Bài 1. Giải phương trình:
$\sqrt{8 x+1}+\sqrt{46-10 x}=-x^{3}+5 x^{2}+4 x+1$
Bài 2. Cho đa thức $f(x)=a x^{3}+b x^{2}+c x+d$ với $a$ là số nguyên dương, biết $f(5)-$ $f(4)=$ 2012. Chứng minh rằng: $f(7)-f(2)$ là hợp số.
Bài 3. Cho ba số dương $a, b, c$ thỏa $a+b+c=1$. Tìm giá trị nhỏ nhất của biểu thức:
$A=14\left(a^{2}+b^{2}+c^{2}\right)+\frac{a b+b c+c a}{a^{2} b+b^{2} c+c^{2} a}$
Bài 4. Cho tứ giác $A B C D$ nội tiếp đường tròn $(O, R)$ có $A C$ vuông góc với $B D$ tại $H$. Trên cạnh $A B$ lấy điểm $M$ sao cho $A B=3 A M$. Trên cạnh $H C$ lấy trung điểm $N$. Chứng minh rằng $M H$ vuông góc với $D N$.
Bài 5. Cho đường tròn tâm $O$ và đường tròn tâm $I$ cắt nhau tại hai điểm $A$ và $B(O$ và $I$ nằm khác phía đối với đường thẳng $A B), I B$ cắt $(O)$ tại $E, O B$ cắt $(I)$ tại $F$. Qua $B$ vẽ đường thẳng $M N$ song song với $E F(M$ thuộc $(O), N$ thuộc $(I)$ ).
(a) Chứng minh rằng $O A I E$ nội tiếp.
(b) Chứng minh rằng: $A E+A F=M N$.
Bài 6. Trên mặt phẳng cho 2013 điểm tùy ý sao cho trong ba điểm bất kì thì tồn tại 2 điểm mà khoảng cách giữa hai điểm đó luôn bé hơn 1. Chứng minh rằng tồn tại một đường tròn có bán kính bằng 1 chứa ít nhất 1007 điểm (kế cả biên).
LỜI GIẢI
Bài 1. Giải phương trình:
$\sqrt{8 x+1}+\sqrt{46-10 x}=-x^{3}+5 x^{2}+4 x+1$
Lời giải. $\sqrt{8 x+1}+\sqrt{46-10 x}=-x^{3}+5 x^{2}+4 x+1$
ĐKХĐ: $\frac{-1}{8} \leq x \leq \frac{23}{5}$
Sử dụng lượng liên hợp, phương trình ban đầu tương đương với:
$\sqrt{8 x+1}-3+\sqrt{46-10 x}-6+x^{3}-x^{2}-4 x^{2}+4 x-8 x+8=0$
$\Leftrightarrow(x-1)\left(\frac{8}{\sqrt{8 x+1}+3}-\frac{10}{\sqrt{46-10 x}+6}+x^{2}-4 x-8\right)=0$
Từ đó ta có phương trình có một nghiệm là $x=1$. Xét biểu thức:
$\frac{8}{\sqrt{8 x+1}+3}-\frac{10}{\sqrt{46-10 x}+6}+x^{2}-4 x-8=0$
Từ điều kiện ta có:
$-1<x<5 \Leftrightarrow(x+1)(x-5)<0 \Leftrightarrow x^{2}-4 x-5<0$
Lại có: $\frac{8}{\sqrt{8 x+1}+3} \leq \frac{8}{3}<\frac{9}{3}=3 \Leftrightarrow \frac{8}{\sqrt{8 x+1}+3}-3<0$ Từ đó ta có:
$\frac{8}{\sqrt{8 x+1}+3}-\frac{10}{\sqrt{46-10 x}+6}+x^{2}-4 x-8<0$
Vậy phương trình đã cho có nghiệm duy nhất là: $x=1$
Bài 2. Cho đa thức $f(x)=a x^{3}+b x^{2}+c x+d$ với $a$ là số nguyên dương, biết $f(5)-$ $f(4)=2012$. Chứng minh rằng: $f(7)-f(2)$ là hợp số.
Lời giải. Ta có: $f(x)=a x^{3}+b x^{2}+c x+d$
Từ đó ta tính được: $f(5)=125 a+25 b+5 c+d, f(4)=64 a+16 b+4 c+d$
Vậy: $f(5)-f(4)=61 a+9 b+c=2012, f(7)=343 a+49 b+7 c+d, f(2)=8 a+4 b+$ $2 c+d$
Vậy: $f(7)-f(2)=335 a+45 b+5 c=5(67 a+9 b+c)=30 a+5(61 a+9 b+c)=30 a+$ 10060
Từ đó ta có: $f(7)-f(2)$ là hợp số vì $a$ là số nguyên dương và nó chia hết cho $2,5,10$.
Bài 3. Cho ba số dương $a, b, c$ thỏa $a+b+c=1$. Tìm giá trị nhỏ nhât của biểu thức:
$A=14\left(a^{2}+b^{2}+c^{2}\right)+\frac{a b+b c+c a}{a^{2} b+b^{2} c+c^{2} a}$
Lời giải.
Cách 1:
$\left(a^{2}+b^{2}+c^{2}\right)(a+b+c)=a^{3}+b^{3}+c^{3}+\left(a^{2} b+b^{2} c+c^{2} a\right)+\left(b^{2} a+a^{2} c+c^{2} b\right) $
$\left(a^{2}+b^{2}+c^{2}\right)(a+b+c)=\left(a^{3}+a b^{2}\right)+\left(b^{3}+b c^{2}\right)+\left(c^{3}+c a^{2}\right)+\left(a^{2} b+b^{2} c+c^{2} a\right)$
Áp dụng bất đẳng thức Cauchy và do $a+b+c=1$, ta có:
$\left(a^{2}+b^{2}+c^{2}\right) \geq 2 a^{2} b+2 b^{2} c+2 c^{2} a+\left(a^{2} b+b^{2} c+c^{2} a\right)=3\left(a^{2} b+b^{2} c+c^{2} a\right)$
Mặt khác: $a b+b c+c a=\frac{1-\left(a^{2}+b^{2}+c^{2}\right)}{2}$
Từ đó ta có: $F \geq 14\left(a^{2}+b^{2}+c^{2}\right)+\frac{3-3\left(a^{2}+b^{2}+c^{2}\right)}{2\left(a^{2}+b^{2}+c^{2}\right)}$
Hay: $F \geq 14\left(a^{2}+b^{2}+c^{2}\right)+\frac{3}{2\left(a^{2}+b^{2}+c^{2}\right)}-\frac{3}{2}$
Áp dụng bất đẳng thức Cauchy, ta có:
$27\left(a^{2}+b^{2}+c^{2}\right)+\frac{3}{\left(a^{2}+b^{2}+c^{2}\right)} \geq 2 \sqrt{27\left(a^{2}+b^{2}+c^{2}\right) \cdot \frac{3}{\left(a^{2}+b^{2}+c^{2}\right)}}=18 $
$a^{2}+b^{2}+c^{2} \geq \frac{1}{3}(a+b+c)^{2}=\frac{1}{3}$
Vậy: $28\left(a^{2}+b^{2}+c^{2}\right)+\frac{3}{\left(a^{2}+b^{2}+c^{2}\right)} \geq 18+\frac{1}{3}=\frac{55}{3}$
Từ đó ta có: $F \geq \frac{55}{6}-\frac{3}{2}=\frac{23}{3}$
Đẳng thức xảy ra khi: $a=b=c=\frac{1}{3}$
Cách 2:
Do $a, b, c$ dương và $a+b+c=1$ nên ta có:
$(1-c)^{2}=(a+b)^{2} \geq 4 a b \Leftrightarrow 1-2 c+c^{2} \geq 4 a b \Leftrightarrow a-2 a c+a c^{2} \geq 4 a^{2} b $
$(1-a)^{2}=(b+c)^{2} \geq 4 b c \Leftrightarrow 1-2 a+a^{2} \geq 4 b c \Leftrightarrow b-2 a b+a^{2} b \geq 4 b^{2} c $
$(1-b)^{2}=(c+a)^{2} \geq 4 c a \Leftrightarrow 1-2 b+b^{2} \geq 4 c a \Leftrightarrow c-2 b c+b^{2} c \geq 4 a c^{2}$
Hay: $a+b+c-2(a b+b c+c a) \geq 3\left(a^{2} b+b^{2} c+c^{2} a\right)$
$\Leftrightarrow 1-2(a b+b c+c a) \geq 3\left(a^{2} b+b^{2} c+c^{2} a\right)$
Vậy: $F \geq 14[1-2(a b+b c+c a)]+\frac{3(a b+b c+c a)}{1-2(a b+b c+c a)}$
Đạt: $t=1-2(a b+b c+c a), t \geq \frac{1}{3}$
Áp dụng bất đẳng thức Cauchy ta có:
$F \geq 14 t+\frac{\frac{3}{2}(1-t)}{t}=14 t+\frac{3}{2 t}-\frac{3}{2}=\frac{1}{2} t+\frac{27}{2} t+\frac{3}{2 t}-\frac{3}{2} \geq \frac{1}{2} t+2 \sqrt{\frac{27}{2} t \cdot \frac{3}{2 t}}-\frac{3}{2}$
Vậy: $F \geq \frac{1}{2} \cdot \frac{1}{3}+9-\frac{3}{2}=\frac{23}{3}$
Đẳng thức xảy ra khi: $a=b=c=\frac{1}{3}$
Bài 4. Cho tứ giác $A B C D$ nội tiếp đường tròn $(O, R)$ có $A C$ vuông góc với $B D$ tại $H$. Trên cạnh $A B$ lấy điểm $M$ sao cho $A B=3 A M$. Trên cạnh $H C$ lấy trung điểm $N$. Chứng minh rằng $M H$ vuông góc với $D N$.
Lời giải.
- Gọi $K, L$ lần lượt là trung điểm $B M$ và $H B, P$ là giao điểm của $H M$ và $A K$.
-
Ta có $K L$ là đường trung bình của tam giác $H M B$ nên $K L$ song song $H M$. Khi đó xét tam giác $A K L$ thì $P H$ là đường trung bình nên $P$ là trung điểm của $A K$.
-
Ta có từ $A B C D$ nội tiếp suy ra $H D \cdot H B=H A \cdot A C \Rightarrow H K \cdot H D=H A \cdot H N$, do đó $A D N K$ nội tiếp.
-
Suy ra $\angle N H Q=\angle A H P=\angle H A P=\angle H D N$, suy ra $\angle H Q N=90^{\circ}$.
Bài 5. Cho đường tròn tâm $O$ và đường tròn tâm $I$ cắt nhau tại hai điểm $A$ và $B(O$ và $I$ nằm khác phía đối với đường thẳng $A B), I B$ cắt $(O)$ tại $E, O B$ cắt $(I)$ tại $F$. Qua $B$ vẽ đường thẳng $M N$ song song với $E F(M$ thuộc $(O), N$ thuộc $(I))$.
a) Chứng minh rằng $O A I E$ nội tiếp.
b) Chứng minh rằng: $A E+A F=M N$.
Lời giải.
a) Chứng minh rằng tứ giác $A O E F$ nội tiếp
Do hai đường tròn $(\mathrm{O})$ và $(\mathrm{I})$ cắt nhau tại $A$ và $B$ nên ta có: $A$ đối xứng với $B$ qua $O I$. Vậy: $\angle O A I=\angle O B I$
Ta có tam giác $\triangle O B E$ cân tại $O$ nên $\angle O B E=\angle O E B$, do $\angle O B E+\angle O B I=180^{\circ}$ nên $\angle O E B+\angle O B I=180^{\circ}$. Từ đó ta có: $\angle O E B+\angle O A I=180^{\circ}$
Vậy tứ giác $O A I E$ là tứ giác nội tiếp. Chứng minh tương tự ta có: tứ giác $O A I F$ là tứ giác nội tiếp.
$\angle O E A=\angle O I A$ (tứ giác $O A I E$ là tứ giác nội tiếp)
$\angle O I A=\angle O F A$ (tứ giác $O A I F$ là tứ giác nội tiếp)
Vậy: $\angle O E A=\angle O F A$ nên tứ giác $O A F E$ là tứ giác nội tiếp
b) Chứng minh rằng: $M N=A E+A F$
Bài toán cần chứng minh tương đương với: $A F=B N$ và $A E=B M$.
Ta chỉ cần chứng minh $A F=B N$ vì $A E=B M$ là điều tương tự.
Để chứng minh $A F=B N$. Ta chỉ cần chứng minh số đo cung $\mathrm{AF}$ bằng số đo cung $\mathrm{BN}(A F, B N$ lần lượt là dây căng cung $\mathrm{AF}$, cung $\mathrm{BN}$ trong đường tròn (I)). Hay chỉ cần chứng minh: số đo cung $\mathrm{AB}$ bằng số đo cung FN. Từ đó ta chứng minh: $\angle O F A=\angle F B N$ là bài toán được giải quyết.
Do $E F | M N$ nên ta có: $\angle O F E=\angle F B N$
Mà $\angle O F E=\angle O A E=\angle O E A=\angle O F A$ (tứ giác $A O E F$ là tứ giác nội tiếp)
Từ đó ta có: $\angle O F A=\angle F B N$ (đpcm)
Bài 6. Trên mặt phẳng cho 2013 điểm tùy ý sao cho trong ba điểm bất kì thì tồn tại 2 điểm mà khoảng cách giữa hai điểm đó luôn bé hơn 1. Chứng minh rằng tồn tại một đường tròn có bán kính bằng 1 chứa ít nhất 1007 điểm (kế cả biên).
Lời giải. Gọi $A$ là một điểm bất kì trong 2013 điểm trên. Lấy $A$ làm tâm vẽ đường tròn có bán kính bằng 1 .
Nếu 2012 điểm còn lại thuộc đường tròn $(A)$ thì bài toán được chứng minh xong. Giả tồn tại một số điểm nằm ngoài đường tròn tâm $(A)$. Lấy điểm $(B)$ bất kì trong các điểm đó và vẽ đường tròn tâm $(B)$ có bán kính bằng 1 .
Giả sử tồn tại một điểm $C$ nằm ngoài hai đường tròn $(A)$ và $(B)$ thì $A B, A C$ đều lớn hơn 1. Điều này vô lí.
Từ đó ta có tất cả các điểm đã cho đều thuộc trong hai đường tròn $(A)$ và $(B)$.
Theo nguyên lí Dirichlet sẽ tồn tại một đường tròn chứa $\frac{2012}{2}+1=1007$ điểm (đpcm).