Tag Archives: PhanTichThanhNhanTu

Phân tích đa thức thành nhân tử – Hằng đẳng thức

Cách thực hiện: Vận dụng các hằng đẳng thức  để đưa đa thức về dạng tích các đa thức hay dạng lũy thừa của một đa thức

$A^2 \pm 2AB +B^2=(A \pm B)^2$

$A^2-B^2=(A+B)(A-B)$

$A^3 \pm 3A^2B+3AB^2 \pm B^3= (A \pm B)^3$

$A^3 \pm B^3=(A \pm B)(A^2 \mp AB+B^2)$

Ví dụ 1. Phân tích đa thức thành nhân tử.

a) $ x^2 – 9 $
b) $ 4x^2 – 25$
c) $ x^6 – y^6$

$(3x+1)^2-(2x+3)^2$

Giải

a) $ x^2 – 9 =x^2-3^2=(x-3)(x+3) $
b) $ 4x^2 – 25=(2x)^2-5^2=(2x-5)(2x+5) $
c) $ x^6 – y^6=(x^2)^3-(y^2)^3=(x^2-y^2)(x^4+x^2y^2+y^4$
d) $(3x+1)^2-(2x+3)^2=(3x+1-2x-3)(3x+1+2x+3)=(x-2)(5x+4)$

Ví dụ 2. Phân tích đa thức thành nhân tử.

a) $ x^2 – 9 $
b) $ 4x^2 – 25$
c) $ x^6 – y^6$
d) $ 9x^2 + 6xy + y^2$
e) $ 6x -9 -x^2 $

Giải

a) $x^2-4x+4=x^2-2.2x+2^2=(x-2)^2$
b) $ x^2 +6x + 9=x^2+2.3x+3^2=(x+3)^2$
c)  $ 9x^2 + 6xy + y^2=(3x)^2+2.3xy+y^2=(3x+y)^2 $
d) $ 6x -9 -x^2=-(x^2-6x+9)=-(x^2-2x.3+3^2)=-(x-3)^2. $

Ví dụ 3. Phân tích đa thức thành nhân tử.

a) $ 27 -125x^3. $

b)  $ x^3 + \dfrac{1}{27}. $
c) $ x^3 – 9x^2+ 27x – 27. $
d) $x^3+3x^2+3x+1$

Giải

a) $x^2-4x+4=x^2-2.2x+2^2=(x-2)^2$
b) $ x^2 +6x + 9=x^2+2.3x+3^2=(x+3)^2$
c)  $ 9x^2 + 6xy + y^2=(3x)^2+2.3xy+y^2=(3x+y)^2 $
d) $ 6x -9 -x^2=-(x^2-6x+9)=-(x^2-2x.3+3^2)=-(x-3)^2. $

 

Bài tập

Bài 1. Phân tích đa thức thành nhân tử

a) $x^3 – y^6$
b) $x^3 + y^3z^3$
c) $(x-1)^2 – (y-3)^2$
d) $x^4 – 4x^2 + 4$

Daie) $x^2 – 8x + 16$.

Bài 2. Phân tích đa thức thành nhân tử

a) $x^3+8$
b)  $x^3 – 27$
c) $x^3 – 6x^2 + 12x- 8$
d)  $(a^2 + 4ab+ 4b^2) – x^2 $
e)  $x^2 – y^4$.

Bài 3. Phân tích đa thức thành nhân tử

a) $4a^2-b^2$
b) $121-a^2$
c) $196a^2-4b^2$
d) $(a-b)^2-c^2$

Bài 4. Phân tích đa thức thành nhân tử

a) $81(x+7)^2-(3x+8)^2$
b)  $x^2+14x+49$
c) $25x^2-20xy+4y^2$

Bài 5. Phân tích đa thức thành nhân tử

a) $x^10-4x^8+4x^6$
b) $m^3+27$
c) $8x^6-27y^3$
d) $x^12-y^4$.

Bài 6. Phân tích đa thức thành nhân tử

a) $x^3+6x^2+12x+8$
b) $27-27m+9m^2-m^3$
c)  $27a^3-54ab+36ab^2-8b^2$

Bài 7. Phân tích đa thức thành nhân tử

a) $ x^2 + 4y^2 + 4xy. $
b) $ (x+y)^2 – (x-y)^2. $
c) $ (3x+1)^2 – (x+1)^2. $
d) $ x^3 + y^3 +z^3 -3xyz. $
e) $ x^3 – \dfrac{1}{4}x. $

Bài 8. Phân tích các đa thức sau thành nhân tử:

a) $ \dfrac{1}{25}x^2 – 64y^2 $
b)  $ x^3 + \dfrac{1}{27}. $
c)  $ (a+b)^3 – (a-b)^3. $
d)  $ (a+b)^3 + (a-b)^3. $

Bài 9. Phân tích các đa thức sau thành nhân tử:

a) $ 8x^3 +12x^2y + 6xy^2 + y^3. $
b)  $ -x^3 + 9x^2- 27x + 27. $
c) $4x^2-12xy+9y^2$.
d) $x^3+3x^2+3x+1$.

Bài 10. Phân tích các đa thức sau thành nhân tử:

a) $x^4-4x^2y^2+4y^4$.
b)  $ 25x^2 – 16y^2. $
c) $ 27 -125x^3. $

Bài 11. Phân tích các đa thức sau thành nhân tử:

a) $x^2-y^2$
b) $4x^2-9y^2$
c) $(x+1)^2-(y-3)^2$
d) $(2x+1)^2-(2y-1)^2$.

Bài 12. Phân tích các đa thức sau thành nhân tử:

a) $x^3-y^3$
b) $x^3+y^3$
c) $8x^3+27y^3$
d) $x^3-(y+1)^3$.

Bài 13. Tìm $ x $, biết.

a) $ x^3 – 0,25x =0 .$
b)  $ x^2 -10x = -25. $
c)  $ 2-25x^2 =0 .$
d) $ x^2 – x+ \dfrac{1}{4} =0. $

Bài 14. Phân tích các đa thức sau thành nhân tử:

a) $8x^3-6x^2+12x-1$
b)  $27x^3+27x^2+9x+1$
c) $x^3-6x^2y+12xy^2-8y^3$
d) $8x^3-48x^2y+96xy^2+64y^3$

Bài 15. Phân tích các đa thức sau thành nhân tử:

a) $(3x+1)^3-(3x-5)^3$
b) $(2x+1)^3+(5-2x)^3$.

Bài 16. Phân tích các đa thức sau thành nhân tử:

a) $x^8 – y^4$
b) $x^3 + y^6$.

Phân tích thành nhân tử- Phương pháp nhóm hạng tử

Cách thực hiện: Nhóm các hạng tử của đa thức một cách thích hợp để có thể đặt nhân tử chung hay dùng hằng đẳng thức.

Các ví dụ:

Ví dụ 1. Phân tích các đa thức sau thành nhân tử:

a) $ x^2 -xy + x – y$
b) $ xz + yz – 5(x+y) $
c) $ 3x^2 – 3xy – 5x + 5y$
d) $ x^2 + 4x – y^2 +4 $

Giải

a) $ x^2 -xy + x – y=x(x-y)+(x-y)=(x-y)(x+1) $
b) $ xz + yz – 5(x+y)=z(x+y)-5(x+y)=(x+y)(z-5) $
c) $ 3x^2 – 3xy – 5x + 5y=(3x^2-3xy)-(5x-5y)$

$=3x(x-y)-5(x-y)=(x-y)(3x-5)$
d) $ x^2 + 4x – y^2 +4=(x^2+4x+4)-y^2$

$=(x+2)^2-y^2=(x+2-y)(x+2+y) $

Ví dụ 2. Phân tích các đa thức sau thành nhân tử:

a) $ x^2 -x -y^2 -y$
b) $ x^2 -2xy + y^2 -z^2$
c) $ 5x-5y +ax -ay $
d) $ a^3 -a^2x -ay +xy$

 

Giải

a) $ x^2 -x -y^2 -y=(x^2-y^2)-(x+y)$

$=(x+y)(x-y)-(x+y)=(x+y)(x-y-1)$
b) $ x^2 -2xy + y^2 -z^2=(x^2-2xy+y^2)-z^2$

$=(x-y)^2-z^2=(x-y-z)(z-y+z) $
c) $ 5x-5y +ax -ay=(5x-5y) +(ax -ay)$

$=5(x-y)+a(x-y)=(x-y)(a+5) $
d) $ a^3 -a^2x -ay +xy= (a^3 -a^2x) -(ay -xy)$

$=a^2(a-x)-y(a-x)=(a-x)(a^2-y)$

 

Ví dụ 3. Phân tích các đa thức sau thành nhân tử:

a) $a^2+bc+ab+ac$.
b) $x^2+2xy+y^2+3x+3y$.
c) $ 3x^2 + 6xy + 3y^2 -3z^2 $
e) $ x^2 -2xy + y^2 – z^2 +2zt -t^2$

Giải

a) $a^2+bc+ab+ac=(a^2+ab)+(ac+bc)$

$=a(a+b)+c(a+b)=(a+b)(a+c)$.
b) $x^2+2xy+y^2+3x+3y=(x^2+2xy+y^2)+(3x+3y)$

$=(x+y)^2+3(x+y)=(x+y)(x+y+3)$.
c) $ 3x^2 + 6xy + 3y^2 -3z^2=3(x^2+2xy+y^2-z^2)$

$=3(x+y+z)(z+y-z) $
e) $ x^2 -2xy + y^2 – z^2 +2zt -t^2= (x^2 -2xy + y^2 )-( z^2 -2zt +t^2)$

$=(x-y)^2-(z-t)^2=(x-y-z+t)(x-y+z-t). $

 

Bài tập

Bài 1. Phân tích thành nhân tử:

a) $x^2+y^2+2xy – xz – zy$.
b) $xy^2+2x^2y-3x^2+3y^2+x^3$.
c) $a^3+b^3-3a^2b-3ab^2$.

Bài 2. Tính nhanh giá trị của mỗi đa thức

a) $ x^2 -2xy -4z^2 + y^2$ tại $ x = 6;\ y=-4; \ z=45 $
b)  $3(x-3)(x+7) +(x+4)^2 +48 $ tại $ x = 0,5. $

Bài 3. Tìm $ x $, biết:

a) $ x(x-2) +x -2 =0 .$
b) $ 5x(x-3) -x+3 =0.$

Bài 4. Phân tích các đa thức sau thành nhân tử (phương pháp nhóm hạng tử)

a) $a+b+x(a+b)$
b) $ax+ay+bx+by$
c) $x^2+xy-2x-2y$
d) $5x^2y+5xy^2-a^2x+a^2y$
e) $10ay^2-5by^2+2a^2x-aby$.

Bài 5. Phân tích các đa thức sau thành nhân tử (phương pháp nhóm hạng tử)

a) $4acx+4bcx+4ax+4bx$
b) $3ax^2+3bx^2+ax+bx+5a+5b$
c) $ax+bx+cx+a+b+c$
d) $ax-bx-2cx-2a+2b+4c$.

Bài 6. Phân tích đa thức thành nhân tử:

a) $x^2- 2xy + y^2 – z^2$
b) $xy – x + y – 1$
c) $x^2 + x – y^2 – y$
d) $ab+ a + b+ 1$.

Bài 7. Phân tích đa thức thành nhân tử:

a) $x^2 + 4xy + 4y^2 – 9z^2$
b) $a^3 + b^3 + ab^2 + a^2b$
c) $x^3 + 3x^2 + 3x + 1 + y^3$
d) $x^2 – y^2 -2yz – z^2 $.

Bài 8. Phân tích các đa thức sau thành nhân tử:

a) $2x^3+4x^2y+2xy^2$
b) $ a^4 + 2a^2b^2 + b^4 – 4b^2c^2$
c) $a^3 + b^3 – ab(a+b)$
d) $3xy(a^2+b^2)+ab(x^2+9y^2)$.

Bài 9. Phân tích các đa thức sau thành nhân tử:

a) $x^3 + 3x(x+1)+1 – y^3$
b)  $ x^4 + 4x^2+4 – x^2y^4$
c) $a^3+3ab(a+b)+b^3+c^3$.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Phân tích đa thức thành nhân tử – Đặt thừa số chung

Cách thực hiện: Đưa nhân tử chung của các hạng tử của đa thức ra ngoài dấu ngoặc

$AB+AC=A(B+C)$

Ví dụ 1.  Phân tích các đa thức sau thành nhân tử.

a) $ x^2 -x. $
b) $ 5x^2(x-2y)-15x(x-2y) .$
c) $ 3(x-y) -5x(y-x). $
d) $ 3x- 6y. $

Giải

a) $ x^2 -x =x(x-1)$

b) $ 5x^2(x-2y)-15x(x-2y) = (x-2y)(5x^2-15x)=5x(x-3)(x-2y)$

c) $ 3(x-y) -5x(y-x)=3(x-y)+5x(x-y)=(x-y)(3-5x) $

d)$ 3x- 6y.=3(x-2y).$

Ví dụ 2. Phân tích các đa thức sau thành nhân tử.

a) $ \dfrac{2}{5}x^2 +5x^3 +x^2y.$
b) $ 14x^2y -21xy^2 + 28x^2y^2. $
c) $ \dfrac{2}{5}x(y-1) -\dfrac{2}{5}y(y-1). $
d) $ 10x(x-y) – 8y(y-x). $

Giải

a) $ \dfrac{2}{5}x^2 +5x^3 +x^2y=x^2(\dfrac{2}{5}+5x+y)$
b) $ 14x^2y -21xy^2 + 28x^2y^2=7xy(2x-3y+4xy) $
c) $ \dfrac{2}{5}x(y-1) -\dfrac{2}{5}y(y-1)=\dfrac{2}{5}(y-1)(x-y)$
d) $ 10x(x-y) – 8y(y-x)=2(x-y) (5x+4y)$

Bài tập

Bài 1. Phân tích các đa thức sau thành nhân tử (phương pháp đặt thừa số chung)

a) $3a-6b-9c$
b) $-7a-14ab-21b$
c) $8xy-24x+16y$.

Bài 2. Phân tích các đa thức sau thành nhân tử (phương pháp đặt thừa số chung)

a) $9ab-18a+9$
b) $4ax-2ay-2$
c) $-2a^2b-4ab^2-6ab$

Bài 3. Phân tích đa thức thành nhân tử

a) $2axy-4a^2xy^2+6a^3x^2$
b) $12x^3y-6xy+3x$
c) $-8x^3y+16xy^2-24$
d) $m(x+y)-n(x+y)$
e) $ab(x-5)-a^2(5-x)$.

Bài 4. Phân tích đa thức thành nhân tử

a) $2a^2(x-y)-4a(y-x)$
b) $2a^2b(x+y)-4a^3b(-x-y)$
c)  $x^{m+2}-x^2$
d) $x^{m+2}+x^m$.

Bài 5. Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung.

a) $x^2 – xy+ 2x$
b) $xy^2 – 3xy + xy^2$
c) $a^2b + 2a^2b^2 – 3a^2$
d) $x(x+y) – 2y^2(x+y)$.

Bài 6. Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung.

a) $2(x^2-y^2) + x(x+y)$
b) $xy(x-2) + x^2 – 4$
c) $ab(a+b) + (a^2 – b^2)$.

Bài 7. Tính nhanh.

a)  $ 85\cdot 12,7 + 5\cdot 3\cdot 12,7. $
b)  $ 52\cdot 143 – 52 \cdot 39 – 8 \cdot 26. $
c)  $ 97 \cdot 13 + 130 \cdot 0,3. $
d)  $ 86\cdot 153 – 530 \cdot 8,6. $

Bài 8. Phân tích các đa thức sau thành nhân tử:

a) $ 12x^2 + 18x. $
b) $ 21x^2y – 14xy^2 + 7xy. $
c) $ x^2 + 2x. $
d) $ 15ab^2 – 25abc. $
e) $ -45x^3yz – 15xy^2z + 30x^2yz. $

Bài 9. Phân tích các đa thức sau thành nhân tử:

a) $x^4-4x^3-2x^2$.
b) $6x^2y + 9xy^2 -3xy$.
c) $2x^2y^2 -4x^3y^2 + 12x^3y^3$.
d) $ 3a^2(x-5) -6ab(5-x). $

Bài 10. Phân tích các đa thức sau thành nhân tử:

a) $ 15(x-2y) – 3x(2y-x). $
b) $ -12x^2 (-x+y) +18x^3(y-x). $
c) $xy(z+1) + 3x(z+1) – 4x^2(z+1)$.
d) $(x+1)^2+3(x-1)^3 – (x+1)^2$.

Bài 11. Tìm $ x $, biết:

a) $ x^3 -9x =0. $
b) $ x^2 – 4x = 0. $
c) $ 2x(x-5) +5-x =0. $

Bài 12. Tìm $ x $, biết:

a) $ x+ 5x^2 =0. $
b) $ x+1 =(x+1)^2. $
c) $ x^3 + x =0. $