Đề và đáp án thi vào 10 không chuyên TPHCM
I. ĐỀ
Bài 1. Giải các phương trình và hệ phương trình sau:
a) $x^2-2\sqrt{5}x+5=0$
b) $4x^4-5x^2-9=0$
c) $2x+5y=-1$ và $3x-2y=8 $
d) $x(x+3)=15-(3x-1)$.
Bài 2.
a) Vẽ đồ thị (P) của hàm số $y = \dfrac{-x^2}{4}$ và đường thẳng (D): $y = \dfrac{x}{2}-2$ trên cùng một hệ trục tọa độ.
b) Tìm tọa độ giao điểm của (P) và (D) ở câu trên bằng phép tính.
Bài 3.
a) Thu gọn biểu thức $A = \dfrac{2-\sqrt{3}}{1+\sqrt{4+2\sqrt{3}}} + \dfrac{2+\sqrt{3}}{1-\sqrt{4-2\sqrt{3}}}$
b) Ông Sáu gửi một số tiến vào ngân hàng theo mức lãi suất tiết kiệm với kù hạn 1 năm là 6$\%$. Tuy nhiên sau thời hạn một năm ông Sáu không đến nhận tiền lãi mà để thêm một năm nữa mới lãnh. Khi đó số tiền lãi có được sau năm đầu tiên sẽ được ngân ghàng cộng dồn vào số tiền gửi ban đầu để thành số tiền gửi cho năm kế tiếp với mức lãi suất cũ. Sau 2 năm ông Sáu nhận được số tiền là 112.360.000 đồng kể cả gốc lẫn lãi. Hỏi ban đầu ông Sáu đã gửi bao nhiêu tiền?
Bài 4. Cho phương trình $x^2 – 2mx + m – 2= 0 $(1) ($x$ là ẩn số.)
a) Chứng minh phương trình (1) luôn có 2 nghiệm phân biệt với mọi giá trị $m$.
b) Định $m$ để hai nghiệm $x_1, x_2$ của phương trình (1) thỏa mãn : $(1+x_1)(2-x_2) + (1+x_2)(2-x_1) = x_1^2+x_2^2+2 $
Bài 5. Cho tam giác $ABC$ $(AB < AC) $ có ba góc nhọn. Đường trong tâm $O$ đường kính $BC$ cắt các cạnh $AC, AB$ lần lượt tại $D, E$.
Gọi $H$ là giao điểm của $BD$ và $CE$; $F$ là giao điểm của $AH$ và $BC$.
a) Chứng minh $AF \bot BC$ và $\angle AFD = \angle ACE$.
b) Gọi $M$ là trung điểm của $AH$. Chứng minh $BD \bot OD$ và 5 điểm $M, D, O, F, E$ cùng thuộc một đường tròn.
c) Gọi $K$ là giao điểm của $AH$ và $DE$. Chứng minh $MD^2 = MK.MF$ và $K$ là trực tâm của tam giác $MBC$.
d) Chứng minh $\dfrac{2}{FK} = \dfrac{1}{FH} + \dfrac{1}{FA}$.
II. ĐÁP ÁN
Bài 1. Giải các phương trình và hệ phương trình sau:
a) $x^2 – 2\sqrt{5}x + 5=0$
$\Delta ‘= 0
x_1=x_2 = \sqrt{5}$.
b) $4x^4 – 5x^2 -9 =0$
Đặt $t=x^2 \ge 0$
Phương trình trở thành: $4t^2 – 5t -9=0$
$a-b+c =0$.
$\Rightarrow t_1 =-1$ (loại) và $t_2 = \dfrac{9}{4}$ (nhận)
Với $t=\dfrac{9}{4} \Rightarrow x= \pm \dfrac{3}{2}$
c) $2x + 5y =-1 $ và $3x-2y=8$
$ \Leftrightarrow 4x+ 10y =-2 $ và $15x -10y =40 $
$ \Leftrightarrow x=2$ và $y=-1$.
d) $x(x+3) = 15 – (3x-1) $
$\Leftrightarrow x^2 + 6x -16 =0$
$\Leftrightarrow x_1 =2$; $x_2 = -8$.
Bài 2.
a) Lưu ý: $(P)$ đi qua $O(0;0)$, $( \pm 2 ;-1)$, $\pm 4; -4 )$
$(D)$ đi qua $(2;-1)$, $(0;-2)$
Đồ thị:
b) Phương trình hoành độ giao điểm của $(P)$ và $(D)$ là:
$-\dfrac{x^2}{4}= \dfrac{x}{2}-2 $
$\Leftrightarrow x^2 + 2x -8 =0 $
$\Leftrightarrow x=-4$ hoặc $x=2$
$y(-4) = -4$, $y(2) = -1$
Vậy tọa độ giao điểm của $(P)$ và $(D)$ là $(-4;-4)$, $(2;-1)$.
Bài 3.
a) $A=\dfrac{2-\sqrt{3}}{1+\sqrt{4+2\sqrt{3}}}+ \dfrac{2+\sqrt{3}}{1-\sqrt{4-2\sqrt{3}}} $
$= \dfrac{2-\sqrt{3}}{1+ \left( 1+ \sqrt{3} \right) } + \dfrac{2+\sqrt{3}}{1- \left( \sqrt{3}-1 \right) } $
$= \dfrac{\left( 2+ \sqrt{3} \right) ^2 + \left( 2- \sqrt{3} \right) ^2}{\left( 2+\sqrt{3} \right) \left( 2- \sqrt{3}\right) } $
$=14$
b) Gọi số tiền ban đầu ông Sáu gửi là: $x$ (đồng)
Số tiền vốn và lãi sau năm thứ nhất là: $x+x \cdot 6 \% = 1,06 x$
Số tiền vốn và lãi sau năm thứ hai là: $1,06x + 1,06x \cdot 6\% = 1,06^2 \cdot x$
Theo đề ta được phương trình:\ $1,06^2 \cdot x = 112.360.000 \Rightarrow x= 100.000.000$ (đồng)
Bài 4.
a) $x^2 -2mx +m-2 =0$
$\Delta ‘= m^2 -m+2 = \left( m- \dfrac{1}{2} \right) ^2 + \dfrac{7}{4} >0, \; \forall m$
Do đó phương trình luôn có hai nghiệm phân biệt.
b) Theo Viet, ta có:
$S= x_1+ x_2 = 2m $ và $P = x_1 \cdot x_2 = m-2$
$\left( 1+ x_1 \right) \left( 2-x_2 \right) + \left( 1+ x_2 \right) \left( 2- x_1 \right) = x_1^2 + x_2^2 +2 $
$\Leftrightarrow 2+ x_1 + x_2 = \left( x_1 + x_2 \right) ^2 $
$\Leftrightarrow 2+ 2m = 4m^2 $
$\Leftrightarrow m=1 $ hoặc $m= \dfrac{-1}{2}$
Bài 5.
a)
b)
c)
d)
I. ĐỀ tuyển sinh vào lớp 10 TPHCM 2015
Bài 1. Giải các phương trình và hệ phương trình sau:
a) $x^2 – 8x+15=0$.
b) $2x^2 – \sqrt{2}x -2 =0$.
c) $x^4 -5 x^2 -6=0$.
d) $2x+ 5y = -3$ và $3x-y =4$
Bài 2.
a) Vẽ đồ thị (P) của hàm số $y = x^2$ và đường thẳng (D): $y = x + 2$ trên cùng một hệ trục tọa độ.
b) Tìm tọa độ giao điểm của (P) và (D) ở câu trên bằng phép tính.
Bài 3. Thu gọn các biểu thức sau:
a) $A = \dfrac{{\sqrt x }}{{\sqrt x – 2}} + \dfrac{{\sqrt x – 1}}{{\sqrt x + 2}} + \dfrac{{\sqrt x – 10}}{{x – 4}}\left( {x \ge 0,x \ne 4} \right)$
b) $B = (13-4\sqrt{3})(7+4\sqrt{3})-8\sqrt{20+2\sqrt{43+24\sqrt{3}}}$.
Bài 4. Cho phương trình $x^2 – mx+m-2=0$ (1) ($x$ là ẩn số).
a) Chứng minh phương trình (1) luôn có 2 nghiệm phân biệt với mọi giá trị $m$.
b) Định $m$ để hai nghiệm $x_1, x_2$ của (1) thỏa $\dfrac{x_1^2-2}{x_1-1}.\dfrac{x_2^2-2}{x_2-1} = 4$.
Bài 5. Cho tam giác $ABC$ có $AB < AC$ có ba góc nhọn. Đường tròn tâm $O$ đường kính $BC$ cắt các cạnh $AC, AB$ lần lượt là tại $E, F$. Gọi $H$ là giao điểm của $BE$ và $CF$. D là giao điểm của $AH$ và $BC$.
a) Chứng minh $AD \bot BC$ và $AH.AD = AE.AC$.
b) Chứng minh $EFDO$ là tứ giác nội tiếp.
c) Trên tia đối của tia $DE$ lấy điểm $L$ sao cho $DL = DF$. Tính số đo góc $BLC$.
d) Gọi $R, S$ lần lượt là hình chiếu của $B, C$ lên $EF$. Chứng minh $DE + DF = RS$.
II. ĐÁP ÁN
Bài 1. Giải các phương trình và hệ phương trình sau:
a) $x^2 -8x +15 =0$
$\Delta ‘ =1 $
Hai nghiệm của phương trình là $x_1 = 3$; $x_2 =5$
b) $2x^2 – \sqrt{2}x -2 =0$
$\Delta =18$
Hai nghiệm của phương trình là $x_1 = \sqrt{2}$; $x_2 = \dfrac{-\sqrt{2}}{2}$
c) $x^4 – 5x^2 -6 =0 $
Đặt $t= x^2 \ge 0$
Phương trình trở thành $t^2 -5t -6=0$
$\Delta = 49$
$t_1 = -1$ (loại) và $t_2 = 6$ (nhận)
Với $t=6 \Rightarrow x= \pm \sqrt{6}$
d) $2x+ 5y =-3 \;\; (1)$ và $3x-y =4 \;\; (2)$
$\Leftrightarrow 2x+5y = -3 \;\; (1) $ và $17x = 17 \;\; ((1) + 5\cdot (2))$
$ \Leftrightarrow x=1 $ và $y= -1$.
Bài 2.
a) Lưu ý: $(P)$ đi qua $O(0;0)$, $( \pm 1 ;1)$, $\pm 2; 4 )$
$(D)$ đi qua $(1;3)$, $(0;2)$
Đồ thị:
b) Phương trình hoành độ giao điểm của $(P)$ và $(D)$ là:
$x^2 = x + 2 \Leftrightarrow x^2 -x-2=0 $
$\Leftrightarrow x=-1$ và $x=2$
$y(-1) = 1$, $y(2)=4$
Vậy tọa độ giao điểm của $(P)$ và $(D)$ là $(2;4)$, $(-1;1)$.
Bài 3.
a) $A=\dfrac{\sqrt{x}}{\sqrt{x}-2}+ \dfrac{\sqrt{x}-1}{\sqrt{x}+2}+ \dfrac{\sqrt{x}-10}{x-4} $
$= \dfrac{\sqrt{x} \left( \sqrt{x}+2 \right) + \left( \sqrt{x} -1 \right) \left( \sqrt{x}-2 \right) + \sqrt{x}-10}{x-4} $
$= \dfrac{x+2\sqrt{x}+x – 2\sqrt{x}-\sqrt{x}+2+ \sqrt{x}-10}{x-4}
= \dfrac{2x-8}{x-4} =2$
b) $B=\left( 13- 4\sqrt{3} \right) \left( 7+ 4\sqrt{3} \right) – 8\sqrt{20 + 2\sqrt{43 + 24\sqrt{3}}} $
$= 43 + 24\sqrt{3} – 8 \sqrt{20 + 2\sqrt{\left( 13-4\sqrt{3} \right) \left( 7+4\sqrt{3} \right) }} $
$= 43 + 24\sqrt{3} – 8\sqrt{\left( \sqrt{13-4\sqrt{3}} + \sqrt{7+ 4\sqrt{3}} \right) ^2} $
$= 43 + 24\sqrt{3} -8 \left( \sqrt{\left( 2\sqrt{3}-1 \right) ^2} + \sqrt{\left( 2+ \sqrt{3} \right) ^2 } \right) $
$= 43 + 24\sqrt{3} – 8 \left( 3\sqrt{3}+1 \right) $
$=35$.
Bài 4.
a) $x^2 – mx +m-2 =0$ $(1)$
$\Delta = m^2 -4m +8 = (m-2)^2 + 4 >0, \; \forall m$
Do đó phương trình $(1)$ luôn có hai nghiệm phân biệt.
b) Theo Viet, ta có:
$S= x_1 + x_2 = m $ và $P = x_1 \cdot x_2 = m-2$
$\dfrac{x_1^2 -2}{x_1-1} \cdot \dfrac{x_2^2-2}{x_2-1} =4 $
$\Leftrightarrow x_1^2x_2^2 – 2\left( x_1^2 + x_2^2 \right) + 4 = 4x_1x_2 – 4 \left( x_1 + x_2 \right) +4 $
$\Leftrightarrow P^2 -2 \left( S^2 -2P \right) -4P + 4S =0 $
$\Leftrightarrow P^2 -2S^2 + 4S =0 $
$\Leftrightarrow (m-2)^2 -2m^2 + 4m =0 $
$\Leftrightarrow -m^2 +4 =0 $
$\Leftrightarrow m= \pm 2$
Cách khác:
$x_1$, $x_2$ là hai nghiệm của phương trình nên:
$x_1^2 -mx_1 +m -2=0 \Rightarrow m= \dfrac{x_1^2-2}{x_1-1}$
$x_2^2 -mx_2 +m-2 =0 \Rightarrow m= \dfrac{x_2^2-2}{x_2-1}$
$\dfrac{x_1^2-2}{x_1-1} \cdot \dfrac{x_2^2 -2 }{x_2-1} =4
\Leftrightarrow m^2 =4 \Leftrightarrow m= \pm 2$.
Bài 5.
a) $\angle BEC = \angle BFC =90 ^\circ $
$H$ là trực tâm của $\triangle ABC \Rightarrow$ $AD$ là đường cao của $\triangle ABC \Rightarrow AD \bot BC$.
$\triangle ADC \backsim \triangle AEH \Rightarrow AH \cdot AD = AE \cdot AC$.
b) $\angle EOC = 2\angle EFC $
Tứ giác $HFBD$ nội tiếp $\Rightarrow \angle CFD = \angle EBC$ mà $\angle EBC = \angle CFE$
$\Rightarrow \angle CFD = \angle CFE \Rightarrow \angle DFE = 2\angle CFE$
Suy ra: $\angle EOC = \angle DFE \Rightarrow$ tứ giác $EFDO$ nội tiếp.
c) $EFDO$ nội tiếp $\Rightarrow \angle EDF = \angle EOF = 2\angle FCE$ (1)
Tam giác $DFL$ cân tại $D$ $\Rightarrow \angle EDF = 2\angle FLE$ (2)
Từ (1) và (2) $\Rightarrow \angle FCE = \angle FLE$
$\Rightarrow$ $EFLC$ nội tiếp $\Rightarrow L \in (O) \Rightarrow \angle BLC =90^\circ $
d) $\angle BIC =90^\circ \Rightarrow $ $SRBI$ là hình chữ nhật $\Rightarrow RS= BI$ (3)
$DF = DL$ và $OF = OL \Rightarrow $ $OD$ là trung trực của $FL$
$\Rightarrow \angle BIL = \angle BEF$ (vì cung $BL$ và $BF$ bằng nhau)
Mà $\angle BEF = \angle EBI$ nên $\angle BIL = \angle EBI \Rightarrow BE // LI$
$\Rightarrow $ $BEIL$ là hình thang cân $\Rightarrow EL = BI$ (4)
Từ (3) và (4) $\Rightarrow EL = RS$ hay $DE + DF = RS$.
I. ĐỀ thi vào lớp 10 TPHCM 2014
Bài 1. Giải các phương trình và hệ phương trình sau:
a) $x^2-7x+12 = 0$
b) $x^2-(\sqrt{2}+1)x+\sqrt{2} = 0$
c) $x^4-9x^2+20=0$
d) $3x-2y=4$ và $ 4x-3y=5. $
Bài 2.
a) Vẽ đồ thị (P) của hàm số $y = x^2$ và đường thẳng $(D):y=2x+3$ trên cùng một hệ trục tọa độ.
b) Tìm tọa độ giao điểm của (P) và (D) ở câu trên bằng phép tính.
Bài 3. Thu gọn các biểu thức sau:
a) $A = \frac{{5 + \sqrt 5 }}{{\sqrt 5 + 2}} + \frac{{\sqrt 5 }}{{\sqrt 5 – 1}} – \frac{{3\sqrt 5 }}{{3 + \sqrt 5 }}$
b) $B = \left( {\frac{x}{{x + 3\sqrt x }} + \frac{1}{{\sqrt x + 3}}} \right):\left( {1 – \frac{2}{{\sqrt x }} + \frac{6}{{x + 3\sqrt x }}} \right)$ với $x > 0$.
Bài 4. Cho phương trình $x^2-mx-1=0$ (1) ($x$ là ẩn).
a) Chứng minh phương trình (1) luôn có hai nghiệm trái dấu.
b) Gọi $x_1, x_2$ là các nghiệm của phương trình (1). Tính giá trị của biểu thức $P = \dfrac{x_1^2+x_1-1}{x_1} – \dfrac{x_2^2+x_2-1}{x_2}$.
Bài 5. Cho tam giác $ABC$ có ba góc nhọn, nội tiếp đường tròn tâm $O$ $(AB < AC)$. Các đường cao $AD$ và $CF$ của tam giác $ABC$ cắt nhau tại $H$.
a) Chứng minh tứ giác $BFHD$ nội tiếp. Suy ra $\angle AHC = 180^o – \angle ABC$.
b) Gọi $M$ là điểm bất kì trên cung nhỏ $BC$ của đường tròn $(O)$. ($M$ khác $B$ và $C$) và $N$ là điểm đối xứng của $M$ qua $AC$. Chứng minh tứ giác $AHCN$ nội tiếp.
c) Gọi $I$ là giao điểm của $AM$ và $HC$. $J$ là giao điểm của $AC$ và $HN$. Chứng minh $\angle AJI = \angle ANC$.
d) Chứng minh rằng $OA$ vuông góc với $IJ$.
II. ĐÁP ÁN
Bài 1.
a) $x^2 – 7x +12 =0$
$\Delta =1 $
Hai nghiệm của phương trình là $x_1 = 3$; $x_2 =4$
b) $x^2 – \left( \sqrt{2}+1 \right) + \sqrt{2} = 0 $
Phương trình có $a+b+c = 0$ nên hai nghiệm là $x_1=1$; $x_2 = \sqrt{2}$
c) $x^4 – 9x^2 +20 =0$
Đặt $t= x^2 \ge 0$
Phương trình trở thành: $t^2 -9t +20 =0$
$\Delta =1 $
$t_1 =4$ (nhận) và $t_2 =5$ (nhận)
Với $t=4 \Rightarrow x= \pm 2$; với $t=5 \Rightarrow x= \pm \sqrt{5}$
d) $3x-2y=4 (1) $ và $4x-3y =5 (2)$
$\Leftrightarrow 3x-2y=4 (1) $ và $x= 2 (3\cdot (1) – 2 \cdot (2))$
$\Leftrightarrow x=2$ và $y=1$.
Bài 2.
a) Đồ thị:
Lưu ý: $(P)$ đi qua $O(0;0)$, $( \pm 1 ;1)$, $\pm 2; 4 )$
$(D)$ đi qua $(-1;1)$, $(0;3)$
b) Phương trình hoành độ giao điểm của $(P)$ và $(D)$ là:
$x^2 = 2x+3 \Leftrightarrow x^2 -2x -3 =0$
$\Leftrightarrow x = -1$ và $x= 3$
$y(-1) = 1$; $y(3) =9 $
Vậy tọa độ giao điểm của $(P)$ và $(D)$ là $(-1;1)$, $(3;9)$.
Bài 3.
a) $A= \dfrac{5+ \sqrt{5}}{\sqrt{5}+2} + \dfrac{\sqrt{5}}{\sqrt{5}-1}- \dfrac{3\sqrt{5}}{3+ \sqrt{5}} $
$= \dfrac{\left( 5+ \sqrt{5} \right) \left( \sqrt{5}-2 \right) }{1} + \dfrac{\sqrt{5}\left( \sqrt{5}+1 \right) }{4} – \dfrac{3\sqrt{5}\left( 3- \sqrt{5} \right) }{4} $
$= 3\sqrt{5}-5 + \dfrac{5+ \sqrt{5}-9\sqrt{5}+15}{4} $
$=3\sqrt{5}-5 + 5 -2\sqrt{5} = \sqrt{5}$.
b) $B=\left( \dfrac{x}{x+ 3\sqrt{x}}+ \dfrac{1}{\sqrt{x}+3} \right) : \left( 1- \dfrac{2}{\sqrt{x}} + \dfrac{6}{x+ 3\sqrt{x}} \right) \hspace{1.5cm} (x > 0) $
$= \left( \dfrac{\sqrt{x}}{\sqrt{x}+3} + \dfrac{1}{\sqrt{x}+3} \right) : \left( \dfrac{x+ 3\sqrt{x}- 2 \left( \sqrt{x} + 3 \right) + 6}{\sqrt{x} \left( \sqrt{x}+ 3 \right) } \right) $
$= \left( \dfrac{\sqrt{x}+ 1}{\sqrt{x} + 3} \right) : \left( \dfrac{\sqrt{x}+ 1}{\sqrt{x}+3} \right) =1$
Bài 4.
a) $x^2 – mx -1 =0$ $(1)$
$\Delta = m^2 + 4 >0$
Do đó phương trình luôn có hai nghiệm phân biệt với mọi $m$.
Theo Viet, ta có: $P = x_1 \cdot x_2 = \dfrac{c}{a} = -1 <0 $
Vậy phương trình luôn có hai nghiệm trái dấu.
b) Theo Viet, ta có:
$S= x_1 + x_2 = m $ và $P = x_1 \cdot x_2 = -1$
$P = \dfrac{x_1^2 + x_1 -1}{x_1} – \dfrac{x_2^2 + x_2 -1}{x_2} $
$= \dfrac{x_1^2 + x_1 + x_1 x_2}{x_1} – \dfrac{x_2^2 + x_2 + x_1 x_2 }{x_2} $
$= x_1 + 1 + x_2 – x_2 -1 -x_1 =0$
Bài 5.
a) Ta có:
$\angle BFC = \angle BDA = 90^ \circ$ ($AD$, $CF$ là các đường cao)
$\Rightarrow \angle BFC + \angle BDA =180^ \circ \Rightarrow $ tứ giác $BFHD$ nội tiếp
$\Rightarrow \angle ABC + \angle DHF =180 ^\circ $
$\angle ABC + \angle AHC = 180 ^\circ $
$\angle AHC = 180 ^\circ – \angle ABC$.
b) Ta có $\angle AMC = \angle ABC$ ( cùng chắn cung $AC$)
$\angle AMC = \angle ANC$ (tính chất đối xứng)
$\Rightarrow \angle ANC = \angle ABC$
Mà $\angle AHC + \angle ABC = 180 ^\circ$
$\Rightarrow \angle AHC + \angle ANC = 180 ^\circ$
$\Rightarrow $ $AHCN$ nội tiếp.
c) Ta có $\angle MAC = \angle NAC$ ( tính chất đối xứng)
$\angle NAC = \angle NHC $ (cùng chắn cung $NC$)
$\Rightarrow \angle MAC = \angle NHC$ hay $\angle IAJ = \angle IHJ $
$\Rightarrow $ $AHIJ$ nội tiếp (2 đỉnh kề cùng nhìn cạnh dưới góc bằng nhau)
$\Rightarrow \angle AJI = 180 ^\circ \angle AHC = \angle ANC$.
d) Vẽ tiếp tuyến $xy$ của $(O)$ tại $A$ $\Rightarrow OA \bot xy$
$\angle AJI = \angle ANC = \angle AMC = \angle yAC \Rightarrow IJ // xy $
$\Rightarrow OA \bot IJ$.
I. ĐỀ
Câu 1.
a) Giải các phương trình: $x^2=(x-1)(3x-2)$.
b) Một miếng đất hình chữ nhật có chu vi $100m$. Tính chiều dài và chiều rộng của miếng đất biết rằng 5 lần chiều rộng hơn 2 lần chiều dài $40m$.
Câu 2. Trong mặt phẳng tọa độ $Oxy$:
a) Vẽ đồ thị $(P)$ của hàm số $y=\dfrac{1}{4}x^2$.
b) Cho đường thẳng $(D):y=\dfrac{3}{2}x+m$ đi qua điểm $C(6;7)$. Tìm tọa độ giao điểm $(D)$ và $(P)$.
Câu 3.
a) Thu gọn biểu thức $A=(\sqrt{3}+1)\sqrt{\dfrac{14-6\sqrt{3}}{5+\sqrt{3}}}$.
b) Lúc 6 giờ sáng , bạn An đi xe đạp từ nhà (điểm $A$) đến trường (điểm $B$) phải leo lên và xuống một con dốc (như hình bên dưới). Cho biết đoạn thằng $AB$ dài $762m$, góc $A=6^\circ$, góc $B=4^\circ$.
Câu 4. Cho phương trình: $x^2-(2m-1)x+m^2-1=0\,(1)$ ($x$ là ẩn số).
a) Tìm điều kiện của $m$ để phương trình $(1)$ có 2 nghiệm phân biệt.
b) Định $m$ để hai nghiệm $x_1$, $x_2$ của phương trình $(1)$ thỏa mãn:
$$(x_1-x_2)^2=x_1-3x_2$$
Câu 5. Cho tam giác $ABC$ vuông tại $A$. Đường tròn tâm $O$ đường kính $AB$ cắt các đoạn $BC$ và $OC$ lần lượt tại $D$ và $I$. Gọi $H$ là hình chiếu của $A$ lên $OC$; $AH$ cắt $BC$ tại $M$.
a) Chứng minh tứ giác $ACDH$ nội tiếp và $\angle{CHD}=\angle{ABC}$.
b) Chứng minh hai tam giác $OHB$ và $OBC$ đồng dạng và $HM$ là tia phân giác của góc $BHD$.
c) Gọi $K$ là trung điểm $BD$. Chứng minh $MD.BC=MB.CD$ và $MB\cdot MD=MK\cdot MC$.
d) Gọi $E$ là giao điểm của $AM$ và $OK$; $J$ là giao điểm của $IM$ và $(O)$ ($J$ khác $I$). Chứng minh hai đường thẳng $OC$ và $EJ$ cắt nhau tại một điểm nằm trên $(O)$.
II. ĐÁP ÁN
Câu 1.
a) $x^2 = (x-1)(3x-2) $
$\Leftrightarrow x^2= 3x^2 – 5x + 2 $
$\Leftrightarrow 2x^2 – 5x+2=0 $
$\Leftrightarrow 2x^2 – 4x -x +2 =0 $
$\Leftrightarrow 2x(x-2)-(x-2) =0 $
$\Leftrightarrow (x-2)\left( 2x-1 \right) =0 $
$\Leftrightarrow x=2$ hoặc $x=\dfrac{1}{2} $
b) Gọi $a$, $b$ (m) lần lượt là chiều dài và chiều rộng của hình chữ nhật. ($a,b >0$)
Ta có hệ phương trình:
$2(a+b) = 100$ và $5b-2a=40$
$\Leftrightarrow a=30$ và $b= 20$
Vậy chiều dài và chiều rộng của hình chữ nhật lần lượt là 30m và 20m.
Câu 2. Trong mặt phẳng tọa độ $Oxy$:
a) Đồ thị:
Đồ thị $(P)$ đi qua điểm $(2; 1)$, $(-2;1)$ và $O(0;0)$
b) Đường thẳng $(D)$ đi qua điểm $C(6;7)$ nên
$7=\dfrac{3}{2}.6+m \Rightarrow m= -2$
Do đó phương trình đường thẳng $(D)$ là $(D):y=\dfrac{3}{2}x-2$.
Phương trình hoành độ giao điểm của $(D)$ và $(P)$ là:
$\dfrac{3}{2}x-2= \dfrac{1}{4}x^2 $
$\Leftrightarrow x^2 – 6x+8 =0 $
$\Leftrightarrow x= 4 \Rightarrow y= 4 $ hoặc $x=2 \Rightarrow y= 1$
Vậy các giao điểm của $(D)$ và $(P)$ có tọa độ là $(4;4)$ và $(2,1)$
Câu 3.
a) $\left( \sqrt{3}+1 \right) \sqrt{\dfrac{14-6\sqrt{3}}{5+\sqrt{3}}} = \left( \sqrt{3}+1 \right) \sqrt{\dfrac{20+4\sqrt{3}-10\sqrt{3}-6}{5+\sqrt{3}}} $
$= \left( \sqrt{3}+1 \right) \sqrt{\dfrac{\left( 4-2\sqrt{3}\right) \left( 5+ \sqrt{3} \right) }{5 + \sqrt{3}}} = \left( \sqrt{3}+1 \right) \sqrt{\left( \sqrt{3}-1 \right) ^2} $
$= \left( \sqrt{3}+ 1 \right) \left( \sqrt{3}-1 \right) =3-1 =2$
b)
Câu 4. $x^2 – (2m-1)x + m^2 -1 =0$ (1)
a) Để phương trình (1) có hai nghiệm phân biệt thì
$a=1 \ne 0$ và $\Delta >0 $
$\Leftrightarrow (2m-1)^2 – 4 \left( m^2 -1 \right) >0$
$\Leftrightarrow 4m^2 – 4m +1 – 4m^2 + 4 >0 \Leftrightarrow m < \dfrac{5}{4}$
b) Để phương trình có hai nghiệm $x_1$, $x_2$ thì $a=1 \ne 0$ và $\Delta \ge 0 $ $\Rightarrow m \le \dfrac{5}{4}$
Theo Viet, ta có: $S= 2m-1 $, $P= m^2 -1$
$\left( x_1 -x_2 \right) ^2 = x_1 – 3x_2 $
$\Leftrightarrow \left( x_1 + x_2 \right) ^2 = x_1 + x_2 + 4x_1x_2 -4x_2 $
$\Leftrightarrow (2m-1)^2 = 2m-1 + 4m^2 – 4 – 4x_2 $
$\Leftrightarrow 4m^2 -4m +1 = 2m -1 + 4m^2 -4 – 4x_2 $
$\Leftrightarrow 4x_2 = 6m-6 \Leftrightarrow x_2 = \dfrac{3}{2}m – \dfrac{3}{2}$
$S= x_1 + x_2 = 2m -1 \Rightarrow x_1 = \dfrac{1}{2}m+ \dfrac{1}{2}$
$P = x_1x_2 = m^2 -1 $
$\Rightarrow \left( \dfrac{1}{2}m + \dfrac{1}{2} \right) \left( \dfrac{3}{2}m – \dfrac{3}{2} \right) = m^2 -1 \Leftrightarrow m^2 -1 =0 \Leftrightarrow
m =1 (n)$ hay
m= -1 (n)
Vậy $m=1$ hoặc $m=-1$
Câu 5.
Cho tam giác $ABC$ vuông tại $A$. Đường tròn tâm $O$ đường kính $AB$ cắt các đoạn $BC$ và $OC$ lần lượt tại $D$ và $I$. Gọi $H$ là hình chiếu của $A$ lên $OC$; $AH$ cắt $BC$ tại $M$.
a) $\angle ADB = 90^\circ $ (góc nội tiếp chắn nửa đường tròn)
$\Rightarrow \angle AHC = \angle ADC = 90^\circ \Rightarrow ACDH$ là tứ giác nội tiếp.
$\Rightarrow \angle CAD= \angle CHD$.
Mà $\angle CAD= \angle ABC$ (cùng phụ với $\angle ACB$) nên $\angle CHD = \angle ABC$.
b) Theo câu a), ta có: $\angle CHD = \angle ABC \Rightarrow OBDH$ là tứ giác nội tiếp.
$\Rightarrow \angle OHB = \angle ODB$.
Mà $\angle ODB = \angle OBD$ nên $\angle OHB = \angle OBD \Rightarrow \triangle OHB \backsim \triangle OBC$
$\angle OHB = \angle OBD = \angle CHD \Rightarrow 90^\circ – \angle OHB = 90^\circ – \angle CHD \Rightarrow \angle BHM = \angle DHM$.
Do đó $HM$ là tia phân giác của $\angle BHD$
c) $HM$ là phân giác $\angle BHD$ mà $HM \bot HC$ nên $HC$ là phân giác ngoài của $\angle BHD$.
Do đó ta có $\dfrac{MB}{MD}= \dfrac{HB}{HD}= \dfrac{CB}{CD} \Rightarrow MD.BC= MB.CD$
Tiếp tuyến tại $B$ của $(O)$ cắt $AM$ tại $E$.
$\Rightarrow \angle OBE =90 ^\circ \Rightarrow OBEH$ là tứ giác nội tiếp. $\Rightarrow \angle BOE = \angle BHE$, mà $\angle BHE = \angle DHE$ nên $\angle BOE = \angle DHE$ (1)
Lại có $OBDH$ nội tiếp (cmt) nên 5 điểm $O$, $B$, $E$, $D$, $H$ cùng nằm trên một đường tròn.
$\Rightarrow OHDE$ nội tiếp $\Rightarrow \angle DHE = \angle DOE$ (2)
Từ (1) và (2) suy ra $\angle BOE = \angle DOE \Rightarrow OE$ là phân giác $\angle BOD$.
Do đó $O$, $K$, $E$ thẳng hàng.
$\Rightarrow EK \bot BC $
$\angle EKC = \angle EHC =90^\circ \Rightarrow EKHC$ nội tiếp $\Rightarrow MK.MC = MH.ME$.
$BHDE$ nội tiếp nên $MB.MD = MH.ME$.
Vậy $MB.MD = MK.MC$
d) Gọi $F$ là giao điểm của $EJ$ và $OC$.
Ta có $MH.ME = MB.MD$, $MB.MD = MI.MJ$ nên $MH.ME= MI.MJ \ \Rightarrow \triangle MJE \backsim \triangle MHI \Rightarrow \angle MJE = \angle MHI = 90^\circ \Rightarrow \angle IJF = 90^\circ
\Rightarrow \angle IJF$ là góc nội tiếp chắn nửa đường tròn $(O)$.
Do đó $F$ nằm trên đường tròn $(O)$.
Vậy $EJ$ và $OC$ cắt nhau tại điểm $F$ nằm trên đường tròn.