Đề thi vào lớp 10 trường Phổ thông Năng khiếu năm 2013
Bài 1.
a) Giải phương trình: $\sqrt{x+1}=x-2$
b) Tìm chiều dài của một hình chữ nhật có chu vi là $a$ (mét), diện tích là $a$ (mét vuông) và đường chéo là $3\sqrt{5}$ (mét).
Giải
a) Ta có:
$\sqrt{x+1}=x-2 \Leftrightarrow \left\{ \begin{array}{l} x-2 \ge 0 \\ x+1 = \left( x-2 \right) ^2 \end{array}\right.$
$\Leftrightarrow \left\{ \begin{array}{l} x \ge 2 \\ x^2 -5x+3 =0 \end{array}\right.$
$\Leftrightarrow \left\{ \begin{array}{l} x \ge 2 \\ \left[ \begin{array}{l} x=\dfrac{5+\sqrt{13}}{2} \,\, (n) \\ x=\dfrac{5-\sqrt{13}}{2} \,\, (l) \end{array}\right. \end{array}\right. $
Vậy $S= \left\{ \dfrac{5+\sqrt{13}}{2} \right\} $
b) Gọi kích thước của hình chữ nhật là $x$, $y$ (giả sử $x > y$). Ta có hệ:
$\left\{ \begin{array}{l} 2x+2y=a \\ xy=a \\ x^2 +y^2 =45 \end{array}\right.$
$\Leftrightarrow \left\{ \begin{array}{l} x+y=\dfrac{a}{2} \\ xy=a \\ \dfrac{a^2}{4}-2a =45 \end{array}\right.$
$\Leftrightarrow \left\{ \begin{array}{l} a=18 \\ x+y =9 \\ xy=18 \end{array}\right.$
$\Leftrightarrow \left\{ \begin{array}{l} x=6 \\ y=3 \end{array}\right. $
Vậy chiều dài hình chữ nhật là $6$.
Bài 2. Cho phương trình $\left( \sqrt{x}-1 \right) . \left( x^2 -5x +m-1 \right) =0 $ $(1)$
a) Giải phương trình $(1)$ khi $m=-1$
b) Tìm $m$ để phương trình $(1)$ có ba nghiệm phân biệt $x_1$, $x_2$, $x_3$ thỏa
$$x_1 + x_2 + x_3 +x_1^2 + x_2^2 + x_3^2 + x_1x_2 + x_2x_3 + x_3x_1 =31$$
Giải
a) Khi $m=-1$ ta có phương trình:
$ \left( \sqrt{x}-1 \right) \left( x^2 -5x-2 \right) =0 \,\, (\text{ĐK:} x\ge 0)$
$\Leftrightarrow \left[ \begin{array}{l} \sqrt{x}=1 \\ x^2-5x-2=0 \end{array}\right.$
$\Leftrightarrow \left[ \begin{array}{l} x=1 \\ x=\dfrac{5+\sqrt{33}}{2} \,\, (n) \\ x=\dfrac{5-\sqrt{33}}{2} \,\, (l) \end{array}\right. $
b) Phương trình $(1)$ tương đương với $\left[ \begin{array}{l} x=1 \\ x^2 -5x +m-1=0 \,\, (2) \end{array}\right. $
Giả sử $x_1=1$ thì $x_2,x_3$ là nghiệm của $(2)$. Điều kiện phương trình $(1)$ có $3$ nghiệm phân biệt thì phương trình $(2)$ có hai nghiệm phân biệt dương khác $1$, tương đương với:
$\left\{ \begin{array}{l} \Delta = 25-4(m-1) >0 \\ S=5 >0 \\ P=m-1 >0 \\ 1-5+m-1 \ne 0 \end{array}\right.$ $\Leftrightarrow \left\{ \begin{array}{l} m<\dfrac{29}{4} \\ m>1 \\ m\ne 5 \end{array}\right. $
Khi đó $x_2 +x_3 =5$, $x_2x_3=m-1$.
Từ đó :$x_1 +x_2 +x_3 +x_1^2 +x_2^2 +x_3^2 +x_1x_2 +x_2x_3 +x_1x_3=31 $
$\Leftrightarrow 1+5+1+ \left( x_2+x_3 \right) ^2 -x_2x_3 +5=31 $
$\Leftrightarrow 1-m +37 =31 \Leftrightarrow m=7 \,\, (n) $
Bài 3.
a) Với $0<b<a$, hãy rút gọn biểu thức:
$$P=\left( \dfrac{1}{\sqrt{1+a}-\sqrt{a-b}}+ \dfrac{\sqrt{a+2+b}-\sqrt{a-b}}{b+1}-\dfrac{1}{\sqrt{1+a}+\sqrt{a-b}} \right) :\ \left( 1+ \sqrt{\dfrac{a+2+b}{a-b}} \right) $$
b) Giải hệ phương trình $\left\{ \begin{array}{l} \left( x-y \right) ^2 = \dfrac{1}{x} – \dfrac{1}{y} \\ x-y = xy-2 \end{array}\right. $
Giải
a) Ta có:
$P = \left( \dfrac{\sqrt{1+a}+\sqrt{a-b}}{1+a-(a-b)} + \dfrac{\sqrt{a+b+2}-\sqrt{a-b}}{1+b}-\dfrac{\sqrt{1+a}-\sqrt{a-b}}{1+a-(a-b)} \right) : \left( \dfrac{\sqrt{a-b}+ \sqrt{a+b+2}}{\sqrt{a-b}} \right) $
$= \left( \dfrac{\sqrt{1+a}+\sqrt{a-b}+\sqrt{a+b+2}-\sqrt{a-b}-\sqrt{1+a}+\sqrt{a-b}}{1+b} \right) \cdot \dfrac{\sqrt{a-b}}{\sqrt{a-b}+ \sqrt{a+b+2}} $
$= \left( \dfrac{\sqrt{a-b}+ \sqrt{a+b+2}}{1+b} \right) . \dfrac{\sqrt{a-b}}{\sqrt{a-b}+\sqrt{a+b+2}} $
$= \dfrac{\sqrt{a-b}}{1+b}$
b) Ta có:
$(x-y)^2 = \dfrac{1}{x} -\dfrac{1}{y} \Leftrightarrow (x-y)^2 = \dfrac{y-x}{xy}$
$\Leftrightarrow (x-y) \left( x-y+\dfrac{1}{xy} \right) =0 \Leftrightarrow \left[ \begin{array}{l} x=y \\ x-y+\dfrac{1}{xy} =0\end{array}\right. $
Với $x=y$, thế vào $(2)$ ta có $x^2=2 \Leftrightarrow \left[ \begin{array}{l} x=\sqrt{2} \Rightarrow y=\sqrt{2} \\ x=-\sqrt{2} \Rightarrow y= -\sqrt{2} \end{array}\right. $
Với $x-y+\dfrac{1}{xy}=0 \Rightarrow x-y= -\dfrac{1}{xy}$
Ta có $-\dfrac{1}{xy} =xy-2 \Leftrightarrow xy=1 \Rightarrow x-y=-1$, ta có:
$x(x+1)=1 \Leftrightarrow \left[ \begin{array}{l} x=\dfrac{-1+\sqrt{5}}{2} \Rightarrow y= \dfrac{1+\sqrt{5}}{2} \\ x=\dfrac{-1-\sqrt{5}}{2} \Rightarrow y=\dfrac{1-\sqrt{5}}{2} \end{array}\right. $
Vậy hệ có $4$ nghiệm.
Bài 4. Có hai vòi nước $A$, $B$ cùng cung cấp cho một hồ cạn nước và vòi $C$ (đặt sát đáy hồ) lấy nước từ hồ để cung cấp cho hệ thống tưới cây. Đúng $6$ giờ, hai vòi $A$, $B$ được mở; đến $7$ giờ vòi $C$ được mở; đến $9$ giờ thì đóng vòi $B$ và vòi $C$; đến $10$giờ $45$ phút thì hồ đầy nước. Người ta thấy rằng nếu đóng vòi $B$ ngay từ đầu thì đến $13$ giờ hồ mới đầy. Biết lưu lượng vòi $B$ là trung bình cộng lưu lượng vòi $A$ và $C$, hỏi một mình vòi $C$ tháo cạn hồ nước đầy trong bao lâu?
Giải
Gọi $x$ là thời gian vòi $A$ làm đầy bể, $y$ là thời gian vòi $B$ làm đầy bể và $z$ là thời gian vòi $C$ làm cạn bể (hay đầy bể).
Ta có $\dfrac{2}{y}=\dfrac{1}{x}+\dfrac{1}{z}$
Ta có $\dfrac{19}{4x} + \dfrac{3}{y} -\dfrac{2}{z}=1$ và $\dfrac{7}{x}-\dfrac{2}{z} =1$. Từ đó ta có:
$\left\{ \begin{array}{l} \dfrac{2}{y}=\dfrac{1}{x}+\dfrac{1}{z} \\ \dfrac{19}{4x} + \dfrac{3}{y} -\dfrac{2}{z}=1 \\ \dfrac{7}{x}-\dfrac{2}{z} =1 \end{array}\right.$ $\Leftrightarrow \left\{ \begin{array}{l} x=6 \\ y=8 \\ z=12 \end{array}\right. $
Vậy thời gian vòi $C$ tháo cạn hồ là $12$ giờ.
Bài 5. Cho tứ giác $ABCD$ nột tiếp đường tròn đường kính $AC$, $AC=2a$. Gọi $M$,$N$ lần lượt là trung điểm của $AB$ và $AD$, tam giác $ABD$ đều.
a) Tính $BC$ và $CN$ theo $a$.
b) Gọi $H$ là trực tâm của tam giác $CMN$, $MH$ cắt $CN$ tại $E$, $MN$ cắt $AC$ tại $K$. Chứng minh năm điểm $B$, $M$, $K$, $E$, $C$ cùng thuộc một đường tròn $(T)$. Đường tròn $(T)$ cắt $BD$ tại $F$ ($F \ne B$), tính $DF$ theo $a$.
c) $KF$ cắt $ME$ tại $I$. Chứng minh $KM$ tiếp xúc với đường tròn ngoại tiếp tam giác $MIF$. Tính góc $IND$.
Giải
a) Ta có $OB = OD$, $AB = AD$ nên $AO$ là trung trực của $BD$.
$\angle{BOC}=2\angle{BAC}=60^\circ $ nên tam giác $OBC$ đều, suy ra $BC=OC=a$.
$AD=\sqrt{AC^2-CD^2}=a\sqrt{3}$ (vì $BC=CD=OC=a$), suy ra $DN=\dfrac{1}{2}AD=\dfrac{a\sqrt{3}}{2}$
suy ra $CN=\sqrt{CD^2+DN^2} = \sqrt{a^2 + \dfrac{3}{4} a^2 } =\dfrac{a\sqrt{7}}{2}$
b) Ta có $MN // BD$, suy ra $MN \bot AC$, suy ra $H$ thuộc $AC$.
Ta có $\angle{CBM} = \angle{CEM} =\angle{CKM} =90^\circ $ nên $B$, $C$, $M$, $K$, $E$ cùng thuộc đường tròn.
Ta có $\angle{KFB}=\angle{KCB} =\angle{ADB}$, suy ra $KF // AD$.
Gọi $P$ là giao điểm của $AC$ và $BD$. Tam giác $PAD$ có $KF // AD $ mà $K$ là trung điểm của $AP$ suy ra $F$ là trung điểm $PD$. Suy ra $FD = \dfrac{1}{2} PD = \dfrac{a\sqrt{3}}{4}$.
c) Ta có $\angle{KMI}=\angle{KCE}$, $\angle{KCM}=\angle{KFM}$ và $\angle{KCE}=\angle{KCM}$ vì tam giác $CMN$ cân.
Do đó $\angle{KMI}=\angle{KFM}$. \hfill $(1)$
Vẽ tia tiếp tuyến $Mx$ của đường tròn ngoại tiếp tam giác $MFI$.
Ta có $\angle{xMI}=\angle{IFM} $ \hfill $(2)$
Từ $(1)$ và $(2)$ suy ra $\angle KMI = \angle xMI$, suy ra $Mx$ và $MK$ trùng nhau. Hay $MK$ là tiếp tuyến của đường tròn ngoại tiếp tam giác $MFI$.
Ta có $\triangle KMI \backsim \triangle KFM $, suy ra $KI.KF=KM^2 =KN^2$, suy ra $\triangle KIN \backsim \triangle KNF$, suy ra $\angle{KIN}=\angle{KNF}=90^\circ $, mà $KF // ND$, suy ra $\angle{IND} =90^\circ $.