Tag Archives: HK1

Đề thi Học kì 1 Toán 10 PTNK năm 2020 (CS1)

Đề thi và đáp án HK1 môn toán 10 trường PTNK (CS1)

Năm học 2020 – 2021

Thực hiện: Thầy Nguyễn Tấn Phát – GV PTNK

Bài 1. (2 điểm) Giải các phương trình:
a) $\dfrac{{{x^4} – 10{x^2} + 9}}{{\sqrt {x – 2} }} = 0$
b) $x\sqrt {{x^2} – x + 3} = x\left( {x – 6} \right)$
Bài 2. (1 điểm) Tìm $m$ để phương trình $\dfrac{1}{x} + \dfrac{{m + x}}{{x – 1}} = 1$ có nghiệm duy nhất.
Bài 3. (1 điểm) Chứng minh
$$\left[ {\cos 2\pi – \cos \left( {2\pi + x} \right)} \right]\left[ {1 + {{\tan }^2}\left( {\frac{\pi }{2} – x} \right)} \right] = \frac{1}{{1 + \cos x}}$$
Bài 4. (1 điểm) Cho hệ phương trình $\left\{ \begin{array}{l}
mx – \left( {m + 1} \right)y = 1\
\left( {2 – m} \right)x + \left( {m – 3} \right)y = 3 – 2m
\end{array} \right.$ ($m$ là tham số).
a) Tìm $m$ để hệ có nghiệm duy nhất $\left( x_0; y_0 \right) $.
b) Chứng minh $x_0^2 – y_0^2 – 2{x_0} = – 1$
Bài 5. (1 điểm) Gọi $(P)$ là đồ thị của hàm số $y = {x^2} + 2x – m$. Biết $(P)$ cắt trục tung tại điểm có tung độ là 4. Tìm m và tọa độ đỉnh của $(P)$.
Bài 6. (2 điểm) Cho hình bình hành ABCD có $AD = a$, $AB = 2a$ và $\widehat {DAB} = 120^\circ $.
a) Tính $\overrightarrow{DA} \cdot \overrightarrow{AB}$. Chứng minh $AB^2 – AD^2 = \overrightarrow {AC} \cdot \overrightarrow {DB} $
b) Gọi $H$ là hình chiếu vuông góc của $A$ trên $DB$. Tính $\overrightarrow{DH} \cdot \overrightarrow{DA}$.
Bài 7. (2 điểm) Trong mặt phẳng $Oxy$, cho tam giác $ABC$ có $A(1;6)$, $B(6;5)$, $C(6;1)$.
a) Tìm tọa độ $M$ sao cho $\overrightarrow {CM} = \overrightarrow {CA} – \overrightarrow {CB} $
b) Đường tròn ngoại tiếp tam giác $ABC$ cắt trục tung tại hai điểm phân biệt $E$, $F$. Tìm tọa độ tâm đường tròn ngoại tiếp tam giác $ABC$. Tìm toạ độ $E$ và $F$.

Lời giải

Bài 1.
a) $\dfrac{{{x^4} – 10{x^2} + 9}}{{\sqrt {x – 2} }} = 0 \quad (1) $
Điều kiện: $x>2$
$(1) \Leftrightarrow {x^4} – 10{x^2} + 9 =0 \Leftrightarrow \left[ \begin{array}{l}
x=1 \quad (l) \\
x=-1 \quad (l) \\
x=3 \quad (n) \\
x=-3 \quad (l)
\end{array} \right. $
Vậy $S=\left\{ 3 \right\} $
b) $x\sqrt{x^2-x+3} = x(x-6)$ (NX: $x^2 -x+3 >0$, $\forall x\in \mathbb{R}$)
$\Leftrightarrow \left[ \begin{array}{l}
x=0\\
\sqrt{x^2 -x +3 } = x-6 \ (*)
\end{array}\right. $
$(*)\Leftrightarrow \left\{ \begin{array}{l} x-6\ge 0\\
x^2 -x +3 = (x-6)^2
\end{array}\right. $
$\Leftrightarrow \left\{ \begin{array}{l}
x\ge 6\\
x=3
\end{array}\right. $
$\Leftrightarrow x\in \emptyset$
Vậy $S=\left\{ 0\right\} $

Bài 2. (1 điểm) ĐKXĐ: $x\ne 0$, $x\ne 1$

Phương trình trở thành: $(m+2)x=1$

Phương trình có nghiệm duy nhất khi và chỉ khi $\left\{ \begin{array}{l}
m+2\ne 0\\\\
\dfrac{1}{m+2}\ne 0\\\\
\dfrac{1}{m+2}\ne 1
\end{array}\right. $
$\Leftrightarrow \left\{ \begin{array}{l}
m\ne -2\\
m\ne -1
\end{array}\right. $

Vậy $m\ne -2$ và $m\ne -1$ thì phương trình có nghiệm duy nhất $x=\dfrac{1}{m+2}$
Bài 3. (1 điểm)
$VT= \left[ {\cos 2\pi – \cos \left( {2\pi + x} \right)} \right]\left[ {1 + {{\tan }^2}\left( {\dfrac{\pi }{2} – x} \right)} \right] $

$= (1-\cos x) (1+\cot^2 x)$

$ = (1-\cos x) \cdot \dfrac{1}{\sin^2 x}$

$= (1-\cos x )\cdot \dfrac{1}{1-\cos^2 x}$

$=\dfrac{1}{1+\cos x}=VP$
Bài 4. (1 điểm)
a) Ta có:
$D=\left| \begin{array}{*{20}{c}}
{m}&{-(m+1)}\\
{2-m}&{m-3}
\end{array}\right| = 2(1-m)$

$D_x = \left| \begin{array}{*{20}{c}}
{1} & {-(m+1)}\\
{3-2m} & {m-3}
\end{array}\right| = 2m(1-m)$

$D_y=\left| \begin{array}{*{20}{c}}
{m} & {1}\\
{2-m} & {3-2m}
\end{array}\right| = -2(m-1)^2$

Hệ phương trình có nghiệm duy nhất khi và chỉ khi $D\ne 0 \Leftrightarrow m\ne 1$
b) Ta có: $\left\{ \begin{array}{l}
x_0 = \dfrac{D_x}{D} = m\\\\
y_0= \dfrac{D_y}{D} = m-1
\end{array}\right. $

Ta có: $x_0^2 – y_0^2 -2x_0 = m^2 – (m-1)^2 -2m =-1$
Bài 5. (1 điểm) Thay $M(0;4)$ vào $(P)$, ta có: $4=-m \Leftrightarrow m=-4$
Tọa độ đỉnh $I( -1;3)$
Bài 6. (2 điểm)
a) Ta có: $\overrightarrow{DA} \cdot \overrightarrow{AB} = -\overrightarrow{AD} \cdot \overrightarrow{AB} = – AD \cdot AB \cdot \cos 120^\circ = a^2$

Ta có: $AB^2 – AD^2 = \left( \overrightarrow{AB}\right) ^2 – \left( \overrightarrow{ AD}\right) ^2 $

$= \left( \overrightarrow{AB} – \overrightarrow{AD}\right) \left( \overrightarrow{AB} + \overrightarrow{AD} \right) = \overrightarrow{DB} \cdot \overrightarrow{AC}$
b) Đặt $\overrightarrow{DH} =x\overrightarrow{DB}$

Ta có: $\overrightarrow{AH} = x\overrightarrow{AB} + (1-x)\overrightarrow{AD}$

Ta có: $\overrightarrow{AH} \cdot \overrightarrow{BD} = 0$

$\Leftrightarrow \left( x\overrightarrow{AB} + (1-x)\overrightarrow{AD}\right) \cdot \left( \overrightarrow{AD} – \overrightarrow{AB}\right) =0$

$\Leftrightarrow x (-a^2) -4xa^2 + (1-x)a^2 -(1-x)(-a^2) =0$

$\Leftrightarrow x=\dfrac{2}{7}$

Ta có: $\overrightarrow{DH} = \dfrac{2}{7} \overrightarrow{DB}$

$\Rightarrow \overrightarrow{DA} \cdot \overrightarrow{DH} = \dfrac{2}{7} \overrightarrow{DA} \cdot \overrightarrow{DB}$

$=\dfrac{2}{7} \overrightarrow{DA} \left( \overrightarrow{DA} + \overrightarrow{AB}\right) $

$=\dfrac{2}{7} \left( DA^2 + \overrightarrow{DA} \cdot \overrightarrow{AB}\right) $

$=\dfrac{4}{7}a^2$
Bài 7. (2 điểm)
a) Gọi $M(x;y)$

Ta có: $\overrightarrow{CM} = \overrightarrow{CA} – \overrightarrow {CB}$
$\Leftrightarrow \overrightarrow{CM} = \overrightarrow{BA}$
$\Leftrightarrow \left\{ \begin{array}{l}
x-6 = -5\\
y-1=1
\end{array}\right. $
$\Leftrightarrow \left\{ \begin{array}{l}
x=1\\
y=2
\end{array}\right. $

Vậy $M(1;2)$
b) Gọi $I(x_I;y_I)$ là tâm đường tròn ngoại tiếp tam giác $ABC$.

Ta có: $\left\{ \begin{array}{l}
IA = IB\\
IA = IC
\end{array}\right. $
$\Rightarrow \left\{ \begin{array}{l}
5x_I -y_I =12\\
(5-y_I)^2 = (1-y_I)^2
\end{array}\right. $
$\Rightarrow \left\{ \begin{array}{l}
x_I=3\\
y_I=3
\end{array}\right. $

Gọi $E(0;y_E)\in Oy$.

Ta có: $IA = IE \Rightarrow (3-y_E)^2 =4 \Rightarrow \left[ \begin{array}{l}
y_E =1\\
y_E =5
\end{array}\right. $

Vậy $E(0;1)$, $F(0;5)$ hoặc ngược lại.

Đề thi HK1 môn toán trường Nguyễn Thị Minh Khai năm học 2020-2021

Bài 1 (3 điểm). Giải các phương trình và hệ phương trình sau:

a} $|2x^2+2x+3|=x+3$

b) $\sqrt{2x-1}+ \sqrt{x}=3-x^2$

c) $\left\{ \begin{array}{l} x+y+xy=11\\ x+y-xy=-1 \end{array}\right.$

Bài 2 (2 điểm). Tìm giá trị tham số $m$ sao cho:

a) Phương trình $(m^2-2m)x+2-m=0$ vô nghiệm.

b) Phương trình $x^2-(2m+1)x+m^2+1=0$ có 2 nghiệm dương phân biệt.

Bài 3 (1 điểm). Tìm giá trị lớn nhất của hàm số $y=f(x)=x(3-2x)$ khi $0\le x\le \dfrac{3}{2}$.

Bài 4 (2 điểm). Cho $\triangle ABC$ có $I$ là trung điểm cạnh $AB$.

a) Chứng minh $CA^2 + CB^2 = 2CI^2 + \dfrac{AB^2}{2}$.

b) Tìm tập hợp các điểm $M$ sao cho $\left( \overrightarrow{MA} + \overrightarrow{MB}\right) \cdot \left( \overrightarrow{MB} – \overrightarrow{MC}\right) =0$.

Bài 5 (2 điểm). Trong mặt phẳng tọa độ $Oxy$, cho $\triangle ABC$ có $A(-5;0)$, $B(1;0)$, $C(2;3)$.

a) Tìm tọa độ tâm $I$ của đường tròn ngoại tiếp $\triangle ABC$.

b) Tìm tọa độ điểm $M$ thuộc tia $Oy$ sao cho $|2MA – MB|$ nhỏ nhất.

Giải

Bài 1  (3 điểm).

a) $|2x^2+2x+3|=x+3$

$\Leftrightarrow \left\{ \begin{array}{l} x+3\ge 0\\ \left[ \begin{array}{l} 2x^2 +2x+3 = x+3\\ 2x^2 +2x+3 = -x-3 \end{array}\right. \end{array}\right. $

$\Leftrightarrow \left\{ \begin{array}{l} x\ge -3\\ \left[ \begin{array}{l} 2x^2 +x =0\\ 2x^2 +3x +6=0 \end{array}\right. \end{array}\right. $

$\Leftrightarrow \left\{ \begin{array}{l} x\ge -3\\ \left[ \begin{array}{l} x=0\\ x=-\dfrac{1}{2} \end{array}\right. \end{array}\right. $

$\Leftrightarrow \left[ \begin{array}{l} x=0\\ x=-\dfrac{1}{2}\end{array}\right. $

Vậy $S=\left\{ 0;-\dfrac{1}{2}\right\} $.

b) $\sqrt{2x-1}+ \sqrt{x}=3-x^2$ $(1)$

Điều kiện xác định: $x\ge \dfrac{1}{2}$

$(1) \Leftrightarrow \sqrt{2x-1} -1 + \sqrt{x}-1 +x^2 -1=0$

$\Leftrightarrow \dfrac{2(x-1)}{\sqrt{2x-1}+1} + \dfrac{x-1}{\sqrt{x}+1}+ (x-1)(x+1)=0$

$\Leftrightarrow (x-1) \left( \dfrac{2}{\sqrt{2x-1}+1} + \dfrac{1}{\sqrt{x}+1} + x+1\right) =0$

$\Leftrightarrow x=1$ (nhận)

Vậy $S=\left\{ 1\right\} $.

c) $\left\{ \begin{array}{l} x+y+xy=11\\ x+y-xy=-1 \end{array}\right. $
$\Leftrightarrow \left\{ \begin{array}{l} x+y = 5\\ xy=6 \end{array}\right. $
$\Leftrightarrow \left\{ \begin{array}{l} x=5-y\\ -y^2 +5y -6=0 \end{array}\right. $
$\Leftrightarrow \left\{ \begin{array}{l} x=5-y\\ \left[ \begin{array}{l} y=3\\ y=2 \end{array}\right.\end{array}\right. $
$\Leftrightarrow \left[ \begin{array}{l} \left\{ \begin{array}{l} x=2\\ y=3 \end{array}\right. \\ \left\{ \begin{array}{l} x=3\\ y=2\end{array}\right. \end{array}\right. $\
Vậy $(x;y)\in \left\{ (2;3); (3;2)\right\} $.

Bài 2 (2 điểm).

a) Ta có: $(m^2-2m)x+2-m=0 \Leftrightarrow (m^2 -2m)x = m-2 \ (2)$
$(2)$ vô nghiệm khi và chỉ khi $\left\{ \begin{array}{l} m^2 -2m =0\\ m-2\ne 0 \end{array}\right. $ $\Leftrightarrow \left\{ \begin{array}{l} m\ne 2\\ \left[ \begin{array}{l} m=0\\ m=2 \end{array}\right. \end{array}\right. $ $\Leftrightarrow m=0$

Vậy $m=0$ thì phương trình $(2)$ vô nghiệm.

b) $x^2-(2m+1)x+m^2+1=0$ $(3)$

Ta có: $\Delta = (2m+1)^2 -4(m^2 +1) = 4m-3$

Phương trình $(3)$ có $2$ nghiệm dương phân biệt khi và chỉ khi

$\left\{ \begin{array}{l} \Delta >0\\ S>0\\ P>0 \end{array}\right. $ $\Leftrightarrow \left\{ \begin{array}{l} 4m-3>0\\ 2m+1>0\\ m^2 +1 >0 \text{ (luôn đúng) } \end{array}\right. $ $\Leftrightarrow \left\{ \begin{array}{l} m>\dfrac{3}{4}\\ m>-\dfrac{1}{2} \end{array}\right. $ $\Leftrightarrow m>\dfrac{3}{4}$

Vậy $m>\dfrac{3}{4}$ thì phương trình $(3)$ luôn có 2 nghiệm dương phân biệt.

Bài 3 (1 điểm).

Ta có: $y=x(3-2x) = -2x^2 +3x$

Tập xác định: $D=\mathbb{R}$

Tọa độ đỉnh: $I\left( \dfrac{3}{4};\dfrac{9}{8}\right) $
Với $0\le x\le \dfrac{3}{2}$ ta có bảng sau:

Vậy giá trị lớn nhất của hàm số $y=\dfrac{9}{8}$ khi $x=\dfrac{3}{4}$.

Bài 4 (2 điểm).

a) Ta có: $\overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0}$, $IA^2= IB^2 = \dfrac{AB^2}{4}$

Ta có: $CA^2 + CB^2 = \overrightarrow{CA}^2 + \overrightarrow{CB}^2 = \left( \overrightarrow{CI} + \overrightarrow{IA}\right) ^2 + \left( \overrightarrow{CI} + \overrightarrow{IB}\right) ^2$

$= 2CI^2 + 2\overrightarrow{CI}\left( \overrightarrow{IA} + \overrightarrow{IB}\right) + IA^2 + IB^2 = 2CI^2 + \dfrac{AB^2}{2}$

b) Ta có: $\left( \overrightarrow{MA} + \overrightarrow{MB}\right) \cdot \left( \overrightarrow{MB} – \overrightarrow{MC}\right) =0$ $\Leftrightarrow 2\overrightarrow{MI} \cdot \overrightarrow{CB}=0$ $\Rightarrow MI \bot CB$
Vậy $M$ thuộc đường thẳng đi qua $I$ và vuông góc với $BC$.

Bài 5 (2 điểm).
a) Gọi $E$, $F$ lần lượt là trung điểm của $AB$, $AC$ suy ra $E(-2;0)$, $F\left( -\dfrac{3}{2};\dfrac{3}{2}\right) $

$\overrightarrow{AB}=(6;0)$, $\overrightarrow{AC}= (7;3)$, $\overrightarrow{EI} = \left( x_I +2; y_I\right) $, $\overrightarrow{FI}= \left( x_I + \dfrac{3}{2}; y_I – \dfrac{3}{2}\right) $

Ta có: $\left\{ \begin{array}{l} EI \bot AB\\ FI \bot AC \end{array}\right. $ $\Leftrightarrow \left\{ \begin{array}{l} \overrightarrow{EI}\cdot \overrightarrow{AB} = 0\\ \overrightarrow{FI}\cdot \overrightarrow{AC}=0 \end{array}\right. $

$\Leftrightarrow \left\{ \begin{array}{l} 6\left( x_I+2\right) =0\\ 7\left( x_I+\dfrac{3}{2}\right) + 3\left( y_I-\dfrac{3}{2}\right) =0 \end{array}\right. $ $\Leftrightarrow \left\{ \begin{array}{l} x_I=-2\\ y_I=\dfrac{8}{3}\end{array}\right. $

Vậy $I\left( -2;\dfrac{8}{3}\right) $.

b) Gọi $M(0;y)$ $(y\ge 0)$.

Ta có: $|2MA -MB| = |2\sqrt{y^2 +25}- \sqrt{y^2+1}| = 2\sqrt{y^2+25} – \sqrt{y^2 +1}=m$ $(m\ge 0)$

Khi đó ta có phương trình: $2\sqrt{y^2+25} – \sqrt{y^2+1} =m$ $(*)$

Ta đi tìm $m$ nhỏ nhất để phương trình $(*)$ có nghiệm không âm.

Đặt $t= \sqrt{y^2+1}$ $(t\ge 1)$

Khi đó: $2\sqrt{t^2 +24} =m+t$

$\Leftrightarrow 4t^2 +96 = t^2 + 2mt + m^2$

$\Leftrightarrow 3t^2 -2mt-m^2 +96=0$ $(**)$

$(*)$ có nghiệm không âm khi và chỉ khi $(**)$ có nghiệm lớn hơn hoặc bằng $1$.
Ta có: $\Delta’ = m^2 -3(-m^2 + 96) = 4m^2 – 288 \ge 0 \Leftrightarrow m^2 \ge 72$

Nếu $m^2 =72 \Rightarrow m=6\sqrt{2}$ thay vào $(**)$ ta tìm được $t=2\sqrt{2}$ thỏa yêu cầu và $m=6\sqrt{2}$ cũng là $m$ nhỏ nhất.
Với $t=2\sqrt{2} \Leftrightarrow y=\sqrt{7}$
Vậy $M(0;\sqrt{7})$.

Đề thi HK1 môn toán 11AB trường chuyên Lê Hồng Phong năm học 2020-2021

Bài 1 (2 điểm). Giải các phương trình sau:

a) $2\cos \left( 2x+\dfrac{\pi}{4}\right)=\sqrt{3}$
b) $\sqrt{3}\sin x + \cos x =2$

Bài 2 (1 điểm). Gieo một con súc sắc cân đối và đồng chất hai lần. Tính xác suất để số chấm xuất hiện trong hai lần gieo khác nhau.

Bài 3 (1 điểm). Từ các chữ số  $1$;  $2$;  $3$;  $4$;  $5$;  $6$ có thể lập được bao nhiêu số chẵn có $4$ chữ số khác nhau?

Bài 4 (1 điểm). Khai triển nhị thức $(1-3x)^n = a_0 + a_1x + a_2x^2 + \dots + a_nx^n$. Biết $a_0 + a_1 + a_2 = 376$, tính $a_3$.

Bài 5 (1 điểm). Cho dãy số $(u_n)$ thỏa $\left\{ \begin{array}{l}u_1=1\\ u_{n+1}= 2u_n + n\end{array}\right. $

a) Chứng minh dãy số $v_n = u_n + n+1$ là cấp số nhân.

b) Đặt $S_n=u_1 + u_2 + \dots + u_n$. Tính $S_n$ theo $n$.

Bài 6 (1 điểm). Một số nguyên dương gọi là đối xứng nếu ta viết các chữ số theo thứ tự ngược lại thì được số bằng số ban đầu, ví dụ số $1221$ là một số đối xứng. Chọn ngẫu nhiên một số đối xứng có $4$ chữ số, tính xác suất chọn được số chia hết cho $7$.

Bài 7 (3 điểm). Cho hình chóp tứ giác $S.ABCD$ có đáy $ABCD$ là hình bình hành. Gọi $M$, $N$, $P$ lần lượt là các điểm trên cạnh $CD$, $AD$, $SA$ thỏa $MD = 2MC$, $NA = 3ND$, $PA=3PS$. Gọi $G$ là trọng tâm tam giác $SBC$.

a) Tìm giao điểm $K$ của đường thẳng $BM$ và mặt phẳng $(SAC)$.

b) Chứng minh mặt phẳng $(NPK)$ song song mặt phẳng $(SCD)$.

c) Chứng minh đường thẳng $MG$ song song mặt phẳng $(SAD)$.

Đáp án

Bài 1 (2 điểm).

a) $2\cos \left( 2x + \dfrac{\pi}{4}\right) = \sqrt{3}$

$\Leftrightarrow \cos \left( 2x+\dfrac{\pi}{4} \right) = \dfrac{\sqrt{3}}{2}$

$\Leftrightarrow \left[ \begin{array}{l}2x + \dfrac{\pi}{4} = \dfrac{\pi}{6} + 2k\pi \\\\ 2x + \dfrac{\pi}{4} = -\dfrac{\pi}{6} + 2k\pi\end{array}\right.(k\in \mathbb{Z}) $

$\Leftrightarrow \left[ \begin{array}{l}x = -\dfrac{\pi}{24} + k\pi \\\\ x= -\dfrac{5\pi}{24} + k\pi\end{array}\right. (k\in \mathbb{Z})$

Vậy $S=\left\{ -\dfrac{\pi}{24} + k\pi; -\dfrac{5\pi}{24} + k\pi \ | \ k\in \mathbb{Z} \right\} $.

b) $\sqrt{3} \sin x + \cos x =2$

$\Leftrightarrow \dfrac{\sqrt{3}}{2}\sin x + \dfrac{1}{2} \cos x =1$

$\Leftrightarrow \sin \left( x+ \dfrac{\pi}{6}\right) =1$

$\Leftrightarrow x+ \dfrac{\pi}{6} = \dfrac{\pi}{2} + 2k\pi $ $(k\in \mathbb{Z})$

$\Leftrightarrow x= \dfrac{\pi}{3} + 2k\pi$ $(k\in \mathbb{Z})$

Vậy $S=\left\{ \dfrac{\pi}{3} + 2k\pi \ | \ k\in \mathbb{Z} \right\} $.

Bài 2 (1 điểm).

Gọi $A$ là biến cố được $2$ số khác nhau $\Omega _A = \left\{ (a;b)\ | \ a, b \in \left\{ 1,2,…,6\right\} , a\ne b\right\} $

$\Rightarrow |\Omega _A | = 6\cdot 5 = 30$ $\Rightarrow P(A) = \dfrac{30}{36} = \dfrac{5}{6}$

Vậy xác suất để số chấm xuất hiện trong hai lần gieo khác nhau là $\dfrac{5}{6}$.

Bài 3 (1 điểm).

Gọi số có 4 chữ số thỏa yêu cầu đề bài là $\overline{abcd}$.
$\overline{abcd}$ là số chẵn nên $d\in \left\{ 2,4,6 \right\} $ suy ra $d$ có $3$ cách chọn.
$\overline{abc}$ có $A^3 _5$ cách chọn.
$\Rightarrow $ Số số thỏa mãn yêu cầu đề bài là: $3\cdot A^3 _5 = 3\cdot 5 \cdot 4 \cdot 4 =180$.

Bài 4 (1 điểm).

Ta có: $\left( 1-3x\right) ^n = \sum\limits_{k = 0}^n {C_n^k{{( – 3x)}^k}} $.

Suy ra $a_0 =1$, $a_1 = -3C_n ^1$, $a_2 = 9 C_n ^2$

Ta có: $a_0 + a_1 + a_2 = 376$

$\Rightarrow 1 -3C_n ^1 + 9 C_n ^2 =376$

$\Rightarrow 1 – 3n + \dfrac{9n(n-1)}{2} = 376 \Rightarrow n=10$

Vậy $a_3 = (-3)^3C_{10} ^3 = -3240$

Bài 5 (1 điểm).

a) $v_n = u_n + n +1$
$v_{n+1} = u_{n+1} + n+1 +1$

$ = 2u_n + n + n + 2 $

$= 2\left( u_n + n + 1\right)$

$ =2v_n$ $(\forall n)$

Vậy $(v_n)$ là cấp số nhân.

b) $v_1 = 1+1+1 =3 \Rightarrow v_n = 3\cdot 2^{n-1}$

$v_1+ v_2 + \dots + v_n = 3\left( 1+2+\dots + 2^{n-1}\right) $

         $= 3\left( 2^n -1\right) $

Ta có: $\left\{ \begin{array}{l}u_1 = v_1 -1 -1 = v_1 -2\\\\ u_2 = v_2 -2 -1 = v_2 -3\\ .\\ .\\ .\\ u_n = v_n – (n+1)\end{array}\right. $

$\Rightarrow u_1 + u_2 + \dots + u_n = v_1 + v_2 + \dots + v_n – \left( 2+3+\dots + n+1\right) $

   $= 3\left( 2^n -1\right) – \dfrac{[2+(n+1)]\cdot n}{2}$

   $= 3\cdot 2^n – \dfrac{n\cdot (n+3) }{2} -3$

Vậy $S_n = 3\cdot 2^n – \dfrac{n\cdot (n+3) }{2} -3$

Bài 6 (1 điểm).

Gọi số có $4$ chữ số thỏa mãn yêu cầu đề bài là $\overline{abba}$

  • Trường hợp 1: $a=b$ suy ra ta có $9$ số là $1111$, $2222$, . . ., $9999$.
  • Trường hợp 2: $a\ne b$ ta có $A_{10} ^2 -9=81$ số.

$\Rightarrow $ có $90$ số có $4$ chữ số là số đối xứng.

Ta có: $\overline{abcd} = a\cdot 1001 + 110\cdot b \ \vdots \ 7 \Rightarrow b\ \vdots \ 7 \Rightarrow \left[ \begin{array}{l}b=0\\\\ b=7\end{array}\right. $

Với $b=0$ hoặc $b=7$ ta có $18$ số đối xứng có $4$ chữ số chia hết cho $7$.

Vậy xác suất để chọn được số chia hết cho $7$ là $\dfrac{18}{90} = \dfrac{1}{5}$.

Bài 7 (3 điểm).

a) Trong mặt phẳng $(ABCD)$ có $BM \cap AC = K$

Ta có: $\left\{ \begin{array}{l}K= BM \cap AC\\\\ AC \subset (SAC)\end{array}\right. $ $\Rightarrow K = BM \cap (SAC)$

b) Trong mặt phẳng $(SAD)$ có:

  •  $\dfrac{AP}{PS} = \dfrac{AN}{ND} = \dfrac{1}{3} \Rightarrow NP//SD$

Ta có: $\left\{ \begin{array}{l}NP//SD \\\\ SD\subset (SCD)\end{array} \right. $

$\Rightarrow NP//(SCD)$

  • $\dfrac{CM}{AB} = \dfrac{CK}{AK} = \dfrac{1}{3} \Rightarrow \dfrac{CK}{AK} = \dfrac{ND}{AN} \Rightarrow NK // CD$

Ta có: $\left\{ \begin{array}{l}NK // CD\\\\ CD\subset (SCD)\end{array}\right. $

$\Rightarrow NK // (SCD)$

Mà $NP$, $NK \subset (PNK) \Rightarrow (PNK) // (SCD)$.

c) Gọi $Q=SG\cap BC$, $T= QM \cap AD$.

Ta có: $\dfrac{QM}{MT} = \dfrac{CM}{MD} = \dfrac{1}{2}= \dfrac{QG}{GS}$

$ \Rightarrow MG // ST$ mà $ST \subset (SAD) \Rightarrow MG // (SCD)$

Đề thi học kì 1 môn toán 10 năm học 2017-2018 trường Lê Quý Đôn – TPHCM

BÀI 1. Xét tính chẵn – lẻ của hàm số: $f(x)=\dfrac{2 x^{2}+3}{|x+2|-|x-2|}$.

BÀI 2. Xác định parabol $(\mathrm{P}): f(x)=\alpha x^{2}+b x+2$ biết $(\mathrm{P})$ đi qua điểm $\mathrm{B}(-1 ; 6)$ và có tung độ đỉnh là $-\frac{1}{4}$.

BÀI 3. Giải các phương trình:
a) $\sqrt{2 x^{2}+7 x+5}=x+1$
b) $2 x-\left|x^{2}-4 x+5\right|=5$

BÀI 4. Cho $\forall x>1 ; y>1$. Chứng minh: $\dfrac{x y}{\sqrt{(y-1)(x-1)}} \geq 4$

BÀI 5. Cho tam giác $\mathrm{ABC}$ có $\mathrm{AB}=9, \mathrm{AC}=12, \widehat{\mathrm{BAC}}=120^{\circ}$. Tính diện tích tam giác $\mathrm{ABC}$, độ dài cạnh BC; độ dài trung tuyến AM và bán kính đường tròn nội tiếp tam giác ABC.

BÀI 6. Trong mặt phằng $0 \mathrm{xy}$ cho tam giác $\mathrm{ABC}$ với $\mathrm{A}(1 ; 3), \mathrm{B}(-3 ; 0), \mathrm{C}(0 ;-2)$
a) Tìm tọa độ điểm $\mathrm{M}$ sao cho $\mathrm{ABCM}$ là hình bình hành.
b) Tìm tọa độ điểm D thuộc trục $y^{\prime}$ Oy sao cho $|\overrightarrow{A D}+\overrightarrow{B D}-\overrightarrow{C D}|=2 \sqrt{5}$.

BÀI 7. Xác định tất cả các giá trị của m để phương trình $\dfrac{x-m}{x+1}=m+1$ có nghiệm.

Đáp án thang điểm

 

Đáp án đề thi học kì 1 môn toán 10 năm học 2018 trường PTNK – Cơ sở 2

Bài 1. Giải các phương trình sau:
a)$\sqrt{7x+2} = 1 + \sqrt{4x+1}$
b) $\left| x^2-x-1 \right|+3= 2x$
Bài 2. 

a) Tìm $a$, $b$, $c$ biết parabol $(P):y= ax^2 + bx +c$ đi qua điểm $A(1;-1)$ và có đỉnh $I(-1; -5)$.
b) Tìm $m$ để phương trình $(x-1)\left( \sqrt{x+m}-1 \right) =0$ có hai nghiệm là độ dài các cạnh góc vuông của một tam giác vuông với cạnh huyền có độ dài bằng 3.
Bài 3. Cho hệ phương trình
$$\left\{ \begin{array}{l}
(1-2m)x +4y = 4m^2 + 4m +3 \\
mx + 2(m-1)y=-m-2
\end{array} \right. \quad (I) $$
Chứng minh khi $m$ nhận giá trị bất kì trên $\mathbb{R}$, hệ $(I)$ luôn có nghiệm duy nhất. Giả sử $(x_0, 1)$ là nghiệm của hệ $(I)$. Tìm $x_0$.
Bài 4. Cho góc $\alpha$ thỏa $\tan \left( \alpha + \dfrac{\pi}{3} \right) = -\dfrac{ 3\sqrt{3}}{5}$. Tính giá trị của biểu thức:
$$ P=\dfrac{\cos ^3 \alpha + 2\sin \alpha \cdot \cos ^2 \alpha}{\sin ^2 \alpha \cdot \cos \alpha + \sqrt{3} \sin ^3 \alpha }$$
Bài 5. Cho tam giác $ABC$ có $AB=3a$, $AC=6a$, $BC=7a$.
a) Tính $\overrightarrow{AB} \cdot \overrightarrow{AC}$ và $\cos A$.
b) Gọi $M$, $N$ là hai điểm được xác định bởi $\overrightarrow{AM} = \dfrac{2}{3} \overrightarrow{AB}$, $\overrightarrow{AN} = -\dfrac{3}{2} \overrightarrow{AC}$, tính $MN$ theo $a$.

Bài 6. Trong mặt phẳng $Oxy$, cho tam giác $ABC$ có $A(1;3)$, $B(6;-2)$.

a) Tìm tọa độ điểm $C$ sao cho $G(1;1)$ là trọng tâm của tam giác $ABC$.
b) Tìm tọa độ chân đường vuông góc kẻ từ $M(4;3)$ đến đường thẳng $AB$.

Hết

Lời giải

 

Bài 1. 

a) Nghiệm của phương trình: $x=2$.
b) $\left| x^2-x-1 \right| +3= 2x$
$\Leftrightarrow \left| x^2-x-1 \right| = 2x-3 \quad \left( x \ge \dfrac{3}{2} \right) $
$\Leftrightarrow \left[ \begin{array}{l}
x^2-x-1 = 2x-3 \\\\
x^2-x-1=3-2x
\end{array} \right. $
Từ đó suy ra nghiệm của phương trình: $x=2$ hoặc $x=\dfrac{\sqrt{17}-1}{2}$

Bài 2.

a) $P$ qua điểm $A(1;-1)$ nên $-1=a+b+c$.

$(P)$ có đỉnh $I(-1;-5)$ nên $-5=a-b+c$ và $-\dfrac{b}{2a}= -1$.

Từ đó suy ra $P: y= x^2 + 2x-4$.
b) Điều kiện: $x\ge -m$

Từ phương trình suy ra: $\left[ \begin{array}{l}
x= 1 \\\\
x= 1-m
\end{array} \right. $

Để hai nghiệm là độ dài các cạnh góc vuông của tam giác vuông có cạnh huyền bằng 3 thì: $1^2 + (1-m)^2 =3^2$ $\Rightarrow \left[ \begin{array}{l}
m= 1+2\sqrt{2} \\\\
m= 1-2\sqrt{2} \quad \text{(loại vì } x\ge -m)
\end{array} \right. $

Vậy $m=1+2\sqrt{2}$.

Bài 3. 

$D= \left| \begin{array}{*{20}{c}}
{1-2m}&{4}\\\\
{m}&{2(m-1)}
\end{array} \right| = (1-2m)(2m-2)-4m = -4m^2+2m-2 $

$D_x = \left| \begin{array}{*{20}{c}}
{4m^2+4m+3}&{4}\\\\
{-m-2}&{2(m-1)}
\end{array} \right| = 8m^3+2m+2 $

$D_y= \left| \begin{array}{*{20}{c}}
{1-2m}&{4m^2+4m+3}\\\\
{m}&{-m-2}
\end{array} \right| = -4m^3-2m^2-2 $

$D=0 \Leftrightarrow -4m^2+2m-2 =0$ (vô nghiệm).

Suy ra $D \ne 0$ với mọi $m \in \mathbb{R}$

Vậy với mọi $m \in \mathbb{R}$ thì hệ $(I)$ luôn có nghiệm duy nhất.

Khi $(x_0;1)$ là nghiệm của hệ $(I)$ thì $y=\dfrac{D_y}{D}=\dfrac{-4m^3-2m^2-2}{-4m^2+2m-2}=1 \Leftrightarrow m=0$

Khi đó $x=\dfrac{D_x}{D}= \dfrac{2}{-2}=-1$

Bài 4.

$\tan\left( \alpha + \dfrac{\pi}{3} \right) =\dfrac{\tan \alpha + \tan \dfrac{\pi}{3}}{1-\tan \alpha \cdot \tan \dfrac{\pi}{3}} = -\dfrac{3\sqrt{3}}{5} \Leftrightarrow \tan \alpha = 2\sqrt{3}$

$P=\dfrac{\cos ^3 \alpha + 2\sin \alpha \cdot \cos ^2 \alpha}{\sin ^2 \alpha \cdot \cos \alpha + \sqrt{3} \sin ^3 \alpha } = \dfrac{1+2\tan \alpha}{\tan ^2 \alpha + \sqrt{3} \tan ^3 \alpha} = \dfrac{1+4\sqrt{3}}{84}$

Bài 5. 

a) $\overrightarrow{AB} \cdot \overrightarrow{AC} = -2a^2$; $\cos A = \dfrac{-2a^2}{3a\cdot 6a}= -\dfrac{1}{9}$
b) $\overrightarrow{MN} = \overrightarrow{AN} – \overrightarrow{AM} = -\dfrac{3}{2} \overrightarrow{AC} – \dfrac{2}{3} \overrightarrow{AB} \Rightarrow MN^2=\overrightarrow{MN}^2 = \ldots = 81a^2 \Rightarrow MN = 9a$

Bài 6. 

a) $C(-4;2)$
b) Gọi chân đường vuông góc hạ từ $M$ đến $AB$ là $H(x,y)$

Ta có: $\left\\{ \begin{array}{l}
\overrightarrow{MH} \bot \overrightarrow{AB} \\\\
\overrightarrow{AH} \parallel \overrightarrow{AB}
\end{array} \right. $

Từ đó suy ra: $H\left( \dfrac{5}{2}; \dfrac{3}{2} \right) $

Đáp án đề thi HK1 lớp 11 trường PTNK năm học 2017 – 2018

Bài 1. Giải các phương trình sau:
a)  $ 2\cos ^2 \dfrac{x}{2}+\sqrt{3}\sin x=1+2\sin 3x $
b) $ 3 \tan^2 x+4\tan x+4\cot x+3\cot^2 x+2=0 $

Bài 2. Gọi S là tập tất cả các số tự nhiên gồm 4 chữ số phân biệt được chọn từ các số 1;2;3;4;5;6;7. Lấy ngẫu nhiên một số từ S. Tính xác suất để lấy được số có mặt chữ số 6.

Bài 3. Trong khai triển của $ \left(2x^3-\dfrac{3}{x^2}\right)^n $ với $ n $ là số nguyên dương thỏa $ 2C_{n+6}^{5}=7A_{n+4}^3, $ tìm số hạng không chứa $ x? $

Bài 4. Tìm số hạng đầu và công sai của cấp số cộng $ (u_{n}) $ biết rằng công sai của $ (u_{n}) $ là số nguyên dương và
$u_{1}+u_{3}+u_{5}=15, \dfrac{1}{u_{1}}+\dfrac{1}{u_{3}}+\dfrac{1}{u_{5}}=\dfrac{59}{45} $.

Bài 5. Trong mặt phẳng tọa độ Oxy, cho điểm $ I(2;-5) $ và đường thẳng $ d:3x-2y+3=0. $ Viết phương trình đường thẳng $ d’ $ là ảnh của $ d $ qua phép đối xứng tâm $ I. $

Bài 6. Cho hình chóp $ S.ABCD $ có đáy $ ABCD $ là hình thang có $ AD $ là đáy lớn, $ AD=2BC. $ Gọi $ O $ là giao điểm của $ AC $ và $ BD. $ Gọi $ G_{1},G_{2} $ lần lượt là trọng tâm $ \Delta SCD, \Delta SAB, \ E $ là trung điểm $ SD. $
a)  Mặt phẳng $ (BCE) $ cắt $ SA $ tại $ F. $ Chứng minh: $ F $ là trung điểm $ SA. $
b) Chứng minh $ G_{1}G_{2} \parallel (SAD) $
c) Chứng minh $ (OG_{1}G_{2}) \parallel (SBC) $
d) Gọi $ M $ là điểm trên cạnh $ AB $ sao cho $ AB=4AM. $ Mặt phẳng $ (P) $ qua $ M $ và song song với $ BC, SD. $ Xác định thiết diện của hình chóp với mặt phẳng $ (P). $ Thiết diện là hình gì?

Hết

Đáp án

[userview]

Bài 1.

a) Phương trình tương đương với
$$
\begin{aligned}
& \cos x+\sqrt{3} \sin x=2 \sin 3 x \\
\Leftrightarrow & \frac{1}{2} \cos x+\frac{\sqrt{3}}{2} \sin x=\sin 3 x \\
\Leftrightarrow & \sin \left(x+\frac{\pi}{6}\right)=\sin 3 x \\
\Leftrightarrow x+\frac{\pi}{6}=3 x+k 2 \pi \text { hoặc } x+\frac{\pi}{6}=\pi-3 x+k 2 \pi \\
\Leftrightarrow x=\frac{\pi}{12}+k \pi \text { hoặc } x=\frac{5 \pi}{24}+\frac{k \pi}{2}, k \in \mathbb{Z}
\end{aligned}
$$

Bài 2. Gọi $\overline{a b c d}(a \neq 0)$ là số tự nhiên có 4 chữ số phân biệt được chọn từ các chữ số 1,2,3,4,5,6,7 .
$\overline{a b c d}:$ Có $A_{7}^{4}=840$ số tự nhiên có 4 chữ số phân biệt được chọn từ các chữ số 1,2,3,4,5,6,7
$\Longrightarrow|\Omega|=840$Gọi A là biên có sao cho số dược lậy là một số có mặt chữ số $6 .$
$$
|A|=4 . A_{6}^{3}=480 \Longrightarrow P(A)=\frac{|A|}{|\Omega|}=\frac{4}{7}
$$

Bài 3. 

\begin{aligned}
&2 C_{n+6}^{5}=7 A_{n+4}^{3} \Longleftrightarrow 2 \cdot \frac{(n+6) !}{5 !(n+1) !}=7 \cdot \frac{(n+4) !}{(n+1) !} \Longleftrightarrow \frac{(n+6) !}{(n+4) !}=420 \Longleftrightarrow(n+6)(n+5)=\\
&420 \Longleftrightarrow n^{2}+11 n-390=0 \Longleftrightarrow\left[\begin{array}{l}
n=15 \\
n=-26
\end{array} \Longleftrightarrow n=15(\text { vì n là số tự nhiên })\right.\\
&\text { Công thức } \mathrm{SHTQ}: T_{k+1}=C_{15}^{k} \cdot\left(2 x^{3}\right)^{15-k} \cdot\left(-\frac{3}{x^{2}}\right)^{k}=C_{15}^{k} \cdot 2^{15-k} \cdot(-3)^{k} \cdot x^{45-5 k}\\
&\text { Để số hạng không chứa } x \Longleftrightarrow 45-5 k=0 \Longleftrightarrow k=9 \text { . }\\
&\text { Vậy số hạng không chứa } \mathrm{x}: T_{10}=C_{15}^{9} .2^{6} \cdot(-3)^{9}=-6304858560 \text { . }
\end{aligned}

Bài 4. $\left\{\begin{array}{l}
u_{1}+u_{3}+u_{5}=15(1) \\
\frac{1}{u_{1}}+\frac{1}{u_{3}}+\frac{1}{u_{5}}=\frac{59}{45}(2) \end{array} \right.$
$(1) \Longleftrightarrow 3 u_{3}=15 \Longleftrightarrow u_{3}=5 $
$(2) \Longleftrightarrow \frac{1}{u_{1}}+\frac{1}{5}+\frac{1}{u_{5}}=\frac{59}{45} \Longleftrightarrow \frac{1}{u_{1}}+\frac{1}{u_{5}}=\frac{10}{9} $

$\Longleftrightarrow 9\left(u_{1}+u_{5}\right)=10 u_{1} u_{5} $

$\Longleftrightarrow 9.2 u_{3}= 10\left(u_{3}-2 d\right)\left(u_{3}+2 d\right)$

$\Longleftrightarrow 90=10\left(u_{3}^{2}-4 d^{2}\right)=25-4 d^{2}=9 $

$\Longleftrightarrow d^{2}=4$

$\Longleftrightarrow d=2(\text{vì} d>0) $
$u_{3}=5 \Longleftrightarrow u_{1}+2 d=5 \Longleftrightarrow u_{1}=5-2 d=1$.
và $u_{1}=1,d=2$

Bài 5. 

Gọi $M^{\prime}\left(x^{\prime} ; y^{\prime}\right)$ là ảnh của $\mathrm{M}$ qua phép đối xứng tâm $\mathrm{I} \Longleftrightarrow \mathrm{I}$ là trung điểm của $\mathrm{MM}^{\prime} \Longleftrightarrow$
$$
\left\{\begin{array}{l}
x_{I}=\frac{x_{M}+x_{M^{\prime}}}{2} \\
y_{I}=\frac{y_{M}+y_{M^{\prime}}}{2}
\end{array} \Longleftrightarrow\left\{\begin{array}{l}
4=x+x^{\prime} \\
-10=y+y^{\prime}
\end{array} \Longleftrightarrow\left\{\begin{array}{l}
x=4-x^{\prime} \\
y=-10-y^{\prime}
\end{array}\right.\right.\right.
$$
Ta có: $3 x-2 y+3=0 \Longleftrightarrow 3\left(4-x^{\prime}\right)-2\left(-10-y^{\prime}\right)+3=0 \Longleftrightarrow 12-3 x^{\prime}+20+2 y^{\prime}+3=0 \Longleftrightarrow$
$3 x^{\prime}-2 y^{\prime}-35=0$
Vậy M’ thuộc dường thẳng d’:3x-2y-35=0.
Vậy ảnh của đường thẳng d qua phép đối xứng tâm I là đường thẳng $\mathrm{d}^{\prime}: 3 \mathrm{x}-2 \mathrm{y}-35=0 .$

Bài 6. 

a) Ta có: $C \in(S A C) \cap(B C E)(1)$.
Trong $(S B D)$ gọi $\mathrm{K}$ là giao diểm của $\mathrm{SO}$ và $\mathrm{BE}$ mà $S O \subset(S A C), B E \subset(B C E)=K \in$
$(S A C) \cap(B C E)(2)$
$(1)(2) \Longrightarrow C K=(S A C) \cap(B C E)$
Trong $(S A C)$ gọi $\mathrm{F}$ là giao điểm của $\mathrm{SA}$ và $\mathrm{CK}$ mà $\mathrm{CK} \subset(B C E)=F=\operatorname{SAn}(B C E) .$ $\mathrm{Vi} A D \| B C=\frac{O C}{O A}=\frac{O B}{O D}=\frac{B C}{A D}=\frac{1}{2} \Longleftrightarrow \frac{C O}{C A}=\frac{B O}{B D}=\frac{1}{3}$
Xét $\triangle S O D$ : Áp dụng định lý Menelaus với 3 điểm $\mathrm{B}, \mathrm{K}, \mathrm{E}$ thẩng hàng ta có:
$\frac{C O}{C A} \cdot \frac{K S}{K O} \cdot \frac{F A}{F S}=1 \Longleftrightarrow \frac{F A}{F S}=1 \Longleftrightarrow \mathrm{F}$ là trung điẻm $\mathrm{SA}$
b) Trong (SAB), goi P là giao điểm của $S G_{1}$ và AB. Vì $G_{1}$ là trọng tâm của $\triangle S A B=P$
là trung điểm của AB.

Trong (SCD), gọi P là giao điểm của $S G_{2}$ và CD. Vì $G_{2}$ là trọng tàm của $\triangle S C D=\mathrm{Q}$
là trung điểm của CD. Xét $\triangle S P Q$ ta có: $\frac{S G_{1}}{S P}=\frac{2}{3}=\frac{S G_{2}}{S Q}=G_{1} G_{2} \| P Q(3)$

Xét hình thang ABCD ta có: PQ là đường trung bình của hình thang ABCD (do P,Q làn
lượt là trung điểm của $\mathrm{AB}, \mathrm{CD} \Longrightarrow P Q \| A D(4)$
$$
\text { Tì }(3)(4)=G_{1} G_{2}\left\|A D, \operatorname{mà} \mathrm{AD} \subset(\mathrm{SAD})=G_{1} G_{2}\right\|(S A D)
$$
c) Ta có: $G_{1} G_{2} \| A D$ mà $A D\left\|B C=G_{1} G_{2}\right\| B C=G_{1} G_{2} \|(S B C)(5)$
Trong (SAB), gọi H là giao điểm của $A G_{1}$ và $\mathrm{SB}$. Vì $G_{1}$ là trọng tần của $\triangle S A B=\mathrm{H}$
là trung điểm của $\mathrm{SB}$. Xét $\triangle H A C$ ta có: $\frac{A O}{A C}=\frac{2}{3}=\frac{A G_{1}}{A H}=O G_{1}\left\|C H \operatorname{mà} C H \subset(S B C)=O G_{1}\right\|(S B C)(6)$
Tì $(5)(6)=\left(O G_{1} G_{2}\right) \|(S B C)$
d) Ta có: $M \in(P) \cap(A B C D) \operatorname{mà}(P)\left\|B C=(P) \cap(A B C D)=x M x^{\prime}\right\| B C$.
Trong (ABCD), gọi N là giao diểm của xMx’ và CD.
Ta có: $N \in(P) \cap(S C D) \operatorname{mà}(P)\left\|S D=(P) \cap(S C D)=y N y^{\prime}\right\| S D$
Trong (SCD) gọi I là giao diểm của yNy’ và SC.
Ta có: $I \in(P) \cap(S B C) \operatorname{mà}(P)\left\|B C \Longrightarrow(P) \cap(S B C)=t I t^{\prime}\right\| B C .$
Trong (SBC), gọi J là giao điểm của tIt’ và SB. $((P) \cap(A B C D)=M N$
$\Longrightarrow$ thiệt diê
Ta có: $M N\|I J\| A D=M N I J$ là hình thang.

[/userview]

Đáp án đề thi học kì 1 môn Toán 11 trường Phổ thông Năng khiếu

ĐỀ THI VÀ ĐÁP ÁN HK1 TOÁN LỚP 11 TRƯỜNG PTNK

Bài 1. Giải các phương trình
a) $\dfrac{\sin x + \sin 3x – 1}{2\cos x – 1} = 1$.
b) $\dfrac{1}{\sin x} + \dfrac{1}{\cos x} = 4\sqrt{2}\cos 2x$.

Bài 2.
a) Một bình chứa các quả cầu có kích thước khác nhau gồm 6 quả cầu đỏ, 10 quả cầu xanh và 14 quả cầu vàng. Chọn ngẫu nhiên 5 quả cầu. Tính xác suất để 5 quả cầu chọn được có đủ 3 màu, trong đó số quả cầu màu vàng và màu xanh bằng nhau.
b) Từ các số 0, 1, 2, 3, 4, 5, 6 hỏi có thể lập được bao nhiêu số tự nhiên chẵn có 6 chữ số phân biệt sao cho số đó chia hết cho 3.

Bài 3.
a) Tìm hệ số của $x^3$ trong khai triển thu gọn biểu thức $(2\sqrt{x} – \dfrac{3}{x})^{15}$\
b) Tìm số nguyên dương $x$ thỏa mãn đẳng thức $C_{x+2}^{x-1} + C_{x+2}^x = \dfrac{10}{3}A_x^2$.

Bài 4. Trong mặt phẳng tọa độ $Oxy$ cho đường thẳng $(d): x – y – 1 = 0$ và vectơ $\vec{u} = (-2;1)$. Tìm ảnh $(d’)$ của đường thẳng $(d)$ qua phép tịnh tiến theo $\vec{u}$.

Bài 5. Cho hình chóp $S.ABCD$ có đáy là hình thang, $AD // BC$ và $AD = 2BC$. Gọi $O$ là giao điểm của $AC$ và $BD$ và $M$ là trung điểm $SD$.
a) Tìm giao tuyến của mặt phẳng $(SAB)$ và $(SCD)$; $(SAD)$ và $(SBC)$.
b) Chứng minh $CM // (SAB)$. Tìm giao tuyến của $(SAB)$ và $(AMC)$.
c) Tìm giao điểm $I$ của $SC$ và $(ABM)$. Chứng minh $OI // (SAD)$.

Hết 

Đáp án  ĐỀ-THI-HỌC-KÌ-I-2015-2016-ĐÁP-ÁN

 

Đáp án đề học kì môn toán 11 – PTNK năm học 2019 – 2020

Bài 1.

a) $\sin 3 x-\sqrt{3} \cos 3 x=2\left(\cos ^{2} x-\sin ^{2} x\right)$

b) $\dfrac{\sin 2 x+2 \sin 2 x \cos 4 x}{\cos 3 x}=1$

Bài 2.

a) Từ các chữ số 0,1,2,3,4,5,6,7,8 có bao nhiêu số tự nhiên có 4 chữ số khác nhau mà có đúng 1 chữ số lẻ?

b) Lớp X có 30hs trong đó có 3 bạn Mai, An, Bình. Để tham gia trò chơi kéo có cần 10 học sinh. Tính xác suất để trong 10 học sinh được chọn có ít nhất 2 trong 3 bạn Mai, An và Bình nói trên.

Bài 3.  Cho số tự nhiên $n$ thỏa $A_{n}^{2}+3 C_{n+1}^{n}=38 .$ Tìm số hạng chứa $x^{5}$ trong khai triển $\left(\sqrt{x}-3 x^{3}\right)^{n}$

Bài 4. Cho cấp số cộng $u_{n}$ với công sai $d$ thỏa điều kiện:

$$
\left\{\begin{array}{l}
S_{20}-S_{15}=500 \\
u_{20}-u_{15}=75
\end{array} \right.$$

$S_{n}=u_{1}+u_{2}+\ldots+u_{n} $. Tìm $u_{1}, d$.

Bài 5. Trong mặt phẳng $O x y,$ cho các đường thẳng $d_{1}: 3 x-6 y-15=0$ và $d: y=x$. Gọi $d_{2}$ là ảnh của $d_{1}$ qua phép đối xứng trục $d$. Tìm tọa độ giao điểm của $d_{2}$ với trục tung.

Bài 6. Cho hình chóp $S . A B C D$ có đáy là hình bình hành tâm $O, M, N$ lần lượt là trung điểm $S A, C D$.

a) Tìm giao tuyến của măt phẳng $(S A C)$ và $(S B D) ;(S A D)$ và $(S B N)$.

b) Gọi $G$ là trọng tâm tam giác $A C D, K$ là trọng tâm tam giác $S B D$. Chứng minh: $G K |(S A D) . B K$ cắt $S D$ tại $I$. Chứng minh $I$ thuộc mặt phẳng $(O M N)$

c) Chứng minh: $SB \parallel (O M N)$ và tìm giao điểm của mặt phẳng $(A N K)$ với $S B$.

Lời giải

Bài 1.

a) $\sin 3 x-\sqrt{3} \cos 3 x=2\left(\cos ^{2} x-\sin ^{2} x\right)$
$\Leftrightarrow \dfrac{1}{2} \sin 3 x-\dfrac{\sqrt{3}}{2} \cos 3 x=\cos 2 x$
$\Leftrightarrow \cos \left(3 x+\dfrac{\pi}{6}\right)=\cos (2 x+\pi)$
$\Leftrightarrow\left[\begin{array}{c}x=\dfrac{5 \pi}{6}+k 2 \pi \ x=-\dfrac{7 \pi}{6}+\frac{k 2 \pi}{5}\end{array}(k \in \mathbb{Z}\right.$
b) $\dfrac{\sin 2 x+2 \sin 2 x \cos 4 x}{\cos 3 x}=1$
Điều kiện: $x \neq \dfrac{\pi}{6}+\dfrac{k \pi}{3}$
$\Leftrightarrow \sin 2 x+\sin 6 x-\sin 2 x=\cos 3 x$
$\Leftrightarrow \cos \left(\dfrac{\pi}{2}-6 x\right)=\cos 3 x$
$\Leftrightarrow\left[\begin{array}{l}x=\dfrac{\pi}{18}-\frac{k 2 \pi}{9} \ x=\dfrac{\pi}{6}-\dfrac{k 2 \pi}{3}\end{array}(k \in \mathbb{Z})\right.$
So sánh với điều kiện, ta được hoăc $\dfrac{5 \pi}{18}+\dfrac{k 2 \pi}{3}$

Bài 2. 

$\quad$ a) Từ các chữ số 0,1,2,3,4,5,6,7,8 có bao nhiêu số tự nhiên có 4 chữ số khác nhau mà có đúng 1 chữ số lẻ? Gọi số cần tìm: $\overline{a b c d}$ +TH1: a là số lẻ, có 4 cách Ta có: $4 \times A_{5}^{3}$
+TH2: a là số chãn, có 4 cách Ta chọn ra 1 số lẻ rồi xếp vào 3 vị trí còn lại: $4 \times 3$ Nên có: $4 \times 4 \times 3 \times A_{4}^{2}$
Do đó, có tất cả: 816 số.
b) Lớp X có 30hs trong đó có 3 bạn Mai, An, Bình. Để tham gia trò chơi kéo có cần 10 học sinh. Tính xác suất để trong 10 học sinh được chọn có ít nhất 2 trong 3 bạn Mai, An và Bình nói trên. Không gian mẫu: $|\Omega|=C_{30}^{10}$ Xác suất để trong 10 học sinh được chọn có ít nhất 2 trong 3 bạn Mai, An và Bình là: $P=\dfrac{C_{27}^{7}+3 C_{27}^{8}}{C_{30}^{10}}=\dfrac{51}{203}$.

Bài 3. 

Cho số tự nhiên $n$ thỏa $A_{n}^{2}+3 C_{n+1}^{n}=38 .$ Tìm số hạng chứa $x^{5}$ trong khai triển $\left(\sqrt{x}-3 x^{3}\right)^{n}$
Ta có: $A_{n}^{2}+3 C_{n+1}^{n}=38$
$\Leftrightarrow \dfrac{n !}{(n-2) !}+3 \cdot \dfrac{(n+1) !}{n !}=38$
$\Rightarrow n=5$
Nên $\left(\sqrt{x}-3 x^{3}\right)^{5}$ có $\mathrm{SHTQ}: C_{5}^{k}(-3)^{k} \cdot x^{\frac{5}{2}}(k+1)$
Theo ycbt ta được: $k=1$. Do đó, số hạng chứa $x^{5}$ là $-15 x^{5}$

Bài 4.
$$
\left\{\begin{array}{l}
S_{20}-S_{15}=500 \\
u_{20}-u_{15}=75
\end{array} \right.$$
Từ phương trình ( 2 ) ta được: $d=15$, thế vào ta được $u_{1}=-155$.
Bài 5. Trong mặt phẳng $O x y,$ cho các đường thẳng $d_{1}: 3 x-6 y-15=0$ và $d: y=x$. Gọi $d_{2}$ là ảnh của $d_{1}$ qua phép đối xứng trục $d$. Tìm tọa độ giao điểm của $d_{2}$ với trục tung. Gọi $M^{\prime}\left(x^{\prime} ; y^{\prime}\right)$ là ảnh của $M(x ; y) \in d_{1}$ qua phép đối xứng trục $d$. Ta có: $\left\{\begin{array}{l}x^{\prime}=y \\ y^{\prime}=x\end{array}\right.$
Nên ta có $d_{2}: 3 y^{\prime}-6 x^{\prime}-15=0$ hay $2 x-y+5=0$
Vậy giao điểm của $d_{2}$ và trục tung là $A(0 ; 5)$

Bài 6. 

a) $+(S A C) \cap(S B D)=S O$
$+$ Gọi $B N \cap A D=E .(S A D) \cap(S B N)=S E$
b) Ta có: $\dfrac{O G}{O D}=\dfrac{O K}{S}=\frac{1}{3}$
$\Leftrightarrow D K | S D$
Nên $G K |(S A D)$
Ta có: $K$ là trọng tâm tam giác $S B D$ nên $I$ là trung điểm $S D \Rightarrow M I | A D$. Ta lại có: $(M N O) \cap(S A D)=M x|A D| O N$.
Do đó: $I \in M x$ nên $I \in(O M N)$.
c) Gọi $F=O N \cap A B,$ ta được $F$ là trung điểm $A B$. $\Rightarrow M F | S B$
$\Rightarrow S B |(O M N)$
$+$ Ta thấy $(A K N) \cap(S B D)=K G$
Gọi $T=K G \cap S B$
Do đó: $T=S B \cap(A K N)$.

Giải nhanh đề học kì 1 gửi đến các em học sinh,  cảm ơn thầy Dương Trọng Đức đã đóng góp cho geosiro.com

LOP 11 PTNK_HK1