Tag Archives: Lop6

Phần trăm

Bài tập 1. Có ba bài kiểm tra, bài số 1 có 25 câu, bài số 2 có 40 câu, bài số 3 có 10 câu. Đức là được $80 \%$ câu đúng bài số 1, $90 \%$ câu đúng bài số 2 và $70 \%$ câu đúng bài số 3. Mỗi câu đúng bài số 1 được 3 điểm, bài số 2 được 5 điểm và bài số 3 được 7 điểm.
a) Tính số câu đúng Đức làm được.
b) Tính số điểm của Đức đạt được.

Lời giải.

a) Số câu đúng Đức làm được: $80 \%.25 + 90 \%.40 + 70 \%.10=63$ câu.

b) Số điểm Đức làm được: $80 \%.25.3 + 90 \%.40.5 + 70 \%.10.7=289$ điểm.

Bài tập 2. Một số nam sinh và nữ sinh đang rửa xe để quyên tiền cho chuyến tham quan Hà Nội của lớp. Ban đầu $40 \%$ của nhóm là con gái. Ngay sau đó, hai cô gái rời đi và hai chàng trai đến, sau đó $30 \%$ trong nhóm là các cô gái. Lúc đầu trong nhóm có bao nhiêu bạn nữ?

Lời giải.
Gọi $x$ (bạn) là số bạn nữ lúc đầu trong nhóm có, $(x>0)$
$$
40 \% \cdot x-2=30 \% . x \Rightarrow x=20
$$

Vậy có 20 bạn nữ.

Bài tập 3. Giả sử trường $\mathrm{A}$ có 1000 học sinh và trường $\mathrm{B}$ có 1200 học sinh. Hỏi số học sinh trường $\mathrm{B}$ nhiều hơn số học sinh trường $\mathrm{A}$ là bao nhiêu phần trăm?

Lời giải.
Số học sinh trường $\mathrm{B}$ nhiều hơn số học sinh trường $\mathrm{A}$ là $1200-1000=200$ (học sinh).
Phần trăm số học sinh trường $\mathrm{B}$ nhiều hơn số học sinh trường $\mathrm{A}$ là $\frac{200}{1000} \cdot 100=20 \%$
Vậy có $20 \%$

Bài tập 4. Thuế thu nhập của TPHCM được đánh ở mức $p \%$ của 28.000.000 đầu tiên của thu nhập hàng năm cộng với $(p+2) \%$ của bất kỳ số tiền nào trên 28.000.000. Nam nhận thấy rằng thuế thu nhập ở TPHCM mà ba bạn phải trả lên tới $(p+0,25) \%$ thu nhập hàng năm của ba. Thu nhập hàng năm của ba Nam ấy là bao nhiêu?

Lời giải.
Gọi $x$ (đồng) là thu nhập hàng năm của ba Nam, $(x>0)$
Thuế thu nhập của TPHCM là $p \% .28000000+(p+2) \%(x-28000000)$
Thuế thu nhập của TPHCM mà ba Nam trả là $(p+0,25) \% . x$
Giải phương trình:
$ p \% .28000000+(p+2) \%(x-28000000)=(p+0,25) \% . x $
$\Leftrightarrow p \% .28000000+x p \%-28000000 p \%+x .2 \%-56000000 \%=x p \%+x .0,25 \% $
$\Leftrightarrow x=32000000$

Bài tập 5. Giá cổ phiếu của công ty $T T C$ là $\$ 100$ vào năm 2021 . Nó đã giảm $25 \%$ vào năm 2022 và sau đó tăng $25 \%$ vào năm 2023 . Giá cổ phiếu cuối năm 2023 là bao nhiêu?

Lời giải.
Giá cổ phiếu sẽ giảm vào năm 2023 là $\$ 100.25 \%=\$ 25$.
$\Rightarrow$ Giá cổ phiếu vào năm 2022 là $\$ 100-\$ 25=\$ 75$.
Giá cổ phiếu sẽ giảm vào năm 2023 là $\$ 75.25 \%=\$ 18,75$.
$\Rightarrow$ Giá cổ phiếu vào năm 2023 là $\$ 75+\$ 18,75=\$ 93,75$.

Bài tập 6. Ông An định cải tạo một mảnh vườn hình chữ nhật có chiều dài bằng 2,5 chiều rộng. Ông thấy rằng nếu đào một cái hồ có mặt hồ là hình chữ nhật thì sẽ chiếm mất $3 \%$ diện tích mảnh vườn, còn nếu giảm chiều dài $5 \mathrm{~m}$ và tăng chiều rộng $2 \mathrm{~m}$ thì mặt hồ là hình vuông và diện tích mặt hồ giảm được $20 m^2$. Hãy tính các cạnh của mảnh vườn.

Lời giải.
Gọi $x(\mathrm{~m})$ là chiều rộng của mảnh vườn, $(x>0)$.
Vì chiều dài bằng 2,5 chiều rộng nên chiều dài của mảnh vườn là $2,5 x(\mathrm{~m})$.
Gọi $y(\mathrm{~m})$ là chiều rộng của mặt hồ ban đầu.
Gọi $z(\mathrm{~m})$ là chiều dài của mặt hồ ban đầu.
Vì diện tích của mặt hồ chiếm 3\% diện tích mảnh vườn nên diện tích của mặt hồ là
$$
y . z=3 \% .2,5 x^2 \Rightarrow y z=0,075 x^2\left(\mathrm{~m}^2\right)
$$

Nếu giảm chiều dài $5 m$ và tăng chiều rộng $2 m$ thì mặt hồ là hình vuông nên
$$
y+2=z-5 \Rightarrow z=y+7
$$

Diện tích của mặt hồ giảm $20 \mathrm{~m}^2$ nên
$$
y z-(y+2)(z-5)=20 \Rightarrow y \cdot(y+7)-(y+2)^2=20 \Rightarrow y=8 \Rightarrow z=8+7=15
$$

Thay $y=8$ và $z=15$ vào $y z=0,075 x^2$, ta được $8.15=0,075 x^2 \Rightarrow x^2=1600 \Rightarrow x=40$ hoặc $x=-40$.

Vì $x>0$ nên nhận $x=40$.
Vậy chiều rộng của mảnh vườn là $40(\mathrm{~m})$ và chiều dài của mảnh vườn là $100(\mathrm{~m})$

Bài tập 7. Tổng kết học kì 2 , trường trung học cơ sở $\mathrm{N}$ có 60 học sinh không đạt học sinh giỏi, trong đó có 6 em từng đạt học sinh giỏi học kì 1 , số học sinh giỏi của học kì 2 bằng $\frac{40}{37}$ số học sinh giỏi của học kì 1 và có $8 \%$ số học sinh của trường không đạt học sinh giỏi học kì 1 nhưng đạt học sinh giỏi học kì 2 . Tìm số học sinh giỏi học kì 2 của trường biết rằng số học sinh của trường không thay đổi trong suốt năm học.

Giải thích:
Gọi $x$ (học sinh) là số học sinh giỏi học kì 2 của trường.
Nhóm 1 và nhóm $4=x$ học sinh
60 học sinh không đạt học sinh giỏi học kì 2.
Nhóm 2 và nhóm $3=60$ học sinh

6 học sinh từng đạt học sinh giỏi học kì 1 trong số học sinh không giỏi ở hk2.
Nhóm $3=6$ họ sinh
$8 \%$ số học sinh của trường không đạt học sinh giỏi học kì 1 nhưng đạt học sinh giỏi học kì 2 .
Nhóm $4=8 \%$ học sinh toàn trường

Số học sinh giỏi học kì 2 bằng $\frac{40}{37}$ số học sinh giỏi của học kì 1 .
Nhóm 1 và $4=\frac{40}{37}$ nhóm 1 và 3

Lời giải.
Gọi $x$ (học sinh) là số học sinh giỏi học kì 2 của trường.
Số học sinh toàn trường là $x+60$ (học sinh)
Số học sinh giỏi học kì 2 bằng $\frac{40}{37}$ số học sinh giỏi của học kì 1 nên
$$
x=\frac{40}{37} \text { số học sinh giỏi của học kì } 1 \text {. }
$$

Số học sinh giỏi của học kì 1 là
$$
x-\frac{8}{100}(x+60)+6=\frac{23}{25} x+\frac{6}{5}(\text { học sinh })
$$

Khi đó, $x=\frac{40}{37} \cdot\left(\frac{23}{25} x+\frac{6}{5}\right) \Rightarrow x=240$. Vậy số học sinh giỏi học kì 2 của trường là 240 học sinh.

Tập hợp số tự nhiên

1.Tập hợp $N, N^*$.

Các số $0 ; 1 ; 2 ; 3 ; \ldots$ là các số tự nhiên. Người ta kí hiệu tập hợp các số tự nhiên là $\mathbb{N}$.
$$
\mathbb{N}=\{0 ; 1 ; 2 ; 3 ; 4 ; 5 ; \ldots\}
$$
Tập hợp các số tự nhiên khác 0 được kí hiệu là $N^*$.

$$N^* = \{1, 2, 3, \cdots, \}$$

2.Thứ tự trong tập số tự nhiên

Trong hai số tự nhiên a và b khác nhau, có một số nhỏ hơn số kia. Nếu số a nhỏ hơn số b ta viết $\mathrm{a}<\mathrm{b}$ (a nhỏ hơn b). Ta cũng nói số b lớn hơn số a và viết $\mathrm{b}>\mathrm{a}$.

Khi biểu diễn trên tia số nằm ngang có chiều mũi tên đi từ trái sang phải, nếu $\mathrm{a}<\mathrm{b}$ thì điểm a nằm bên trái điểm b.
Ta viết $\mathrm{a} \leq \mathrm{b}$ đề chi $\mathrm{a}<\mathrm{b}$ hoặc $\mathrm{a}=\mathrm{b}, \mathrm{b} \geq \mathrm{a}$ để chỉ $\mathrm{b}>$ a hoặc $\mathrm{b}=\mathrm{a}$.
Mỗi số tự nhiên có một số liền sau cách nó một đơn vị.

Nếu b liền sau a thì a cũng được gọi là liền trước b.

Ví dụ 1.

a) Số liền sau số 4 là số 5, số liền trước số 4 là số 3.

b) Giữa hai số 2021 và 2022 thì không có số tự nhiên nào, tức là không có số tự nhiên nào vừa lớn hơn 2021 vừa nhỏ hơn 2022.

Chú ý.

a) Nếu $a < b$ và $b < c$ thì $a < c$.

b) Nếu $a < b$ thì $a \leq b -1$.

3.Cách ghi số tự nhiên

  • Kí hiệu $\overline{a b}$ chỉ số tự nhiên có hai chữ số, chữ số hàng chục là a $(a \neq 0)$, chữ số hàng đơn vị là b. Ta có:
    $$
    \overline{a b}=a \times 10+b
    $$
    Kí hiệu abc chi số tự nhiên có ba chữ số, chữ số hàng trăm là a $(a \neq 0)$, chữ số hàng chục là b, chữ số hàng đơn vị là c. Ta có:
    $$
    \overline{\mathrm{abc}}=\mathrm{a} \times 100+\mathrm{b} \times 10+\mathrm{c}
    $$

4.Hệ số La Mã

5. Bài tập sách giáo khoa

Bài 1. (SGK CTST Toán 6 Tập 1 – Trang 12) Chọn kí hiệu thuộc $(\in)$ hoặc không thuộc $(\notin)$ thay cho mỗi dấu $?$.
a) 15 ? $\mathbb{N}$;
b) 10,5 ? $\mathbb{N}^{*}$;
c) $\frac{7}{9}$ ? $\mathbb{N}$;
d) 100 ? $\mathbb{N}$.

Giải

Bài 2. (SGK CTST Toán 6 Tập 1 – Trang 12) Trong các khẳng định sau, khẳng định nào là đúng, khẳng định nào là sai?
a) $1999>2003$;
b) 100000 là số tự nhiên lớn nhất;
c) $5 \leq 5$;
d) Số 1 là số tự nhiên nhỏ nhất.

Giải

Bài 3. (SGK CTST Toán 6 Tập 1 – Trang 12)  Biểu diễn các số $1983 ; 2756 ; 2023$ theo mẫu $1983=1 \times 1000+9 \times 100+8 \times 10+3$.

Giải

Bài 4. Tìm các số tự nhiên sau:

a) Số liền trước số 5

b) Số liền sau số 6

c) Số liền sau số 2018.

d) Lớn hơn 2000 và nhỏ hơn 2005.

Giải

Bài 5. Tìm số tự nhiên có hai chữ số mà tổng các chữ số bằng 17.

Giải

Bài 6. Tìm số tự nhiên có ba chữ số mà tổng các chữ số bằng 2.

Giải

6. Bài tập rèn luyện

Bài 1. Tìm các số tự nhiên sau:

a) Số liền sau 2001

b) Số liền sau 221

c) Lớn hơn 14 và nhỏ hơn 20.

Bài 2. Tìm các số tự nhiên có hai chữ số sao cho khi viết theo thứ tự ngược lại thì lớn hơn số ban đầu 72 đơn vị.

Bài 3. Tìm số tự nhiên biết rằng tổng của nó và số liền sau bằng 2021.

Tài liệu tham khảo.

Bộ sách Chân Trời Sáng Tạo, Toán lớp 6, NXBGD, Trần Nam Dũng (Chủ biên)