0 \Leftrightarrow m^2 + 1 =0  (VN)$

Vậy $m= \pm 1 $
Cách khác
Khi $\Delta \ge 0$ ta có:
$x_1 + x_2 =1$ và $x_1 x_2 =\dfrac{m^2+1}{8}$
$x_1 ^4 – x_2 ^4 = x_1 ^3 – x_2 ^3 \Leftrightarrow x_1 ^3 \cdot \left( x_1 -1 \right) – x_2 ^3 \left( x_2 -1 \right) =0 $
$\Leftrightarrow -x_1 ^3x_2 + x_1 x_2 ^3 =0 \;\; \left( \text{thế } x_1 -1 = -x_2 \text{ và } x_2 -1 = – x_1 \right) $
$\Leftrightarrow x_1 x_2 \left( x_1 ^2 – x_2 ^2 \right) =0$
$\Leftrightarrow \left( x_1 + x_2 \right) \left( x_1 – x_2 \right) =0 \;\; \left( \text{vì } x_1 x_2 \ne 0 \right)$
$\Leftrightarrow x_1 = x_2 \;\; \left( \text{vì } x_1 + x_2 =1 \ne 0 \right) $
$\Leftrightarrow m= \pm 1$
Bài 5.


a) Ta có $\angle BAC = \angle MBC$ do cùng chắn cung $BC$
Và $\angle BAC = \angle MIC$ do $AB // MI$
Vậy $\angle MBC = \angle MIC$, nên bốn điểm $I$, $C$, $M$, $B$ cùng nằm trên đường tròn đường kính $OM$. (vì 2 điểm $B$, $C$ cùng nhìn $OM$ dưới một góc vuông)
b) Do 2 tam giác $FBD$ và $FEC$ đồng dạng nên $FB \cdot FC = FE \cdot FD$.
Và 2 tam giác $FBM$ và $FIC$ đồng dạng nên $FB \cdot FC = FI \cdot FM $.
Từ đó suy ra: $FI \cdot FM = FD \cdot FE$
c) Ta có $\angle PTQ = 90^ \circ$
$\triangle FIQ \backsim \triangle FTM$ ($\angle IFQ = \angle TFM$ và $\dfrac{FI}{FQ}= \dfrac{FT}{FM}$ vì $FI\cdot FM = FD \cdot FE = FT \cdot FQ$)
Nên $\angle FIQ = \angle FTM$ mà $\angle FIQ = \angle OIM = 90^ \circ $
Do đo $P$, $T$, $M$ thẳng hàng.
d) Ta có $BC$ không đổi nên $S_{IBC}$ lớn nhất khi và chỉ khi khoảng cách từ $I$ đến $BC$ lớn nhất.
Do đo $I$ trùng với $O$ thỏa yêu cầu bài toán vì $I$ nằm trên cung $BC$ của đường tròn đường kính $OM$. Khi $I$ trùng $O$ thì $\triangle ABC$ vuông tại $B$.
Vậy diện tích tam giác $IBC$ lớn nhất khi và chỉ khi $AC$ là đường kính của đường tròn $(O;R)$.

 

Đề thi và đáp án tuyển sinh vào lớp 10 TPHCM 2012

I. ĐỀ

Bài 1. Giải các phương trình và hệ phương trình sau:
a) $2x^2-x-3=0$
b) $ 2x-3y=7$ và $3x+2y=4 $
c) $x^4+x^2-12=0$
d) $x^2-2\sqrt{2}x-7=0$.

Bài 2.
a) Vẽ đồ thị $(P)$ của hàm số $y = \dfrac{1}{4}x^2$ và đường thẳng $(D): y =-\dfrac{1}{2}x + 2$ trên cùng một hệ trục tọa độ.
b) Tìm tọa độ giao điểm của $(P)$ và $(D)$ ở câu trên bằng phép tính.
Bài 3. Thu gọn các biểu thức sau:
a) $A = \dfrac{1}{{x + \sqrt x }} + \dfrac{{2\sqrt x }}{{x – 1}} – \dfrac{1}{{x – \sqrt x }}$ với $x > 0,x \ne 1$
b) $B = \left( {2 – \sqrt 3 } \right)\sqrt {26 + 15\sqrt 3 } – \left( {2 + \sqrt 3 } \right)\sqrt {26 – 15\sqrt 3 } $.
Bài 4. Cho phương trình $x^2-2mx+m-2=0$. ($x$ là ẩn số).

a) Chứng minh phương trình luôn có 2 nghiệm phân biệt với mọi $m$.
b) Gọi $x_1, x_2$ là các nghiệm của phương trình. Tìm $m$ để biểu thức $M = \dfrac{-24}{x_1^2+x_2^2-6x_1x_2}$ đạt giá trị nhỏ nhất.
Bài 5. Cho đường tròn $(O)$ có tâm $O$ và điểm $M$ nằm ngoài đường tròn $(O)$. Đường thẳng $MO$ cắt $(O)$ tại $E$ và $F$ (ME < MF). Vẽ cát tuyến MAB và tiếp tuyến $MC$ của $(O)$ ($C$ là tiếp điểm, $A$ nằm giữa hai điểm $M$ và $B$, $A$ và $C$ nằm khác phía đối với đường thẳng $MO$.
a) Chứng minh $MA.MB = ME.MF$.
b) Gọi $H$ là hình chiếu vuông góc của điểm $C$ lên đường thẳng $MO$. Chứng minh tứ giác $AHOB$ nội tiếp.
c) Trên nửa mặt phẳng bờ $OM$ có chứa điểm $A$, vẽ nửa đường tròn đường kính $MF$; nửa đường tròn này cắt tiếp tuyến tại $E$ của $(O)$ ở $K$. Gọi $S$ là giao điểm của hai đường thẳng $CO$ và $KF$. Chứng minh rằng đường thẳng $MS$ vuông góc với đường thẳng $KC$.
d) Gọi $P, Q$ lần lượt là tâm đường tròn ngoại tiếp các tam giác $EFS$ và $ABS$ và $T$ là trung điểm của $KS$. Chứng minh ba điểm $P, Q, T$ thẳng hàng.

II. ĐÁP ÁN

Bài 1.
a) $2x^2-x-3=0$ (a)
Vì phương trình (a) có $a-b+c=0$ nên
$(a) \Leftrightarrow x=-1$ hoặc $x=\dfrac{3}{2}$
b)
$2x-3y=7  (1)$  và
$3x+2y =4  (2)$
$\Leftrightarrow   2x-3y=7 (1)  và  $x+5y =-3  (3)  ((2)-(1))
$ \Leftrightarrow  -13y=13  ((1)-2(3))$  và  $x+5y=-3  (3)$
$\Leftrightarrow  y=-1$  và  $x=2$
c)  $x^4 + x^2 -12 =0$ $(c)$

Đặt $u= x^2 \ge 0$, phương trình trở thành: $u^2 + u -12 =0$ $(1)$
$(1)$ có $\Delta =49$ nên $(1) \Leftrightarrow u= \dfrac{-1+7}{2}=3$ hoặc $u=\dfrac{-1-7}{2}=-4$ (loại)
Do đó, $(c) \Leftrightarrow x^2=3 \Leftrightarrow x= \pm \sqrt{3}$
Cách khác:
$(c) \Leftrightarrow \left( x^2-3 \right) \left( x^2 +4 \right) =0 $

$\Leftrightarrow x^2 =3$

$\Leftrightarrow x = \pm \sqrt{3}$
d) $x^2 – 2\sqrt{2}-7=0$ (d)
$\Delta ‘ = 2+7=9$ do đó $(d) \Leftrightarrow x=\sqrt{2} \pm 3$.

Bài 2.
a) Đồ thị:

Lưu ý: $(P)$ đi qua $O(0;0)$, $( \pm 2 ;1)$, $(\pm 4; 4 )$
$(D)$ đi qua $(-4;4)$, $(2;1)$
b) Phương trình hoành độ giao điểm của $(P)$ và $(D)$ là:
$\dfrac{1}{4}x^2 = \dfrac{-1}{2}x+2 \Leftrightarrow x^2 +2x-8 =0 $

$\Leftrightarrow x=-4$ hoặc $x=2$
$y(-4) = 4,  y(2) =1$
Vậy tọa độ giao điểm của $(P)$ và $(D)$ là $(-4;4)$, $(2;1)$.
Bài 3.
a) $A= \dfrac{1}{x+\sqrt{x}}+ \dfrac{2\sqrt{x}}{x-1} – \dfrac{1}{x-\sqrt{x}}= \dfrac{x-\sqrt{x}-x-\sqrt{x}}{x^2-x}+ \dfrac{2\sqrt{x}}{x-1} $
$= \dfrac{-2\sqrt{x}}{x(x-1)}+\dfrac{2\sqrt{x}}{x-1}=\dfrac{2\sqrt{x}}{x-1} \left[- \dfrac{1}{x} +1 \right] = \dfrac{2\sqrt{x}(x-1)}{x(x-1)}=\dfrac{2}{\sqrt{x}}$ với $x>0$; $x\ne 1$
b) $B= \left( 2-\sqrt{3} \right) \sqrt{26+15\sqrt{3}}-\left( 2+\sqrt{3} \right) \sqrt{26-15\sqrt{3}}$
$= \dfrac{1}{\sqrt{2}}\left( 2-\sqrt{3} \right) \sqrt{52+30\sqrt{3}}-\dfrac{1}{\sqrt{2}}\left( 2+\sqrt{3} \right) \sqrt{52-30\sqrt{3}}$
$= \dfrac{1}{\sqrt{2}} \left( 2-\sqrt{3} \right) \sqrt{\left( 3\sqrt{3} + 5 \right)^2 } – \dfrac{1}{\sqrt{2}} \left( 2+\sqrt{3} \right) \sqrt{\left( 3\sqrt{3} – 5 \right)^2 }$
$= \dfrac{1}{\sqrt{2}} \left( 2-\sqrt{3} \right) \left( 3\sqrt{3} + 5 \right) – \dfrac{1}{\sqrt{2}} \left( 2+\sqrt{3} \right) \left( 3\sqrt{3} – 5 \right) $
$=\sqrt{2}$
Bài 4.

a) Phương trình (1) có:

$\Delta’ =m^2-m+2 = \left( m-\dfrac{1}{2} \right) ^2 + \dfrac{7}{4} >0 $ với mọi $m$ nên phương trình (1) có 2 nghiệm phân biệt với mọi $m$.
b) Do đó, theo Viet, với mọi $m$, ta có: $S=-\dfrac{b}{a} = 2m$; $P=\dfrac{c}{a}= m-2$
$M=\dfrac{-24}{\left( x_1+x_2 \right) ^2-8x_1x_2 } = \dfrac{-24}{4m^2-8m+16}= \dfrac{-6}{m^2-2m+4} = \dfrac{6}{(m-1)^2 + 3}$
Khi $m=1$ ta có $(m-1)^2 + 3$ nhỏ nhất
$\Rightarrow -M = \dfrac{6}{(m-1)^2+3}$ lớn nhất khi $m=1 $
$\Rightarrow M = \dfrac{-6}{(m-1)^2+3}$ nhỏ nhất khi $m=1$.
Vậy $M$ đạt giá trị nhỏ nhất là $-2$ khi $m=1$.
Bài 5.


a) Ta có $\angle MAE = \angle MFB$ (do $EFBA$ nội tiếp)
$\angle EMA = \angle BMF$
$\Rightarrow \triangle MEA \backsim \triangle MBF$
$\Rightarrow \dfrac{ME}{MB}= \dfrac{MA}{MF} \Rightarrow MA \cdot MB = ME \cdot MF $
b) Ta có $\triangle MCO$ vuông tại $C$, $CH$ là đường cao
$\Rightarrow MC^2 = MH \cdot MO$
$\triangle MAC \backsim \triangle MCB  (g-g) $
$\Rightarrow MC^2 = MA \cdot MB$
Do đó $MA \cdot MB = MH \cdot MO$
$\Rightarrow \dfrac{MA}{MO} = \dfrac{MH}{MB}$
mà $\angle AMH = \angle OMB $
$\Rightarrow \triangle AMH \backsim \triangle OMB $
$\Rightarrow \angle MAH = \angle MOB $
$\Rightarrow $ $AHOB$ nội tiếp
c) $\triangle MKF$ vuông tại $K$ có $KE$ là đường cao nên $MK^2 = ME \cdot MF$
Mà $MC^2 = MA \cdot MB = ME \cdot MF $
$\Rightarrow MK = MC$ (1)
Hai tam giác vuông $MKS$ và $MCS$ bằng nhau (cạnh huyền – cạnh góc vuông)
$\Rightarrow SK = SC$ (2)
Từ (1) và (2) $\Rightarrow$ $MS$ là trung trực của $KC$ $\Rightarrow MS \bot KC$
\item Gọi $I$ là giao điểm của $MS$ và $KC$
$\triangle MCS$ vuông tại $C$, $CI$ là đường cao nên $MC^2 = MI \cdot MS$
Mà $MC^2 = MA \cdot MB \Rightarrow MI \cdot MS = MA \cdot MB$
$\Rightarrow \dfrac{MA}{MS} = \dfrac{MI}{MB}$
$\angle AMI = \angle SMB \Rightarrow \triangle MAI \backsim \triangle MSB \Rightarrow \angle MIA = \angle MBS $
$\Rightarrow $ $ABSI$ nội tiếp (3)
$MI \cdot MS = MA \cdot MB = ME \cdot MF \Rightarrow \dfrac{ ME}{MS} = \dfrac{MI}{MF}$
Mà $\angle EMI = \angle SMF \Rightarrow \triangle MEI \backsim \triangle MSF $

$\Rightarrow \angle MEI = \angle MSF $
$\Rightarrow $ $EFSI$ nội tiếp (4)
Từ (3) và (4) suy ra hai đường tròn $(EFS)$ và $(ABS)$ cắt nhau tại $S$ và $I$
Mà $P$ và $Q$ là các tâm của hai đường tròn này
$\Rightarrow $ $PQ$ là trung trực của $SI$
$\triangle KIS$ vuông tại $I$ có $T$ là trung điểm của $KS$
$\Rightarrow TI = TS$
$\Rightarrow $ $T$ thuộc đường thẳng $PQ$.

 

Đáp án đề học kì môn toán 11 – PTNK năm học 2019 – 2020

Bài 1.

a) $\sin 3 x-\sqrt{3} \cos 3 x=2\left(\cos ^{2} x-\sin ^{2} x\right)$

b) $\dfrac{\sin 2 x+2 \sin 2 x \cos 4 x}{\cos 3 x}=1$

Bài 2.

a) Từ các chữ số 0,1,2,3,4,5,6,7,8 có bao nhiêu số tự nhiên có 4 chữ số khác nhau mà có đúng 1 chữ số lẻ?

b) Lớp X có 30hs trong đó có 3 bạn Mai, An, Bình. Để tham gia trò chơi kéo có cần 10 học sinh. Tính xác suất để trong 10 học sinh được chọn có ít nhất 2 trong 3 bạn Mai, An và Bình nói trên.

Bài 3.  Cho số tự nhiên $n$ thỏa $A_{n}^{2}+3 C_{n+1}^{n}=38 .$ Tìm số hạng chứa $x^{5}$ trong khai triển $\left(\sqrt{x}-3 x^{3}\right)^{n}$

Bài 4. Cho cấp số cộng $u_{n}$ với công sai $d$ thỏa điều kiện:

$$
\left\{\begin{array}{l}
S_{20}-S_{15}=500 \\
u_{20}-u_{15}=75
\end{array} \right.$$

$S_{n}=u_{1}+u_{2}+\ldots+u_{n} $. Tìm $u_{1}, d$.

Bài 5. Trong mặt phẳng $O x y,$ cho các đường thẳng $d_{1}: 3 x-6 y-15=0$ và $d: y=x$. Gọi $d_{2}$ là ảnh của $d_{1}$ qua phép đối xứng trục $d$. Tìm tọa độ giao điểm của $d_{2}$ với trục tung.

Bài 6. Cho hình chóp $S . A B C D$ có đáy là hình bình hành tâm $O, M, N$ lần lượt là trung điểm $S A, C D$.

a) Tìm giao tuyến của măt phẳng $(S A C)$ và $(S B D) ;(S A D)$ và $(S B N)$.

b) Gọi $G$ là trọng tâm tam giác $A C D, K$ là trọng tâm tam giác $S B D$. Chứng minh: $G K |(S A D) . B K$ cắt $S D$ tại $I$. Chứng minh $I$ thuộc mặt phẳng $(O M N)$

c) Chứng minh: $SB \parallel (O M N)$ và tìm giao điểm của mặt phẳng $(A N K)$ với $S B$.

Lời giải

Bài 1.

a) $\sin 3 x-\sqrt{3} \cos 3 x=2\left(\cos ^{2} x-\sin ^{2} x\right)$
$\Leftrightarrow \dfrac{1}{2} \sin 3 x-\dfrac{\sqrt{3}}{2} \cos 3 x=\cos 2 x$
$\Leftrightarrow \cos \left(3 x+\dfrac{\pi}{6}\right)=\cos (2 x+\pi)$
$\Leftrightarrow\left[\begin{array}{c}x=\dfrac{5 \pi}{6}+k 2 \pi \ x=-\dfrac{7 \pi}{6}+\frac{k 2 \pi}{5}\end{array}(k \in \mathbb{Z}\right.$
b) $\dfrac{\sin 2 x+2 \sin 2 x \cos 4 x}{\cos 3 x}=1$
Điều kiện: $x \neq \dfrac{\pi}{6}+\dfrac{k \pi}{3}$
$\Leftrightarrow \sin 2 x+\sin 6 x-\sin 2 x=\cos 3 x$
$\Leftrightarrow \cos \left(\dfrac{\pi}{2}-6 x\right)=\cos 3 x$
$\Leftrightarrow\left[\begin{array}{l}x=\dfrac{\pi}{18}-\frac{k 2 \pi}{9} \ x=\dfrac{\pi}{6}-\dfrac{k 2 \pi}{3}\end{array}(k \in \mathbb{Z})\right.$
So sánh với điều kiện, ta được hoăc $\dfrac{5 \pi}{18}+\dfrac{k 2 \pi}{3}$

Bài 2. 

$\quad$ a) Từ các chữ số 0,1,2,3,4,5,6,7,8 có bao nhiêu số tự nhiên có 4 chữ số khác nhau mà có đúng 1 chữ số lẻ? Gọi số cần tìm: $\overline{a b c d}$ +TH1: a là số lẻ, có 4 cách Ta có: $4 \times A_{5}^{3}$
+TH2: a là số chãn, có 4 cách Ta chọn ra 1 số lẻ rồi xếp vào 3 vị trí còn lại: $4 \times 3$ Nên có: $4 \times 4 \times 3 \times A_{4}^{2}$
Do đó, có tất cả: 816 số.
b) Lớp X có 30hs trong đó có 3 bạn Mai, An, Bình. Để tham gia trò chơi kéo có cần 10 học sinh. Tính xác suất để trong 10 học sinh được chọn có ít nhất 2 trong 3 bạn Mai, An và Bình nói trên. Không gian mẫu: $|\Omega|=C_{30}^{10}$ Xác suất để trong 10 học sinh được chọn có ít nhất 2 trong 3 bạn Mai, An và Bình là: $P=\dfrac{C_{27}^{7}+3 C_{27}^{8}}{C_{30}^{10}}=\dfrac{51}{203}$.

Bài 3. 

Cho số tự nhiên $n$ thỏa $A_{n}^{2}+3 C_{n+1}^{n}=38 .$ Tìm số hạng chứa $x^{5}$ trong khai triển $\left(\sqrt{x}-3 x^{3}\right)^{n}$
Ta có: $A_{n}^{2}+3 C_{n+1}^{n}=38$
$\Leftrightarrow \dfrac{n !}{(n-2) !}+3 \cdot \dfrac{(n+1) !}{n !}=38$
$\Rightarrow n=5$
Nên $\left(\sqrt{x}-3 x^{3}\right)^{5}$ có $\mathrm{SHTQ}: C_{5}^{k}(-3)^{k} \cdot x^{\frac{5}{2}}(k+1)$
Theo ycbt ta được: $k=1$. Do đó, số hạng chứa $x^{5}$ là $-15 x^{5}$

Bài 4.
$$
\left\{\begin{array}{l}
S_{20}-S_{15}=500 \\
u_{20}-u_{15}=75
\end{array} \right.$$
Từ phương trình ( 2 ) ta được: $d=15$, thế vào ta được $u_{1}=-155$.
Bài 5. Trong mặt phẳng $O x y,$ cho các đường thẳng $d_{1}: 3 x-6 y-15=0$ và $d: y=x$. Gọi $d_{2}$ là ảnh của $d_{1}$ qua phép đối xứng trục $d$. Tìm tọa độ giao điểm của $d_{2}$ với trục tung. Gọi $M^{\prime}\left(x^{\prime} ; y^{\prime}\right)$ là ảnh của $M(x ; y) \in d_{1}$ qua phép đối xứng trục $d$. Ta có: $\left\{\begin{array}{l}x^{\prime}=y \\ y^{\prime}=x\end{array}\right.$
Nên ta có $d_{2}: 3 y^{\prime}-6 x^{\prime}-15=0$ hay $2 x-y+5=0$
Vậy giao điểm của $d_{2}$ và trục tung là $A(0 ; 5)$

Bài 6. 

a) $+(S A C) \cap(S B D)=S O$
$+$ Gọi $B N \cap A D=E .(S A D) \cap(S B N)=S E$
b) Ta có: $\dfrac{O G}{O D}=\dfrac{O K}{S}=\frac{1}{3}$
$\Leftrightarrow D K | S D$
Nên $G K |(S A D)$
Ta có: $K$ là trọng tâm tam giác $S B D$ nên $I$ là trung điểm $S D \Rightarrow M I | A D$. Ta lại có: $(M N O) \cap(S A D)=M x|A D| O N$.
Do đó: $I \in M x$ nên $I \in(O M N)$.
c) Gọi $F=O N \cap A B,$ ta được $F$ là trung điểm $A B$. $\Rightarrow M F | S B$
$\Rightarrow S B |(O M N)$
$+$ Ta thấy $(A K N) \cap(S B D)=K G$
Gọi $T=K G \cap S B$
Do đó: $T=S B \cap(A K N)$.

Giải nhanh đề học kì 1 gửi đến các em học sinh,  cảm ơn thầy Dương Trọng Đức đã đóng góp cho geosiro.com

LOP 11 PTNK_HK1

Đề và đáp án ôn thi học kì 1 – Toán 8

Thời gian trôi qua rất nhanh, mới ngày nào bước vào năm học giờ đã chuẩn bị thi học kì một. Trong giai đoạn ôn thi căng thẳng này, các em cần phải chú một số điều sau đây:

  • Tổng hợp các kiến thức đã học, làm lại các dạng bài tập thầy cô hay ra.
  • Chỗ nào hổng phải hỏi bạn, hỏi thầy để được khắc phục ngay lập tức.
  • Rủ các bạn học chung để đạt hiệu quả cao nhất.
  • Giải các đề ôn tập là một trong những việc quan trọng giúp hệ thống kiến thức và rèn luyện trình bày bài toán, ngoài ra còn phải canh thời gian để làm kịp giờ.

Để giúp các em ôn thi tốt các Giáo viên trẻ của Star Education có chọn lựa và giải một số đề toán ôn thi học kì một. Chúc các em thành công.

Link Download

STAR_L8_ON-TAP_1920 (1) (Phiên bản V1.1 – sẽ update chỉnh sửa sau)

Đề và lời giải thi chọn đội tuyển Toán PTNK năm 2019

Chúc mừng trường Phổ thông Năng khiếu đã thành lập được đội tuyển toán, gồm 4 bạn lớp 12 và 6 bạn lớp 11. Tất cả các bạn vào đội tuyển đều rất xứng đáng, có một vài trường hợp hơi tiếc, hy vọng các em vẫn còn đam mê để bức phá ở thời gian sau.

Hoàng Sơn 10 Toán đã có một ngày thi thứ nhất rất xuất sắc nhưng chưa đủ giúp em vào đội tuyển, hy vọng năm sau em sẽ tỏa sáng.

Đề vào lời giải