Tag Archives: Lop9

Hàm số bậc nhất

Định nghĩa: Hàm số bậc nhất là hàm số được cho bởi công thức

$y=ax+b$

trong đó $a$, $b$ là các số cho trước và $a\ne 0$.

Ví dụ 1: Để ủng hộ cho các người dân trong đợt lũ lụt, lớp 9A quyết định trích tiền quỹ của lớp ra $500000$ và mỗi bạn trong lớp có thể đóng góp số tiền như nhau là $20000$. Gọi $x$ là số học sinh đóng góp và $y$ là số tiền đóng góp được. Khi đó số tiền lớp 9A đóng góp là:

$y=20000x+500000$

$y=20000x+500000$ là hàm số bậc nhất với $a=20000$, $b=500000$.

Ví dụ 2: Bạn Uyên có số tiền là $500000$, bạn định sử dụng số tiền này để mua truyên tranh, mỗi quyển truyện tranh có giá $15000$. Gọi $h$ là số quyển truyện tranh Uyên mua được và $t$ là số tiền còn lại của Uyên. Khi đó ta có:

$t=500000-15000h=-15000h+500000$

$t=-15000h+500000$ là hàm số bậc nhất với $a=-15000$, $b=500000$.

Tính chất 1: Hàm số bậc nhất $y=f(x)=ax+b$ xác định với mọi $x$ thuộc $\mathbb{R}$ và thỏa mãn:

  • Nếu $a>0$ thì $f$ là hàm số đồng biến trên $\mathbb{R}$.
  • Nếu $a<0$ thì $f$ là hàm số nghịch biến trên $\mathbb{R}$.

Ví dụ 3:

a) Hàm số $y=20000x+500000$ là hàm số bậc nhất có $a=20000>0$ nên hàm số đồng biến trên $\mathbb{R}$.

b) Hàm số $t=-15000h+500000$ là hàm số bậc nhất có $a=-15000<0$ nên hàm số nghịch biến trên $\mathbb{R}$.

Bài tập:

Bài 1: Trong các hàm số sau, hàm số nào là hàm số bậc nhất? Xác định các hệ số $a$, $b$ của các hàm số bậc nhất vừa tìm được.

a) $y=4x-2$

b) $y=-3-x$

c) $y=\dfrac{1}{x}+7$

d)$y=\dfrac{2x}{3}$

e) $y=5\left(2-x\right) +3$

 Bài 2:  Xét tính đồng biến, nghịch biến của các hàm số sau:

a) $y=2x-7$

b) $y=3-5x$

c) $y=\left( \sqrt2-\sqrt3\right)x+1$

d) $y=\left( 2+m^2\right)x-4$

Bài 3: Cho hàm số $y=\left( 2m-1\right)x+3$. Tìm $m$ để hàm số đồng biến trên $\mathbb{R}$.

Bài 4: Cho hàm số $y=\left( 2m+5\right)x+m-2$. Tìm $m$ để hàm số nghịch biến trên $\mathbb{R}$.

Bài 5: Cho hàm số $y=\left( m+1\right)x+3m+1$. Tìm $m$ để hàm số trên là hàm số bậc nhất.

Bài 6: Để đổi từ nhiệt độ $F$ sang độ $C$, ta dùng công thức sau:

$C=\dfrac{5}{9}\left( F-32\right) $

a) $C$ có phải là hàm số bậc nhất theo biến số $F$ không?

b) Hãy tính $C$ khi $F=30$, $F=70$.

Bài 7: Cây cà chua lúc đầu cao $20$ cm, mỗi ngày cao thêm $10$ cm, cây đu đủ lúc đầu cao $50$ cm và mỗi ngày cao thêm $\dfrac{20}{3}$ cm. Gọi $x$ là số ngày, $y$ là chiều cao của mỗi cây, hãy lập hàm số của $y$ theo $x$ đối với mỗi cây.

Bài 8: Hai bạn $A$, $B$ đi cùng hướng trên một con đường, lúc đầu $A$, $B$ cách bến xe buýt lần lượt là $200$ m và $500$ m cùng đi ngược hướng với trạm xe buýt. Mỗi giờ $A$ đi được $3$ km và $B$ đi được $1$ km. Gọi $d_1$ và $d_2$ là khoảng cách của $A$, $B$ đối với trạm xe buýt sau khi đi được $t$ giờ. Hãy tính $d_1$ và $d_2$ theo $t$.

 

 

Căn bậc ba

1. Khái niện căn bậc ba

Định nghĩa: Căn bậc ba của một số $a$ là một số $x$ sao cho $x^3=a$

Ví dụ 1: $2$ là căn bậc ba của $8$ vì $2^3=8$.

$-5$ là căn bậc ba của $-125$ vì $(-5)^3=-27$.

Ta công nhận kết quả sau: Mỗi số $a$ đều có duy nhất một căn bậc ba.

Kí hiệu căn bậc ba của số $a$ là: $\sqrt[3]{a}$,   số $3$ gọi là chỉ số của căn.

Ví dụ 2: Tìm căn bậc ba của mỗi số sau:

a) $27$;

b) $-216$;

c) $0$

d) $\dfrac {-1}{64}$

Giải

a) $\sqrt [3] {27}=\sqrt [3]{3^3}=3$

b) $\sqrt [3]{-216}=\sqrt [3]{(-6)^3}=-6$

c) $\sqrt [3]{0}=\sqrt [3]{0^3}=0$

d) $\sqrt [3]{\dfrac {-1}{64}}=\sqrt [3]{\left( \dfrac {-1}{4}\right)^3}=\dfrac {-1}{4}$

2. Tính chất

Ta có các tính chất sau của căn bậc ba:

a) $a<b \Leftrightarrow \sqrt[3]{a} <\sqrt[3]{b}$

b) $\sqrt [3]{ab}=\sqrt[3]{a}\sqrt[3]{b}$

c) Với $b\ne 0$, ta có $\sqrt [3]{\dfrac {a}{b}}=\dfrac {\sqrt [3]{a}}{\sqrt [3]{b}}$

Ví dụ 3: Tính các căn bậc ba sau:

a) $\sqrt[3]{27.64}$

b) $\sqrt[3]{\dfrac{125}{8}}$

Lời giải:

a) $\sqrt[3]{27.64}=\sqrt[3]{27}.\sqrt[3]{64}=3.4=12$

b) $\sqrt[3]{\dfrac{125}{8}}=\dfrac{\sqrt[3]{125}}{\sqrt[3]{8}}=\dfrac{5}{2}$

Ví dụ 4: So sánh các số sau:

a) $3$ và $\sqrt[3]{26}$

b) $-4$ và $\sqrt[3]{-63}$

Lời giải:

a) Ta có: $3=\sqrt[3]{27}$ mà $27>26$ do đó $\sqrt[3]{27}>\sqrt[3]{26}$

Vậy $3>\sqrt[3]{26}$

b) Ta có: $-4=\sqrt[3]{-64}$ mà $-64<-63$ dó đó $\sqrt[3]{-64}<\sqrt[3]{-63}$

Vậy $-4<\sqrt[3]{-63}$

Bài tập

Bài 1: Tính các căn bậc ba sau:

a) $\sqrt[3]{343}$

b) $\sqrt[3]{\dfrac{-64}{27}}$

c) $\sqrt[3]{0,216}$

d) $\sqrt[3]{-1331}$

Bài 2:  TÍnh:

a) $\sqrt[3]{64}-\sqrt[3]{512}+3\sqrt[3]{27}$

b) $\sqrt[3]{4}.\sqrt[3]{54}-\dfrac{2}{5}\dfrac{\sqrt[3]{375}}{\sqrt[3]{3}}$

c) $\sqrt[3]{40x^3y}-x\sqrt[3]{135y}$

d) $\sqrt{12-6\sqrt 3}-\sqrt[3]{26-15\sqrt 3}$

Bài 3: So sánh các số sau:

a) $3$ và $\sqrt[3]{\dfrac{4096}{125}}$

b) $4\sqrt[3]{5}$ và $5\sqrt[3]{3}$

Bài 4: Tính giá trị các biểu thức sau:

a) $A=\dfrac{x}{4}-\sqrt[3]{\dfrac{x^2}{3}}$ với $x=-3$

b) $B=2x-\sqrt[3]{24x^2}-\sqrt[3]{16y}$ với $x=3$ và $y=-4$

Bài 5: Tìm $x$ biết:

a) $\sqrt[3]{7x+36}=4$

b) $2+\sqrt[3]{2x-3}=0$

Rút gọn biến đổi căn thức nâng cao

Ví dụ 1: Rút gọn các biểu thức sau:

a) $\left( \dfrac {\sqrt {x}-1}{\sqrt {x}+1} -\dfrac {\sqrt {x}+1}{\sqrt {x}-1}\right).\left( \sqrt {x} -\dfrac {1}{\sqrt {x}}\right) $ với $x> 0$, $x \ne 1$

b) $\dfrac {15\sqrt {x}-11}{x+2\sqrt {x}-3} +\dfrac{3\sqrt {x}-2}{1-\sqrt {x}}-\dfrac {3}{\sqrt {x}+3}$ với $x\ge 0$, $x\ne 1$

c) $\left( {\dfrac{\sqrt a }{\sqrt a – 1} – \dfrac{1}{a – \sqrt a }} \right):\left( {\dfrac{1}{\sqrt a + 1} + \dfrac{2}{a – 1}} \right)$ với $a>0$, $a\ne 1$

d) $\left( \dfrac{\sqrt x-\sqrt y}{1+\sqrt {xy}}+\dfrac{\sqrt x+\sqrt y}{1-\sqrt {xy}}\right) :\left( \dfrac{ x+y+2xy}{1-xy}+1\right) $ với $x\ge 0$, $y\ge 0$, $xy\ne 1$

Giải

a) $\left( \dfrac{\sqrt x – 1}{\sqrt x + 1} – \dfrac{\sqrt x + 1}{\sqrt x – 1} \right).\left( \sqrt x – \dfrac{1}{\sqrt x } \right)$

$= \dfrac{\left( \sqrt x – 1 \right)^2 – \left( \sqrt x + 1 \right)^2}{\left( \sqrt x + 1 \right)\left( \sqrt x – 1\right)}. \dfrac{x – 1}{\sqrt x } $

$ = \dfrac{ – 4\sqrt x }{x – 1}.\dfrac{x – 1}{\sqrt x } = – 4$

b)$\dfrac {15\sqrt {x}-11}{x+2\sqrt {x}-3} +\dfrac{3\sqrt {x}-2}{1-\sqrt {x}}-\dfrac {3}{\sqrt {x}+3}$

$=\dfrac {15\sqrt {x}-11}{\left( \sqrt x-1\right) \left( \sqrt x+3\right) }-\dfrac{\left( 3\sqrt x-2\right) \left(\sqrt x+3\right) }{\left( \sqrt x-1\right) \left( \sqrt x+3\right) }-\dfrac{3\left( \sqrt x-1\right) }{\left( \sqrt x-1\right) \left( \sqrt x+3\right)}$

$=\dfrac{-3x+5\sqrt x-2}{\left( \sqrt x-1\right) \left( \sqrt x+3\right) }=\dfrac{-\left( \sqrt x-1\right) \left( 3\sqrt x-2\right) }{\left( \sqrt x-1\right) \left( \sqrt x+3\right)} =\dfrac{2-3\sqrt x}{\sqrt x+3}$

c) $\left( {\dfrac{\sqrt a }{\sqrt a – 1} – \dfrac{1}{a – \sqrt a }} \right):\left( {\dfrac{1}{\sqrt a + 1} + \dfrac{2}{a – 1}} \right)$

$=\dfrac{a-1}{\sqrt a\left( \sqrt a-1\right) }:\dfrac{\sqrt a-1+2}{\left( \sqrt a+1\right) \left( \sqrt a-1\right) }$

$=\dfrac{a-1 }{\sqrt a\left( \sqrt a-1\right) }.\dfrac{\left( \sqrt a+1\right) \left( \sqrt a-1\right) }{\sqrt a+1}=\dfrac{a-1}{\sqrt a}$

d) $\left( \dfrac{\sqrt x-\sqrt y}{1+\sqrt {xy}}+\dfrac{\sqrt x+\sqrt y}{1-\sqrt {xy}}\right) :\left( \dfrac{ x+y+2xy}{1-xy}+1\right) $

$=\dfrac{\left( \sqrt x-\sqrt y\right) \left( 1-\sqrt {xy}\right) +\left( \sqrt x+\sqrt y\right) \left( 1+\sqrt {xy}\right) }{\left( 1+\sqrt {xy}\right) \left( 1-\sqrt {xy}\right) }:\dfrac{ x+y+xy+1}{1-xy}$

$=\dfrac{2\sqrt x+2y\sqrt x}{1-xy}.\dfrac{1-xy}{x+y+xy+1}$

$=\dfrac{2\sqrt x\left( y+1\right) }{\left( x+1\right) \left( y+1\right) }=\dfrac{2\sqrt x}{x+1}$

Ví dụ 2: Chứng minh với mọi giá trị của $x$ để biểu thức có nghĩa thì giá trị của:

$A=\left( \dfrac{\sqrt x+1}{2\sqrt x-2}+\dfrac{3}{x-1}-\dfrac{\sqrt x+3}{2\sqrt x+2}\right) .\dfrac{4x-4}{5}$

không phụ thuộc vào $x$.

Giải

$A=\left( \dfrac{\sqrt x+1}{2\sqrt x-2}+\dfrac{3}{x-1}-\dfrac{\sqrt x+3}{2\sqrt x+2}\right) .\dfrac{4x-4}{5}$

$A=\dfrac{\left( \sqrt x+1\right)^2+3.2-\left( \sqrt x+3\right) \left( \sqrt x-1\right) }{2\left( \sqrt x+1\right) \left( \sqrt x-1\right) }.\dfrac{4x-4}{5}$

$A=\dfrac{9}{2\left( x-1\right) }.\dfrac{4\left( x-1\right) }{5}=\dfrac {18}{5}$

Vậy biểu thức $A$ không phụ thuộc vào $x$.

Ví dụ 3: Cho biểu thức $A=\left( 1:\dfrac{\sqrt {1+x}}{3}+\sqrt {1-x}\right) :\left( \dfrac {3}{\sqrt {1-x^2}}+1\right) $

a) Chứng minh $A=\sqrt {1-x}$.

b) Tính $x$ khi $A=\dfrac{1}{2}$.

Giải

a) $A=\left( 1:\dfrac{\sqrt {1+x}}{3}+\sqrt {1-x}\right) :\left( \dfrac {3}{\sqrt {1-x^2}}+1\right) $

$A=\left( \dfrac {3}{\sqrt {1+x}}+\sqrt {1-x}\right) :\dfrac {3+\sqrt {1-x^2}}{\sqrt {1-x^2}}$

$A=\dfrac {3+\sqrt {1-x^2}}{\sqrt {1+x}}.\dfrac {\sqrt {1-x^2}}{3+\sqrt {1-x^2}}$

$A=\dfrac {\sqrt {1-x}.\sqrt {1+x}}{\sqrt {1+x}}=\sqrt {1-x}$

Vậy $A=\sqrt {1-x}$

b) $A=\dfrac{1}{2}$

$ \Rightarrow \sqrt {1-x}=\dfrac{1}{2}$

$\Rightarrow 1-x=\dfrac {1}{4}$

$\Rightarrow x=\dfrac {3}{4}$ $(n)$

Vậy $x=\dfrac {3}{4}$

Bài tập:

Bài 1: Rút gọn các biểu thức sau:

a) $\left( 2+\dfrac {a-\sqrt a}{\sqrt a-1}\right) \left( 2-\dfrac {a+\sqrt a}{\sqrt a+1}\right) $ với $a\ge 0$, $a\ne 1$

b) $\left( \dfrac {y}{\sqrt y}-\dfrac {\sqrt y}{\sqrt y+1}\right) :\dfrac {\sqrt y}{y+\sqrt y}$ với $y>0$

c) $\left( \dfrac {x\sqrt x+1}{x\sqrt x+x+\sqrt x+1}-\dfrac {\sqrt x}{x+1}\right) :\dfrac {\sqrt x-1}{x+1}$ với $x\ge 0$, $x\ne 1$

d) $\left( \dfrac {1}{\sqrt x}-\dfrac {1}{x}\right):\left( \dfrac {\sqrt x+1}{\sqrt x-2}-\dfrac {\sqrt x+2}{\sqrt x-1}\right) $ với $x>0$, $x\ne 1$, $x\ne 4$

e) $\dfrac {\sqrt x+7x+13}{x+3\sqrt x-10}+\dfrac {\sqrt x+5}{2-\sqrt x}-\dfrac {\sqrt x-4}{\sqrt x+5}$ với $x\ge 0$, $x\ne 4$

f) $\left( \dfrac {\left( 16-\sqrt a\right) \sqrt a}{a-4}+\dfrac {3+2\sqrt a}{2-\sqrt a}-\dfrac {2-3\sqrt a}{\sqrt a+2}\right) :\dfrac {1}{a+4\sqrt a+4}$ với $a\ge 0$, $a\ne 4$

Bài 2: Chứng minh rằng biểu thức sau không phụ thuộc vào giá trị của $x$, $y$

$A=\dfrac {\sqrt y}{\sqrt x-\sqrt y}-\dfrac {x\sqrt x-y\sqrt x}{x+y}.\left( \dfrac {\sqrt x}{\left( \sqrt x-\sqrt y \right)^2}-\dfrac {\sqrt y}{x-y}\right) $

Bài 3: Cho biểu thức $P=\left( \dfrac {\sqrt x+1}{\sqrt x-2}-\dfrac {2}{x-4}\right) \left( \sqrt x-1+\dfrac {\sqrt x-4}{\sqrt x}\right) $

a) Chứng minh $P=\sqrt x+3$.

b) Tìm tất cả các giá trị của $x$ sao cho $P=x+3$.

Bài 4: Cho biểu thức $P=\dfrac {3x+\sqrt x}{x+\sqrt x}+\dfrac{ 3\left( x-\sqrt x+1\right) }{x\sqrt x+1}$ với $x>0$

a) Rút gọn biểu thức $P$.

b) Chứng minh $P<4$.

Bài 5: Cho biểu thức $P=\left( \dfrac {\sqrt x}{2}-\dfrac {1}{2\sqrt x}\right) \left( \dfrac {x-\sqrt x}{\sqrt x+1}-\dfrac {x+\sqrt x}{\sqrt x-1}\right) $

Rút gọn biểu thức $P$. Tìm $x$ để $P>-6$.

Rút gọn biến đổi căn thức chứa biến và các bài toán liên quan

Ví dụ 1: Cho biểu thức:

$P=\left( \dfrac {2\sqrt x}{\sqrt x+3}+\dfrac {\sqrt x}{\sqrt x-3}-\dfrac {3x+3}{x-9}\right) :\left( \dfrac {2\sqrt x-2}{\sqrt x-3}-1\right) $

a) Rút gọn $P$.

b) Tìm giá trị nhỏ nhất của $P$.

Giải

a) $P=\left( \dfrac {2\sqrt x}{\sqrt x+3}+\dfrac {\sqrt x}{\sqrt x-3}-\dfrac {3x+3}{x-9}\right) :\left( \dfrac {2\sqrt x-2}{\sqrt x-3}-1\right) $

$P=\dfrac {2\sqrt x\left( \sqrt x-3\right) +\sqrt x\left( \sqrt x+3\right) -3x-3}{\left( \sqrt x-3\right) \left( \sqrt x+3\right) }:\dfrac {2\sqrt x-2-\sqrt x+3}{\sqrt x-3}$

$P=\dfrac {-3\sqrt x-3}{\left( \sqrt x+3\right) \left( \sqrt x-3\right) }.\dfrac {\sqrt x-3}{\sqrt x+1}$

$P=\dfrac {-3}{\sqrt x+1}$

b) Ta có: $P=\dfrac {-3}{\sqrt x+1}\ge -3$, $\forall x\ge 0$

Vậy giá trị nhỏ nhất của $P$ bằng $-3$  khi $x=0$

Ví dụ 2: Cho biểu thức:

$M=\left( \dfrac {\sqrt x}{\sqrt x+2}-\dfrac {x+4}{x-4}\right) :\left( \dfrac {2\sqrt x-1}{x-2\sqrt x}-\dfrac {1}{\sqrt x}\right) $ ($x>0$, $x\ne 4$)

a) Rút gọn $M$.

b) Tìm các giá trị nguyên của $x$ để $M$ nhận giá trị nguyên.

Giải

a) $M=\left( \dfrac {\sqrt x}{\sqrt x+2}-\dfrac {x+4}{x-4}\right) :\left( \dfrac {2\sqrt x-1}{x-2\sqrt x}-\dfrac {1}{\sqrt x}\right) $

$M=\dfrac {\sqrt x\left( \sqrt x-2\right) -x-4}{\left( \sqrt x+2\right) \left( \sqrt x-2\right) }:\dfrac {2\sqrt x-1-\sqrt x+2}{\sqrt x\left( \sqrt x-2\right)} $

$M=\dfrac {-2\sqrt x-4}{\left( \sqrt x+2\right) \left( \sqrt x-2\right) }.\dfrac {\sqrt x\left( \sqrt x-2\right) }{\sqrt x+1}$

$M=\dfrac {-2\sqrt x}{\sqrt x+1}$

b) Ta có: $M=\dfrac {-2\sqrt x}{\sqrt x+1}=\dfrac {-2\left( \sqrt x+1\right) +2}{\sqrt x+1}=-2+\dfrac {2}{\sqrt x+1}$

$M$ nhận giá trị nguyên khi $\left( \sqrt x+1\right)  \in \{1;2\}$ ($x>0$, $ x\in \mathbb{Z}$)

Với  $\sqrt x+1=1 \Leftrightarrow x=0$  $(l)$

Với  $\sqrt x+1=2 \Leftrightarrow x=1$  $(n)$

Vậy với $x=1$ thì $M$ nhận giá trị nguyên là $-1$

Bài tập:

Bài 1: Cho biểu thức:

$P=\dfrac {x^2-\sqrt x}{x+\sqrt x+1}-\dfrac {2x+\sqrt x}{\sqrt x}+\dfrac {2\left( x-1\right) }{\sqrt x-1}$

Rút gọn $P$ và tìm giá trị nhỏ nhất của $P$.

Bài 2: Cho biểu thức:

$A=\dfrac {15\sqrt x-11}{x+2\sqrt x-3}-\dfrac {3\sqrt x-2}{\sqrt x-1}-\dfrac {2\sqrt x+3}{\sqrt x+3}$

Rút gọn $A$ và tìm giá trị lớn nhất của $A$.

Bài 3: Cho biểu thức:

$P=\dfrac {1}{\sqrt x-1}-\dfrac {x\sqrt x-\sqrt x}{x+1}\left( \dfrac {1}{x-2\sqrt x+1}+\dfrac {1}{1-x}\right) $

a) Rút gọn biểu thức $P$. Tìm $x$ để $P=-\dfrac {2}{5}$.

b) Tìm $x$ nguyên để $\sqrt x$, $\dfrac {1}{P}$ cũng là số nguyên.

Bài 4:  Cho biểu thức:

$A=\left( \dfrac {1}{x+\sqrt x}-\dfrac {2-\sqrt x}{\sqrt x+1}\right) :\left( \dfrac {1}{x}+x-2\right) $

Rút gọn biểu thức $A$. Tìm số chính phương $x$ để $3A$ là số nguyên.

Bài 5:  Cho biểu thức:

$A=\dfrac {7}{\sqrt x+8}$ và $B=\dfrac {\sqrt x}{\sqrt x-3}+\dfrac {2\sqrt x-24}{x-9}$ với $x\ge 0$, $x\ne 9$

a) Chứng minh $B=\dfrac {\sqrt x+8}{\sqrt x+3}$.

b) Tìm $x$ để biểu thức $P=A.B$ có giá trị là số nguyên$.

Bài 6:  Cho biểu thức:

$M=\left( 2+\dfrac {x+\sqrt x}{\sqrt x+1}\right) \left( 1-2\sqrt x-x+\dfrac {1-x\sqrt x}{1-\sqrt x}\right) $

a) Tìm điều kiện của $x$ để biểu thức $M$ có nghĩa. Rút gọn biểu thức $M$.

b) Tìm giá trị của $x$ để biểu thức $P=\dfrac {2}{M}$ nhận giá trị là số nguyên.

Bài 7: Rút gọn biểu thức:

$T=\dfrac {2\sqrt a+\sqrt b}{\sqrt {ab} +2\sqrt a-\sqrt b-2}-\dfrac {2-\sqrt {ab}}{\sqrt {ab}+2\sqrt a+\sqrt b+2}$

với $a, b\ge 0$, $a\ne 1$. Tìm giá trị lớn nhất của $T$ khi $a$ là số tự nhiên khác $1$.

Rút gọn căn thức đơn giản

Ví dụ: Rút gọn các biểu thức sau:

a) $3\sqrt 8 – \sqrt {48} – 2\sqrt {\dfrac{4}{3}} + 4\sqrt {\dfrac{9}{2}} $.

b) $10\sqrt {28a} + 2\sqrt {175a} – 3\sqrt {343a} + \sqrt {112a} $ với $a \ge 0$.

c) $\sqrt {20 + 2\sqrt {19} }  – \sqrt {30 + 2\sqrt {29} } $.

d) $\sqrt {17 – 4\sqrt {9 – 4\sqrt 5 } } $.

e) $\sqrt {6 – 2\sqrt 6 + 2\sqrt 2 – 2\sqrt 3 } $

Giải

a) $3\sqrt 8 – \sqrt {48} – 3\sqrt {\dfrac{4}{3}} + 4\sqrt {\dfrac{9}{2}}$

$= 3\sqrt {2^2.2} – \sqrt {4^2.3} – 3\dfrac{\sqrt {2^2} }{\sqrt 3 } + 4\dfrac{\sqrt {3^2} }{\sqrt 2 }$
$= 6\sqrt 2 – 4\sqrt 3 – 3\dfrac{2\sqrt 3 }{3} + 4\dfrac{3\sqrt 2 }{2} = 12\sqrt 2 – 6\sqrt 3 $

b) $10\sqrt {28a} + 2\sqrt {175a} – 3\sqrt {343a} + \sqrt {112a} $
$= 10\sqrt {{2^2}7a} + 2\sqrt {{5^2}7a} – 3\sqrt {{7^2}7a} + \sqrt {{4^2}7a} $
$= 20\sqrt {7a} + 10\sqrt {7a} – 21\sqrt {7a} + 4\sqrt {7a} = 13\sqrt {7a} $

c) $\sqrt {20 + 2\sqrt {19} } – \sqrt {30 + 2\sqrt {29} } = \sqrt {19 + 2\sqrt {19} + 1} – \sqrt {29 + 2\sqrt {29} + 1} $
$= \sqrt {\left( {\sqrt {19} + 1} \right)^2} – \sqrt {\left( {\sqrt {29} + 1} \right)^2} = \left| {\sqrt {19} + 1} \right| – \left| {\sqrt {29} + 1} \right|$
$= \sqrt {19} + 1 – \sqrt {29} – 1 = \sqrt {19} – \sqrt {29}$.

d) $\sqrt {17 – 4 \sqrt {9 – 4\sqrt 5 } } = \sqrt {17 – 4\sqrt {4 – 2.2\sqrt 5 + 5} } $

$= \sqrt {17 – 4\sqrt {\left( {2 – \sqrt 5 } \right)^2} } = \sqrt {17 – 4.\left| {2 – \sqrt 5 } \right|} $
$= \sqrt {17 – 4\left( {\sqrt 5 – 2} \right)} = \sqrt {25 – 4\sqrt 5 } $.

e)$\sqrt {6 – 2\sqrt 6 + 2\sqrt 2 – 2\sqrt 3 } = \sqrt {3 + 2 + 1 – 2\sqrt 6 + 2\sqrt 2 – 2\sqrt 3 } $
$= \sqrt {\left ( \sqrt 3  \right )^2 + \left ( \sqrt 2  \right )^2 + 1^2 – 2\sqrt 3 .\sqrt 2 + 2\sqrt 2 .1 – 2\sqrt 3 .1} $
$= \sqrt {\left ( \sqrt 3 – \sqrt 2 – 1 \right )^2} = \left | \sqrt 3 – \sqrt 2 – 1 \right | = \sqrt 2 + 1 – \sqrt 3$.

Bài tập :

Bài 1: Rút gọn các biểu thức sau:

a) $2\sqrt {24} – 2\sqrt {54} + 3\sqrt 6 – \sqrt {150} $.

b) $\dfrac{3}{2}\sqrt 6 + 2\sqrt {\dfrac{2}{3}} – 4\sqrt {\dfrac{3}{2}} $.

c) $10\sqrt {72} – \dfrac{5}{3}\sqrt {162} + \sqrt {128} – 2\sqrt {50} + \sqrt {98} $.

d) $5\sqrt {12} – 2\sqrt {48} + 6\sqrt {75} – \sqrt {108} $.

e) $\dfrac{3}{2}\sqrt {12} + \dfrac{7}{5}\sqrt {75} – \dfrac{9}{{10}}\sqrt {300} + \dfrac{{11}}{6}\sqrt {108} $.

Bài 2: Rút gọn các biểu thức sau:

a) $\sqrt {31 – 8\sqrt {15} } + \sqrt {24 – 6\sqrt {15} } $.

b)$\sqrt {49 – 5\sqrt {96} } – \sqrt {49 + 5\sqrt {96} } $.

c) $\sqrt {15 – 6\sqrt 7 } + \sqrt {43 – 12\sqrt 7 } $.

d) $\sqrt {8 – 2\sqrt {15} } – \sqrt {23 – 4\sqrt {15} } $.

Bài 3: Rút gọn các biểu thức sau:

a) $\sqrt {10 + 2\sqrt 6 + 2\sqrt {10} + 2\sqrt {15} } $.

b)$\sqrt {6 + 2\sqrt 2 + 2\sqrt 3 + 2\sqrt 6 } $.

c) $\sqrt {18 – 4\sqrt 6 – 8\sqrt 3 + 4\sqrt 2 } $.

d) $\sqrt {8 + \sqrt 8 + \sqrt {20} + \sqrt {40} } $.

e) $\sqrt {25 – 4\sqrt {10} – 4\sqrt {15} + 2\sqrt 6 } $.

Bài 4: Cho $x=\sqrt{3}-1$

a) Tính: $x^3-3x^2+x-1 $.

b) Chứng minh: $x^2+2x-2=0 $.

c) Tính: $P=\left( x^3+2x^2-x+1\right)^{2020} $.

Bài 5: Rút gọn các biểu thức sau:

a) $\sqrt {a+b+c+2\sqrt{ac+bc}}+\sqrt {a+b+c-2\sqrt {ac+bc}} $.

b) $\sqrt {a+b+9c+6\sqrt {ac+bc}}+\sqrt {a+b+9c-6\sqrt {ac+bc}} $.

c) $\sqrt {a-b+4c+4\sqrt {ac-bc}}+\sqrt {a-b+4c-4\sqrt {ac-bc}} $.

Trục căn thức ở mẫu

Tính chất: Trục căn thức ở mẫu:

  • $\dfrac{1}{\sqrt A}=\dfrac {\sqrt A}{A}$.
  • $\dfrac {1}{\sqrt A-\sqrt B}=\dfrac {\sqrt A+\sqrt B}{A-B}$.
  • $\dfrac {1}{\sqrt A+\sqrt B}=\dfrac {\sqrt A-\sqrt B}{A-B}$.

Ví dụ: Trục căn thức ở mẫu:

a) $\dfrac {12\sqrt 2}{5\sqrt 3}$.

b) $\dfrac {3}{\sqrt 5-\sqrt 2}$.

c) $\dfrac {3+\sqrt 3}{1+\sqrt 2}+\dfrac {2+\sqrt 2}{2-\sqrt 2}$.

Giải

a) $\dfrac {12\sqrt 2}{5\sqrt 3}=\dfrac {12 \sqrt 2 \sqrt 3}{5.3}=\dfrac {4\sqrt 6}{5}$

b) $\dfrac {3}{\sqrt 5-\sqrt 2}=\dfrac{{3\left( {\sqrt 5 + \sqrt 2 } \right)}}{{\left( {\sqrt 5 – \sqrt 2 } \right)\left( {\sqrt 5 + \sqrt 2 } \right)}}=\dfrac {3\left (\sqrt 5+\sqrt 2 \right ) }{5-2}=\sqrt 5+\sqrt 2$

c) $\dfrac {3+\sqrt 3}{1+\sqrt 2}+\dfrac {2+\sqrt 2}{2-\sqrt 2}=\dfrac{{\left( {3 + \sqrt 3 } \right)\left( {\sqrt 2 – 1} \right)}}{{\left( {\sqrt 2 + 1} \right)\left( {\sqrt 2 – 1} \right)}} + \dfrac{{\left( {2 + \sqrt 2 } \right)\left( {2 + \sqrt 2 } \right)}}{{\left( {2 – \sqrt 2 } \right)\left( {2 + \sqrt 2 } \right)}}$

$=\dfrac{{3\sqrt 2 – 3 + \sqrt 6 – \sqrt 3 }}{{2 – 1}} + \dfrac{{6 + 4\sqrt 2 }}{{4 – 2}}$

$=3\sqrt 2 – 3 +\sqrt 6 – \sqrt 3 + 3 + 2\sqrt 2 =5\sqrt 2-\sqrt 3+\sqrt 6$

Bài tập:

Bài 1:  Trục căn thức ở mẫu:

a) $\dfrac{7}{\sqrt 3 }$; $\dfrac{3}{2\sqrt 5 }$; $\dfrac{5}{3\sqrt {12} }$; $\dfrac{2}{3\sqrt {20} }$.

b)$\dfrac{\sqrt 3 + 3}{5\sqrt 3 }$; $\dfrac{7 – \sqrt 7 }{\sqrt 7 – 1}$; $\dfrac{2}{\sqrt 5 + \sqrt 3 }$; $\dfrac{\sqrt 5 + 2}{\sqrt 5 – 2}$.

c) $\dfrac{y + a\sqrt y }{a\sqrt y }$; $\dfrac{b – \sqrt b }{\sqrt b – 1}$; $\dfrac{b}{5 + \sqrt b }$; $\dfrac{p}{2\sqrt p – 1}$.

Bài 2: Tính:

a) $\dfrac{1}{{2 – \sqrt 5 }} + \dfrac{1}{{2 + \sqrt 5 }}$.

b) $\dfrac{3}{2}\sqrt 6 + 2\sqrt {\dfrac{2}{3}} – 4\sqrt {\dfrac{3}{2}} $.

c) $\dfrac{{2 + \sqrt 3 }}{{2 – \sqrt 3 }} – \dfrac{{2 – \sqrt 3 }}{{2 + \sqrt 3 }}$.

d) $\dfrac{2}{{\sqrt 3 – 1}} + \dfrac{3}{{\sqrt 3 – 2}} + \dfrac{{12}}{{3 – \sqrt 3 }}$.

Bài 3: Rút gọn:

a) $\dfrac{{3 + 2\sqrt 3 }}{{\sqrt 3 }} – \dfrac{{2\sqrt 3 + \sqrt {15} }}{{\sqrt 5 + 2}}$.

b) $\dfrac{{5\sqrt 2 – 2\sqrt 5 }}{{\sqrt {10} }} – \dfrac{3}{{\sqrt 5 – \sqrt 2 }}$.

c) $\dfrac{{\sqrt {15} – \sqrt {12} }}{{\sqrt 5 – 2}} – \dfrac{1}{{2 – \sqrt 3 }}$.

d) $\dfrac{{\sqrt 2 }}{{\sqrt {\sqrt 2 + 1} – 1}} – \dfrac{{\sqrt 2 }}{{\sqrt {\sqrt 2 + 1} + 1}}$.

 

Căn bậc hai

Định nghĩa 1: Căn bậc hai của số $a$ không âm là số $x$ sao cho $x^2=a$.

Ví dụ 1: 

a) Căn bậc hai của $9$ là $3$ và $-3$.

b) Căn bậc hai của $4$ là $2$ và $-2$.

c) Căn bậc hai của $0$ là $0$.

Định nghĩa 2: Căn bậc hai số học của số không âm $a$ là số $x$ không âm thỏa $x^2=a$.

Kí hiệu $x=\sqrt a$.

Ví dụ 2:

a) $\sqrt 4=2$.

b) $\sqrt {36}=6$.

Tính chất 1: Với $a\ge 0$ thì:

  • $x=\sqrt a$ thì $x\ge 0$ và $x^2=a$. Hay $\sqrt a\ge 0$ và $\left (\sqrt a \right )^2=a$.
  • Nếu $x \ge 0$ và $x^2=a$ thì $x= \sqrt a$.

Tính chất 2: Cho $a$, $b$ là các số không âm. Khi đó $a<b \Leftrightarrow \sqrt a<\sqrt b$

Ví dụ 3: So sánh các số:

a) $1$ và $\sqrt 2$.

b) $2$ và $\sqrt 5$.

c) $17$ và $\sqrt {290}$.

Giải

a) Ta có: $1<2 \Leftrightarrow 1<\sqrt 2$.

b) Ta có: $4<5 \Leftrightarrow 2<\sqrt 5$.

c) Ta có: $289<290 \Leftrightarrow 17<\sqrt {290}$.

Ví dụ 4: Tìm các số tự nhiên $x$ thỏa:

a) $\sqrt x <2$.

b) $2<\sqrt x <4$.

Giải

a) Ta có:  Điều kiện $x \geq 0$, từ giả thiết $\sqrt x <2 \Leftrightarrow x<4$.

Do $x$ là số tự nhiên nên $x \in \{0, 1, 2, 3\}$.

b) Ta có: $2< \sqrt x \Leftrightarrow 4<x$ và $\sqrt x <4 \Leftrightarrow x<16$

Vậy $4<x<16$ Do $x$ tự nhiên nên $x$ là các số tự nhiên từ 5 đến 15.

Ví dụ 5. Một hình vuông có diện tích bằng diện tích của hình chữ nhật có chiều rộng và chiều dài lần lượt là $4$ và $9$. So sánh chu vi của hình vuông và hình chữ nhật.

Giải

Gọi $x$ là độ dài cạnh của hình vuông ($x>0$).
Vậy diện tích hình vuông là $S_v=x^2$.
Diện tích hình chữ nhật là $S_{hcn}=4\cdot 9=36$.
Mà $S_v=S_{hcn}\Leftrightarrow x^2=36\Leftrightarrow x=\sqrt{36}=6$ hoặc $x=-\sqrt{36}=-6$. Do $x>0$ nên $x=6$.
Ta có chu vi hình vuông là $P_v=4\cdot x=4\cdot 6=24$.
Ta có chu vi hình chữ nhật là $P_{hcn}=2\cdot (9+4)=2\cdot 13=26$.
Vậy chu vi hình chữ nhật lớn hơn hình vuông.

Định nghĩa 3: Nếu $A$ là một biểu thức đại số, ta gọi $\sqrt A$ là căn thức bậc hai của $A$, $A$ còn được gọi là biểu thức dưới dấu căn.

Biểu thức $\sqrt A$ có nghĩa (xác định) khi và chỉ khi $A \ge 0$.

Ví dụ 6. Tìm điều kiện của $x$ để các biểu thức sau xác định.

a) $\sqrt {2x-1}$.

b) $\sqrt{4-3x}$.

c)$\sqrt {x^2}$.

Giải

a) $2x-1 \ge 0 \Leftrightarrow x \ge \dfrac{1}{2}$

b) $4-3x \ge 0 \Leftrightarrow x \le \dfrac {4}{3}$

c) $x^2 \ge 0$ luôn đúng với mọi $x$

Ví dụ 7. Chứng minh rằng các biểu thức sau xác định với mọi $x$.

a) $\sqrt {x^2+4}$.

b) $\sqrt {x^2-4x+4}$.

c) $\sqrt {2x^2-4x+3}$.

Giải

a) Ta có: $x^2+4 \ge 0$ với mọi $x$ .

Vậy biểu thức xác định với mọi $x$.

b) Ta có: $x^2-4x+4=\left ( x-2 \right ) ^2 \ge 0$ với mọi $x$.

Vậy biểu thức xác định với mọi $x$.

c) Ta có: $2x^2-4x+3=2\left ( x^2-2x+1 \right )+1=2\left (x-1 \right )^2+1 \ge 0$ với mọi $x$.

Vậy biểu thức xác định với mọi $x$.

Bài tập: 

Bài 1: Tính :

a) $\sqrt {81}$.

b) $\sqrt {225}$.

c) $\sqrt {0,49}$.

d) $\sqrt {12^2+5^2}$.

e) $-0,25\sqrt {(-0,4)^2}$.

Bài 2:  So sánh các căn sau:

a) $\sqrt {20}$ và $2\sqrt 5$.

b) $2\sqrt 3$ và $3\sqrt 2$.

c) $-7\sqrt 3$ và $-2\sqrt {10}$.

d) $\sqrt 3 -3\sqrt 2$ và $-4\sqrt 3 +5\sqrt 2$.

e) $2+\sqrt 2$ và $5-\sqrt 3$.

Bài 3:  Tìm điều kiện của $x$ để các biểu thức sau xác định:

a) $\sqrt {3x-2}$.

b) $\sqrt {4x^2-20x+25}$.

c) $\sqrt {\dfrac {-5}{9-5x}}$.

d) $\sqrt {x^2-4}$.

Bài 4: Tìm $x$ không âm, biết:

a) $\sqrt x=3$.

b) $\sqrt x +2=7$.

c) $\sqrt {x+1} -1=4$.

d) $\sqrt {x-1} =\sqrt {13}$.

 

 

 

 

Bài tập hình học 9: Ôn thi học kì 1

Dưới đây là một số bài tập ôn thi học kì 1 lớp 9, môn hình học với lời giải chi tiết được thực hiện bởi thầy Nguyễn Phi Hùng – Giáo viên Trường Phổ thông Năng khiếu. Nếu có gì sai sót comment dưới nhé.

Các bạn hãy share cho mọi người cùng tiếp cận được tài liệu này. Cảm ơn.

Đề tham khảo HK1 quận 1, Sài Gòn, năm học 2018-2019 [pdf]

Link xem bài – > LOI-GIAI-CAC-BAI-HINH-DE-NGHI-HK1