Bài 1. (2 điểm) Giải các phương trình:
a) $\dfrac{x^2 – 3x -4}{\sqrt{3-x}}=0$
b) $\sqrt{x+2}= \sqrt{2x+5} – \sqrt{3-x}$
Bài 2. (1 điểm) Tìm tọa độ đỉnh $I$ của parabol $(P): y= ax^2 + bx+ c \ (a \ne 0)$, biết parabol $(P)$ cắt trục hoành tại hai điểm có hoành độ lần lượt bằng 2 và 8, cắt trục tung tại điểm có tung độ bằng 8.
Bài 3. (1 điểm) Tìm $m$ để phương trình $\dfrac{x(2-x)}{\sqrt{2-x}} = \left( m^2 +1 \right) \sqrt{2-x}$ có nghiệm.
Bài 4. (1 điểm) Tìm $m$ để hệ phương trình $\left\{ \begin{array}{l}
(m+1)x-2y =m-1 \
m^2x-y = m^2 + 2m
\end{array} \right. $ có nghiệm duy nhất $\left( x_0; y_0 \right) $. Xác định một hệ thức liên hệ giữa $x_0$ và $y_0$ mà không phụ thuộc vào $m$.
Bài 5. (1 điểm) Cho góc $a$ thỏa $\tan \left( a + \dfrac{\pi}{2} \right) = -\sqrt{3}$. Tính giá trị của biểu thức:
$$P=\dfrac{\sin ^6 a + \cos ^6 a + 2\sin ^3 a \cdot \cos ^3 a}{\sin ^5 a \cdot \cos ^3 a + \sin ^3 a \cdot \cos ^5 a}$$
Bài 6. (2 điểm) Cho tam giác $ABC$ nhọn có độ dài cạnh $AB=5$. Gọi $H$ là chân đường cao hạ từ $A$ và $BH=3$, $CH=6$.
a) Tính $\overrightarrow{BA} \cdot \overrightarrow{BC}$ và độ dài $AC$.
b) Gọi $M$ là trung điểm của $AH$. Tính $\overrightarrow{MB} \cdot \overrightarrow{MC}$.
Bài 7. (2 điểm) Trong mặt phẳng $Oxy$, cho tam giác $ABC$ có $A(1;2)$, $B(-1;5)$, $C(3;2)$.
a) Tìm tọa độ trọng tâm $G$ và điểm $I$ thỏa $2\overrightarrow{IA} + 3\overrightarrow{IB} = 4\overrightarrow{IC}$.
b) Tìm tọa độ điểm $D$ biết $ABCD$ là hình thang có đáy $AB = \dfrac{3}{8}CD$.
Tag Archives: PTNK
Đề thi Học kì 1 Toán 10 PTNK năm 2020 (CS1)
Đề thi và đáp án HK1 môn toán 10 trường PTNK (CS1)
Năm học 2020 – 2021
Thực hiện: Thầy Nguyễn Tấn Phát – GV PTNK
Bài 1. (2 điểm) Giải các phương trình:
a) $\dfrac{{{x^4} – 10{x^2} + 9}}{{\sqrt {x – 2} }} = 0$
b) $x\sqrt {{x^2} – x + 3} = x\left( {x – 6} \right)$
Bài 2. (1 điểm) Tìm $m$ để phương trình $\dfrac{1}{x} + \dfrac{{m + x}}{{x – 1}} = 1$ có nghiệm duy nhất.
Bài 3. (1 điểm) Chứng minh
$$\left[ {\cos 2\pi – \cos \left( {2\pi + x} \right)} \right]\left[ {1 + {{\tan }^2}\left( {\frac{\pi }{2} – x} \right)} \right] = \frac{1}{{1 + \cos x}}$$
Bài 4. (1 điểm) Cho hệ phương trình $\left\{ \begin{array}{l}
mx – \left( {m + 1} \right)y = 1\
\left( {2 – m} \right)x + \left( {m – 3} \right)y = 3 – 2m
\end{array} \right.$ ($m$ là tham số).
a) Tìm $m$ để hệ có nghiệm duy nhất $\left( x_0; y_0 \right) $.
b) Chứng minh $x_0^2 – y_0^2 – 2{x_0} = – 1$
Bài 5. (1 điểm) Gọi $(P)$ là đồ thị của hàm số $y = {x^2} + 2x – m$. Biết $(P)$ cắt trục tung tại điểm có tung độ là 4. Tìm m và tọa độ đỉnh của $(P)$.
Bài 6. (2 điểm) Cho hình bình hành ABCD có $AD = a$, $AB = 2a$ và $\widehat {DAB} = 120^\circ $.
a) Tính $\overrightarrow{DA} \cdot \overrightarrow{AB}$. Chứng minh $AB^2 – AD^2 = \overrightarrow {AC} \cdot \overrightarrow {DB} $
b) Gọi $H$ là hình chiếu vuông góc của $A$ trên $DB$. Tính $\overrightarrow{DH} \cdot \overrightarrow{DA}$.
Bài 7. (2 điểm) Trong mặt phẳng $Oxy$, cho tam giác $ABC$ có $A(1;6)$, $B(6;5)$, $C(6;1)$.
a) Tìm tọa độ $M$ sao cho $\overrightarrow {CM} = \overrightarrow {CA} – \overrightarrow {CB} $
b) Đường tròn ngoại tiếp tam giác $ABC$ cắt trục tung tại hai điểm phân biệt $E$, $F$. Tìm tọa độ tâm đường tròn ngoại tiếp tam giác $ABC$. Tìm toạ độ $E$ và $F$.
Đáp án đề thi chọn đội dự tuyển lớp 10 năm 2016 – 2017
Bài 1: Cho $x,y,z$ là các số thực dương thoả mãn $x+y+z=1$. Chứng minh rằng:
$$\dfrac{x^4}{x^3+y^2+z^2}+\dfrac{y^4}{y^3+z^2+x^2}+\dfrac{z^4}{z^3+x^2+y^2}\ge \dfrac{1}{7}.$$
Bài 2: Tìm tất cả các hàm số $f:\mathbb N^* \rightarrow \mathbb N^*$ thoả mãn đồng thời các điều kiện:
i/ $f(mn)=f(m)f(n)\ \forall m,n \in \mathbb N^*$.
ii/ $f(m)+f(n)$ chia hết cho $m+n$ $\forall m,n \in \mathbb N^*$.
iii/ $f(2017)=2017^3$.
Bài 3. Cho đường tròn $(O)$ và dây cung $AB$ cố định. $C$ là một điểm thay đổi trên cung lớn $AB$ sao cho tam giác $ABC$ nhọn. Gọi $I,I_a,I_b$ lần lượt là tâm đường tròn nội tiếp, tâm đường tròn bàng tiếp $\angle BAC$ và $\angle ABC$ của tam giác $ABC$.
a/ Gọi $M$ đối xứng với $I$ qua $O$. Chứng minh rằng tam giác $MI_{a}I_{b}$ cân.
b/ Gọi $H,K$ lần lượt là hình chiếu của $I_a,I_b$ trên $OI$. Đường thẳng qua $H$ vuông góc với $BI_a$ và đường thẳng qua $K$ vuông góc với $AI_b$ cắt nhau tại $P$. Chứng minh rằng $P$ thuộc một đường cố định khi $C$ thay đổi.
Bài 4. Cho $S$ là tập hợp khác rỗng và $A_1,A_2,\ldots,A_m\ (m\ge 2)$ là $m$ tập con của $S$. Gọi $\mathcal T$ là tập hợp gồm tất cả các tập hợp $A_i\Delta A_j\ (1\le i,j \le m$). Chứng minh rằng $|\mathcal T| \ge m$.
(Ký hiệu $A\Delta B=(A\backslash B)\cup (B\backslash A)$ là hiệu đối xứng của hai tập hợp $A,B$).
Đề thi và đáp án chọn đội tuyển toán trường PTNK năm 2021
Ngày thi thứ nhất.
Bài 1. Tìm hàm số $f: \mathbb{R} \rightarrow \mathbb{R}$ thỏa $f(x f(y)+f(x))=f(x)+x y+x+1, \forall x, y \in \mathbb{R} .$
Bài 2. Cho dãy số $\left(u_{n}\right)$ thỏa $u_{1}=2, u_{2}=1$ và $u_{n+1}=\sqrt{\dfrac{u_{n} u_{n-1}}{n}}$ với mọi $n \geq 2$.
Xét dãy số $\left(v_{n}\right)$ xác định bởi $v_{n}:=u_{1}+u_{2}+\ldots+u_{n}, \forall n \geq 1$. Chứng minh dãy $\left(v_{n}\right)$ hội tụ.
Bài 3. Cho $p$ là số nguyên tố, $n$ là số nguyên dương thỏa $2<p<n$. Gọi $\mathrm{A}$ là tập hợp các đa thức $P(x)=x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$ có tất cả các hệ số thuộc tập ${1 ; 2 ; \ldots ; n !}$ và $P(m)$ chia hết cho $p$ với mọi số nguyên dương $m$.
a) Chứng minh tổng $a_{1}+a_{p}+a_{2 p-1}+\ldots+a_{1+k(p-1)}$ chia hết cho $p$ với mọi $k=\left[\dfrac{n-1}{p-1}\right]$ (xem $a_{n}=1$ ), kí hiệu $[x]$ là phần nguyên của $x$.
b) Tính số phần tử của $\mathrm{A}$ theo $\mathrm{n}$ và $\mathrm{p}$.
Bài 4. Cho tam giác $\mathrm{ABC}$ có (I) là đường tròn nội tiếp. Một đường thẳng qua $\mathrm{A}$ cắt $(\mathrm{I})$ tại $\mathrm{M}, \mathrm{N}$. Gọi $\mathrm{T}$ là giao điểm của các tiếp tuyến với (I) tại $\mathrm{M}, \mathrm{N}$.
b) Chứng minh rằng nếu $\mathrm{AT} \parallel \mathrm{BC}$ thì $\mathrm{MN}$ đi qua trung điểm $\mathrm{K}$ của $\mathrm{BC}$.
c) Gọi $\mathrm{D}$ là tiếp điểm của (I) với $\mathrm{AB}$ và $\mathrm{E}$ là giao điểm của $\mathrm{DM}$ với $\mathrm{AC}$. Trên $\mathrm{EN}$ lấy điểm $\mathrm{F}$ thoả $\mathrm{TF}$ vuông góc $\mathrm{AI}$. Chứng minh rằng khi đường thẳng $\mathrm{AMN}$ thay đổi, giao điểm $\mathrm{P}$ của $\mathrm{MF}$ và $\mathrm{DN}$ thuộc một đường thẳng cố định.
Ngày thi thứ hai
Bài 5. Cho $n$ số thực $x_{1}, x_{2}, \ldots, x_{n}$ thỏa hiệu giữa số lớn nhất và số nhỏ nhất của chúng là 1 . Ta xây dựng
$$
y_{1}=x_{1}, y_{2}=\frac{x_{1}+x_{2}}{2}, \ldots, y_{n}=\frac{x_{1}+x_{2}+\ldots+x_{n}}{n}
$$
Gọi $M, m$ lần lượt là số lớn nhất và nhỏ nhất trong các số $y_1, y_2,\cdots,y_n$. \
Tìm giá trị lớn nhất của $M-n$.
Bài 6. Cho tập $\mathrm{X}={1 ; 2 ; \ldots ; 20}$. Tập con $\mathrm{A}$ của $\mathrm{X}$ được gọi là tập “tránh 2 ” nếu với mọi $\mathrm{x}, \mathrm{y}$ thuộc $\mathrm{A}$ thì $|x-y|$ khác 2 . Tìm số các tập con “tránh 2 ” của $\mathrm{X}$ có 5 phần tử.
Bài 7. Cho tam giác $\mathrm{ABC}$ và điểm $\mathrm{D}$ trên cạnh $\mathrm{BC}$. Các đường tròn ( $\mathrm{ABD}$ ), ( $\mathrm{ACD}$ ) lần lượt cắt $\mathrm{AC}, \mathrm{AB}$ tại $\mathrm{E}, \mathrm{F}$. Gọi $\mathrm{I}$ là tâm đường tròn $(\mathrm{AEF})$.
a) Chứng minh ID vuông góc BC.
b) Gọi $\mathrm{H}$ là giao điểm của $\mathrm{ID}$ với $\mathrm{EF}$ và $\mathrm{K}$ là điểm thoả mãn $H B K=H C K=90^{\circ}$. Các đường tròn (IBK), (ICK) lần lượt cắt IC, IB tại M, N. Chứng minh tâm J của đường tròn (IMN) thuộc trung trực BC.
Bài 8. Cho $p$ là số nguyên tố. Với mọi số nguyên a, đặt
$$
q:=1+a+a^{2}+\ldots+a^{p-1} .
$$
Chứng minh $(1-a)\left(1-a^{2}\right) \ldots\left(1-a^{p-1}\right)-p$ chia hết cho $q$.
Đáp án sẽ được đăng trong Tập san Star education số 7/2022
Đáp án đề thi chọn đội tuyển trường PTNK năm 2020
Ngày thi thứ nhất.
Bài 1. Với mỗi số nguyên dương $n$, tìm số thực $M_{n}$ lớn nhất sao cho với mọi số thực dương $x_{1}, x_{2}, \ldots, x_{n}$ thì ta đều có
$$
\sum_{k=1}^{n} \frac{1}{x_{k}^{2}}+\frac{1}{\left(\sum_{k=1}^{n} x_{k}\right)^{2}} \geq M_{n}\left(\sum_{k=1}^{n} \frac{1}{x_{k}}+\frac{1}{\sum_{k=1}^{n} x_{k}}\right)^{2}
$$
Bài 2. Cho 2021 số nguyên khác 0 . Biết rằng tổng của một số bất kỳ trong chúng với tích của tất cả 2020 số còn lại luôn âm.
(a) Chứng minh rằng với mọi cách chia 2021 số này thành hai nhóm và nhân các số cùng nhóm lại với nhau thì tổng của hai tích cũng luôn âm.
(b) Một bộ số thỏa mãn đề bài thì có thể có nhiều nhất mấy số âm?
Bài 3. Cho hai hàm số $f: \mathbb{R} \rightarrow \mathbb{R}$ và $g: \mathbb{R} \rightarrow \mathbb{R}$ thỏa mãn $g(2020)>0$ và với mọi $x, y \in \mathbb{R}$ thì $\left\{\begin{array}{l}f(x-g(y))=f(-x+2 g(y))+x g(y)-6 \\ g(y)=g(2 f(x)-y)\end{array}\right.$
(a) Chứng minh rằng $g$ là hàm hằng.
(b) Chứng minh rằng đồ thị $h(x)=f(x)-x$ nhận $x=1$ là trục đối xứng.
Bài 4. Cho tam giác $A B C$ nhọn, nội tiếp trong đường tròn $(O)$ có trực tâm $H$ và $A H, B H, C H$ cắt cạnh đối diện lần lượt tại $D, E, F$. Gọi $I, M, N$ lần lượt là trung điểm các cạnh $B C, H B, H C$ và $B H, C H$ cắt lại $(O)$ theo thứ tự tại các diểm $L, K$. Giả sử $K L$ cắt $M N$ ở $G$.
(a) Trên $E F$, lấy điểm $T$ sao cho $A T$ vuông góc với $H I$. Chứng minh rằng $G T$ vuông góc với $O H$.
(b) Gọi $P, Q$ lần lượt là giao điểm của $D E, D F$ và $M N$. Gọi $S$ là giao điểm của $B Q, C P$. Chứng minh rằng $H S$ di qua trung điểm của $E F$.
Ngày thi thứ hai.
Bài 5. Cho số nguyên dương $n>1$. Chứng minh rằng với mọi số thực $a \in\left(0 ; \frac{1}{n}\right)$ và mọi đa thức $P(x)$ có bậc $2 n-1$ thỏa mãn điều kiện $P(0)=P(1)=0$, luôn tồn tại các số thực $x_{1}, x_{2}$ thuộc $[0 ; 1]$ sao cho $P\left(x_{1}\right)=P\left(x_{2}\right)$ và $x_{2}-x_{1}=a$.
Bài 6. Giải phương trình sau trên $\mathbb{Z}^{+}:\left(x^{2}+3\right)^{3^{x+1}}\left[\left(x^{2}+3\right)^{3^{x+1}}+1\right]+x^{2}+y=x^{2} y$.
Bài 7 . Cho các số nguyên $n>k>t>0$ và $X={1,2, \ldots, n}$. Gọi $\mathcal{F}$ là họ các tập con có $k$ phần tử của tập hợp $X$ sao cho với mọi $F, F^{\prime} \in \mathcal{F}$ thì $\left|F \cap F^{\prime}\right| \geq t$. Giả sử không có tập con có $t$ phần tử nào chứa trong tất cả các tập $F \in \mathcal{F}$.
(a) Chứng minh rằng tồn tại một tập hợp $B \subset X$ sao cho $|B|<3 k$ và $|B \cap F| \geq t+1$ với mọi $F \in \mathcal{F}$.
(b) Chứng minh rằng $|\mathcal{F}|<C_{3 k}^{t+1} C_{n}^{k-t-1}$.
Bài 8. Cho tam giác $A B C$ nội tiếp trong $(O)$ với $B, C$ cố định và $A$ thay đổi trên cung lớn $B C$. Dựng hình bình hành $A B D C$ và $A D$ cắt lại $(B C D)$ ở $K$.
(a) Gọi $R_{1}, R_{2}$ lần lượt là bán kính đường tròn ngoại tiếp $(K A B),(K A C)$. Chứng minh rằng tích $R_{1} R_{2}$ không đổi.
(b) Ký hiệu $(T),\left(T^{\prime}\right)$ lần lượt là các đường tròn cùng đi qua $K$, tiếp xúc với $B D$ ở $B$ và tiếp xúc với $C D$ ở $C$. Giả sử $(T),\left(T^{\prime}\right)$ cắt nhau ở $L \neq K$. Chứng minh rằng $A L$ luôn đi qua một điểm cố định.
Hết
Đề thi và đáp án kì thi chọn đội tuyển thi Quốc gia trường Phổ thông Năng khiếu năm học 2016 -2017
Đề thi
Ngày thi thứ nhất
Bài 1. Tìm tất cả $a$ để dãy số $(u_n)$ hội tụ, biết $u_1=a$ và $\forall n\in \mathbb{N}^*$ thì:
$$u_{n+1}=\left\{\begin{array}{l}
2u_n-1\ \text{nếu $u_n>0$,}\\
-1\ \text{nếu $-1\le u_n\le 0$,}\\
u_n^2+4u_n+2\ \text{nếu $u_n<-1$.}
\end{array} \right.$$
Bài 2. Tìm số nguyên dương $k$ nhỏ nhất để bất đẳng thức $$x^ky^kz^k(x^3+y^3+z^3)\le 3$$
luôn đúng với mọi số thực dương $x,y,z$ thoả mãn điều kiện $x+y+z=3$.
Bài 3. Cho hàm số $f:\mathbb N^* \rightarrow \mathbb N^*$ thoả mãn hai điều kiện sau:
i) $f$ là hàm tăng thật sự trên $\mathbb N^*$.
ii) $f(2n)=2f(n)\ \forall n\in \mathbb N^*$.
a) Giả sử $f(1)=3$ và $p>3$ là số nguyên tố. Chứng minh rằng tồn tại số nguyên dương $n$ sao cho $f(n)$ chia hết cho $p$.
b) Cho $q$ là số nguyên tố lẻ. Hãy xây dựng một hàm $f$ thoả mãn các điều kiện của bài toán mà $f(n)$ không chia hết cho $q$ với mọi $n$ nguyên dương.
Bài 4. Cho tam giác $ABC$ có góc $\angle BAC$ tù và $AH\perp BC$ ($H$ nằm trên $BC$). Điểm $M$ thay đổi trên cạnh $AB$. Dựng điểm $N$ sao cho $\Delta BMN\sim \Delta HCA$, với $H$ và $N$ nằm khác phía đối với đường thẳng $AB$.
a) Gọi $CM$ cắt đường tròn ngoại tiếp tam giác $BMN$ tại $K$. Chứng minh rằng $NK$ luôn đi qua một điểm cố định.
b) Gọi $NH$ cắt $AC$ tại $P$. Dựng điểm $Q$ sao cho $\triangle HPQ\sim \Delta HNM$, với $Q$ và $M$ nằm khác phía đối với đường thẳng $NP$. Chứng minh rằng $Q$ luôn thuộc một đường thẳng cố định.
Ngày thi thứ hai
Bài 5. Với mỗi số nguyên dương $n$, tồn tại duy nhất số tự nhiên $a$ thoả mãn điều kiện $a^2\le n<(a+1)^2$. Đặt $\Delta_n=n-a^2$.
a) Tìm giá trị nhỏ nhất của $\Delta_n$ khi $n$ thay đổi và luôn thoả mãn $n=15m^2$ với $m$ là số nguyên dương.
b) Cho $p,q$ là các số nguyên dương và $d=5(4p+3)q^2$. Chứng minh rằng $\Delta_d\ge 5$.
Bài 6. Với các số nguyên $a,b,c,d$ thoả mãn $1\le a<b<c<d$, ký hiệu:
$$T(a,b,c,d)={{x,y,z,t}\subset \mathbb{N}^*\mid 1\le x<y<z<t,\ x\le a,y\le b,z\le c,t\le d}$$
a) Tình số phần tử của $T(1,4,6,7)$.
b) Cho $a=1$ và $b\ge 4$. Gọi $d_1$ là số phần tử của $T(a,b,c,d)$ chứa $1$ và không chứa $2$; $d_2$ là số phần tử chứa $1,2$ và không chứa $3$; $d_3$ là số phần tử chứa $1,2,3$ và không chứa $4$. Chứng minh rằng $d_1\ge 2d_2-d_3$. Đẳng thức xảy ra khi nào ?
Bài 7. Trong một hệ thống máy tính, một máy tính bất kỳ có kết nối trực tiếp với ít nhất $30\%$ máy tính khác của hệ thống. Hệ thống này có một chương trình cảnh báo và ngăn chặn khá tốt, do đó khi một máy tính bị virus, nó chỉ có đủ thời gian lây cho các máy tính được kết nối trực tiếp với nó. Chứng minh rằng dù vậy, kẻ tấn công vẫn có thể chọn hai máy tính của hệ thống mà nếu thả virus vào hai máy đó, ít nhất $50\%$ máy tính của hệ thống sẽ bị nhiễm virus.
Bài 8. Cho tam giác $ABC$ nhọn. Đường tròn $(I)$ có tâm $I$ thuộc cạnh $BC$ và tiếp xúc với các cạnh $AB,AC$ lần lượt tại $E,F$. Lấy $M,N$ bên trong tứ giác $BCEF$ sao cho $EFNM$ nội tiếp $(I)$ và các đường thẳng $MN,EF,BC$ đồng quy. Gọi $MF$ cắt $NE$ tại $P$, $AP$ cắt $BC$ tại $D$.
a) Chứng minh rằng $A,D,E,F$ cùng thuộc một đường tròn.
b) Lấy trên các đường thẳng $BN,CM$ các điểm $H,K$ sao cho $\angle ACH=\angle ABK=90^\circ$. Gọi $T$ là trung điểm $HK$. Chứng minh rằng $TB=TC$.
Hết
Lời giải
Đề thi và đáp án kì thi chọn đội tuyển thi Quốc gia trường Phổ thông Năng khiếu năm học 2015 -2016
Đề bài
Ngày thi thứ nhất
Bài 1. Cho tập hợp:
$$A=\left\{ n\in \mathbb{N}\mid 1\le n\le 2015,\gcd (n,2016)=1 \right\}.$$
Hỏi có bao nhiêu số nguyên $a\in A$ sao cho tồn tại số nguyên $b$ mà $a+2016b$ là số chính phương?
Bài 2. Cho $a,b,c,d$ là các số thực thỏa mãn điều kiện:
$$\left\{\begin{array}{l}
a^2\le 1\\
a^2+b^2\le 5\\
a^2+b^2+c^2\le 14\\
a^2+b^2+c^2+d^2\le 30
\end{array} \right..$$
a)Chứng minh rằng $a+b+c+d\le 10$.
b) Chứng minh rằng $ad+bc\le 10$.
Bài 3. Tìm tất cả các hàm số $f:\mathbb{R}\to \mathbb{R}$ thỏa mãn:
$$f\left( x-2f(y) \right)=5f(x)-4x-2f(y), \, \ \forall x,y\in \mathbb R.$$
Bài 4. Cho đường tròn $k$ và các điểm $B,C$ thuộc đường tròn sao cho $BC$ không phải là đường kính; $I$ là trung điểm $BC$. Điểm $A$ di động trên cung lớn $BC$ của $k$. Gọi $(\mathcal I_1)$ là đường tròn qua $I$ và tiếp xúc với $AB$ tại $B$, $(\mathcal I_2)$ là đường tròn qua $I$ và tiếp xúc với $AC$ tại $C$. Các đường tròn $(\mathcal I_1), (\mathcal I_2)$ cắt nhau tại $D$.
a) Chứng minh rằng đường tròn ngoại tiếp tam giác $AID$ luôn đi qua một điểm cố định.
b) Gọi $K$ là trung điểm $AD$, $E$ là tâm đường tròn qua $K$ và tiếp xúc với $AB$ tại $A$, $F$ là tâm đường tròn qua $K$ và tiếp xúc với $AC$ tại $A$. Chứng minh rằng góc $\angle EAF$ có số đo không đổi.
Ngày thi thứ hai
Bài 5. Cho dãy số $(x_n)$ được xác định bởi $x_n=\dfrac{1}{n\cos \frac{1}{n}}\ \forall n\in \mathbb N^*$. Tính giới hạn:
$$\lim_{n \to +\infty} \frac{{{x}_{1}}+{{x}_{3}}+{{x}_{5}}+\cdots+{{x}_{2n-1}}}{{{x}_{2}}+{{x}_{4}}+{{x}_{6}}+\cdots +{{x}_{2n}}}.$$
Bài 6. Tìm các giá trị của $b$ sao cho tồn tại $a$ để hệ phương trình sau có nghiệm $(x,y)$:
$$\left\{\begin{array}{l}
(x-1)^2+(y+1)^2=b \\
y=x^2+(2a+1)x+a^2
\end{array} \right..$$
Bài 7. Cho $n$ là số nguyên dương, $n\ge 2$ và $X=\left\{ 1,2,3,\ldots,n \right\}$. Gọi ${{A}_{1}},{{A}_{2}},\ldots,{{A}_{m}}$ và ${{B}_{1}},{{B}_{2}},\ldots,{{B}_{m}}$ là hai dãy các tập con khác rỗng của $X$ thỏa mãn điều kiện sau: với mỗi $i,j\in \left\{ 1,2,3,\ldots,m \right\}$, ${{A}_{i}}\cap {{B}_{j}}=\varnothing $ nếu và chỉ nếu $i=j.$
a) Chứng minh rằng với mỗi hoán vị $(x_1,x_2,\ldots,x_n)$ của tập hợp $X$, có không quá một cặp tập hợp $(A_i,B_i)$ với $i=1,2,3,\ldots,m$ sao cho nếu $x_k\in A_i$ và $x_l\in B_i$ thì ta phải có $k<l$.
b) Gọi $a_i,b_i$ lần lượt là số phần tử của tập hợp $A_i,B_i$ với $i=1,2,3,\ldots,m$. Chứng minh rằng:
$$\sum_{i=1}^{m}{\dfrac{1}{C_{{a_i+b_i}}^{a_i}}}\le 1.$$
Bài 8. Cho tam giác $ABC$ nhọn nội tiếp đường tròn tâm $O$. Đường tròn tâm $I$ đi qua $B,C$ lần lượt cắt các tia $BA,CA$ tại $E,F.$
a) Giả sử các tia $BF,CE$ cắt nhau tại $D$ và $T$ là tâm đường tròn $(AEF)$. Chứng minh rằng $OT\parallel ID.$
b) Trên $BF,CE$ lần lượt lấy các điểm $G,H$ sao cho $AG\perp CE,AH\perp BF.$ Các đường tròn $(ABF),(ACE)$ cắt $BC$ tại $M,N$ khác $B,C$ và cắt $EF$ tại $P,Q$ khác $E,F$. Gọi $K$ là giao điểm của $MP,NQ$. Chứng minh rằng $DK\perp GH$.
Hết
Bài 1.
Cho số nguyên dương $n>1$, ta quy ước gọi một số nguyên dương $a < n$ là thặng dư chính phương theo modulo $n$ nếu $\gcd(a,n)=1$ và tồn tại số nguyên $x$ sao cho $a\equiv {{x}^{2}} \pmod n .$ \medskip
Đặt $s(n)$ là số các số như thế. Ta sẽ chứng minh hai bổ đề dưới đây: \medskip
Bổ đề 1. Cho $p$ là số nguyên tố và $k$ là số nguyên dương. Khi đó:
Nếu $p=2$ thì $s({{2}^{k}})={{2}^{\max (k-3,0)}}$.
Nếu $p>2$ thì $s({{p}^{k}})=\dfrac{{{p}^{k}}-{{p}^{k-1}}}{2}$.
Bổ đề 2. $s(n)$ là hàm nhân tính, tức là $s(ab)=s(a)s(b)$ với $\gcd(a,b)=1$. \medskip
Thật vậy, \medskip
Trước hết, ta biết rằng $s(p)=\frac{p-1}{2}$ với $p$ là số nguyên tố lẻ. Ta sẽ tính $s({{p}^{k}})$ với $k\in {{\mathbb{Z}}^{+}}$. Xét một thặng dư chính phương $a$ của $p$, khi đó tồn tại $x$ sao cho $$a\equiv {{x}^{2}}\pmod{p}.$$ Đặt $a={{x}^{2}}+pq$ thì hiển nhiên $$a\equiv {{x}^{2}}+pq \pmod {{p}^{k}}\Leftrightarrow a-pq\equiv {{x}^{2}} \pmod {{p}^{k}}$$ và khi đó, ta có ${{p}^{k-1}}$ cách chọn $q$ để các số $a-pq$ là các thặng dư chính phương theo modulo ${{p}^{k}}$. Suy ra
$$s({{p}^{k}})={{p}^{k-1}}s(p)=\frac{{{p}^{k}}-{{p}^{k-1}}}{2}.$$ Xét số nguyên tố $p=2$, với $k=1,2,3,$ dễ dàng kiểm tra được $s({{2}^{k}})=1$. \medskip
Ta xét $k\ge 4$, tương tự trên, ở bước chọn $q$, ta chỉ có 2 cách nên $s({{2}^{k}})=2s({{2}^{k-1}})$. Từ đó bằng quy nạp, ta có được $$s({{2}^{k}})={{2}^{k-3}},k\ge 4.$$ Tiếp theo, xét hai số $a,b$ nguyên dương nguyên tố cùng nhau. Gọi $A$ là tập hợp các thặng dư chính phương theo modulo $ab$ và $B$ là tập hợp các số là thặng dư chính phương chung của $a,b.$ \medskip
Nếu $x\in A$ thì tồn tại $y$ sao cho $x\equiv {{y}^{2}} \pmod{ab}$. Rõ ràng khi đó,
$$x\equiv {{y}^{2}}\pmod a, \, x\equiv {{y}^{2}}\pmod b$$
(chú ý rằng nếu $x>a$, ta có thể chọn ${x}'$ sao cho ${x}'<a$ và $x\equiv {x}'\pmod a$; tương tự với $b$).
Do đó, $x\in B$, tức là $x\in A\Rightarrow x\in B$ nên $\left| A \right|\le \left| B \right|$. \medskip
Tiếp theo, xét $x\in B$. Khi đó tồn tại $r,s$ sao cho
$x\equiv {{r}^{2}}\pmod a,\text{ }x\equiv {{s}^{2}}\pmod b$.
Theo định lý thặng dư Trung Hoa, tồn tại số nguyên $z$ sao cho $$z\equiv r\pmod a, \, z\equiv s\pmod b.$$ Khi đó $$x\equiv {{z}^{2}}\pmod a, \, x\equiv {{z}^{2}}\pmod b$$ nên
$$x\equiv {{z}^{2}} \pmod{ab}.$$ Do đó: $x\in A$, tức là $x\in B\Rightarrow x\in A$ nên $\left| A \right|\ge \left| B \right|$. Từ đây ta có $$\left| A \right|=\left| B \right| \text{ hay } s(a)s(b)=s(ab).$$ Vậy $s(n)$ là hàm nhân tính. \medskip
Các bổ đề đều được chứng minh. \medskip
Trở lại bài toán, ta thấy rằng $2016={{2}^{5}}\cdot {{3}^{2}}\cdot 7.$ Rõ ràng bài toán yêu cầu đếm số thặng dư chính phương theo modulo $2016$.
Theo bổ đề 2 thì $$s(2016)=s({{2}^{5}})s({{3}^{2}})s(7).$$ Theo bổ đề 1 thì $$s({{2}^{5}})={{2}^{2}}=4,s({{3}^{2}})=\frac{{{3}^{2}}-3}{2}=3,s(7)=\frac{7-1}{2}=3.$$ Do đó, số các số $a$ cần tìm là $4\cdot 3\cdot 3=36.$
Bài 2.
(a) Dự đoán dấu bằng xảy ra khi $a=1,b=2,c=3,d=4$ nên ta có các đánh giá sau $
{{a}^{2}}+1\ge 2a
{{b}^{2}}+4\ge 4b
{{c}^{2}}+9\ge 6c
{{d}^{2}}+16\ge 8d
$
Do đó, ta có
$24(a+b+c+d)\le 3({{d}^{2}}+16)+4({{c}^{2}}+9)+6({{b}^{2}}+4)+12({{a}^{2}}+1)$
$=3{{d}^{2}}+4{{c}^{2}}+6{{b}^{2}}+12{{a}^{2}}+120 $
$=3({{a}^{2}}+{{b}^{2}}+{{c}^{2}}+{{d}^{2}})+({{a}^{2}}+{{b}^{2}}+{{c}^{2}})+2({{a}^{2}}+{{b}^{2}})+6{{a}^{2}}+120$
$\le 3\cdot 30+14+2\cdot 5+6\cdot 1+120=240$
Suy ra $a+b+c+d\le 10.$ \medskip
(b) Ta có $$16{{a}^{2}}+{{d}^{2}}\ge 8ad \text{ và } 9{{b}^{2}}+4{{c}^{2}}\ge 12bc.$$
Từ đó suy ra
$24(ad+bc)\le 3(16{{a}^{2}}+{{d}^{2}})+2(9{{b}^{2}}+4{{c}^{2}})$
$=3({{a}^{2}}+{{b}^{2}}+{{c}^{2}}+{{d}^{2}})+5({{a}^{2}}+{{b}^{2}}+{{c}^{2}})+10({{a}^{2}}+{{b}^{2}})+30{{a}^{2}}$
$\le 3\cdot 30+5\cdot 14+10\cdot 5+30\cdot 1=240$
Suy ra $ad+bc\le 10.$
Bài 3.
Gọi () là điều kiện đề bài cho.
Trong () thay $x=y=0$, ta có $$f(-2f(0))=3f(0).$$ Đặt $f(0)=a$ thì $f(-2a)=3a$.
Trong () thay $x=0$ và $y=-2a$, ta có $$f(-2f(-2a))=5a-2f(-2a)\Leftrightarrow f(-6a)=-a.$$ Trong (), thay $x=-2a,y=-6a$, ta có
$$\begin{aligned}
& f(-2a-2f(-6a))=5f(-2a)-4x-2f(-6a) \\
& \Leftrightarrow f(0)=15a+8a+2a.
\end{aligned}$$ Từ đây ta có $a=25a$ nên $a=0,$ tức là $f(0)=0$. \medskip
Trong $(*),$ thay $y=0$, ta có $$f(x)=5f(x)-4x\Leftrightarrow f(x)=x.$$ Thử lại ta thấy thỏa. Vậy hàm số cần tìm chính là $f(x)=x,\forall x\in \mathbb{R}.$
Bài 4.
(a) Gọi $O$ là tâm của đường tròn $k.$ Không mất tính tổng quát, giả sử tia $AD$ nằm giữa hai tia $AO,AB,$ các trường hợp còn lại tương tự.

Ta có: $$\angle IDB=\angle ABC,\angle IDC=\angle ACB$$ nên $$\angle BAC+\angle BDC=\angle BAC+\angle ABC+\angle ACB=180{}^\circ .$$ Do đó, tứ giác $ABDC$ nội tiếp hay $D\in (O).$ Ta thấy $$\begin{aligned}
& \angle DAO+\angle OID \\
& =\angle BAC-(\angle DAB+\angle OAC)+360{}^\circ -(90{}^\circ +\angle DIC) \\
& =\angle BAC-\left( \angle ICD+90{}^\circ -\angle ABC \right)+270{}^\circ -\angle DIC \\
& =\angle BAC+\angle ABC-(\angle ICD+\angle DIC)+180{}^\circ \\
& =(180{}^\circ -\angle ACB)-\left( 180{}^\circ -\angle IDC \right)+180{}^\circ \\
& =\angle IDC-\angle ACB+180{}^\circ =180{}^\circ.
\end{aligned} $$
Do đó, $AOID$ nội tiếp hay đường tròn $(AID)$ đi qua $O$ cố định. \medskip
(b) Ta có: $$\angle EAC=90{}^\circ -\angle BAC,\angle FAB=90{}^\circ -\angle BAC$$ nên
$$\angle EAF=180{}^\circ -2\angle BAC+\angle BAC=180{}^\circ -\angle BAC.$$
Do đó, góc $\angle EAF$ có số đo không đổi.
Bài 5.
Trước hết, ta chứng minh bổ đề sau: \medskip
Bổ đề. Giá trị của biểu thức $\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$ tiến tới vô cực khi $n\to +\infty.$ \medskip
Thật vậy, xét hàm số $f(x)=\ln (1+x)-x$ với $x>0$. Ta có $$f'(x)=\frac{1}{1+x}-1<0$$ nên đây là hàm nghịch biến, suy ra $f(x)<f(0)=0$ hay $\ln (1+x)<x,\forall x>0$. Thay $x$ bởi $\frac{1}{n}$, ta được
$$\ln \left( 1+\frac{1}{n} \right)<\frac{1}{n}\Leftrightarrow \frac{1}{n}>\ln (1+n)-\ln n.$$ Do đó, $$\frac{1}{1}+\frac{1}{2}+\frac{1}{3}++\frac{1}{n}>\ln 2-\ln1+\ln3-\ln2+\cdots+ln(n+1)-\ln n=\ln (n+1).$$ Vì $\ln (n+1)\to +\infty $ khi $n\to +\infty $ nên $$\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\to +\infty.$$
Trở lại bài toán, đặt $$y_n=\frac{x_1+x_3+x_5+\cdots+x_{2n-1}}{x_2+x_4+x_6+\cdots+x_{2n}}$$ với $n\ge 1.$
Ta thấy vì $\frac{1}{n}\in \left( 0;\frac{\pi }{2} \right)$ nên $\cos \frac{1}{n}>0$, suy ra $$x_n=\frac{1}{n\cos \frac{1}{n}}>0,n\ge 1. $$
Xét hàm số $f(t)=\frac{t}{\cos t}$ với $t\in \left( 0;\frac{\pi }{2} \right)$ thì ${f}'(t)=\frac{\cos t+t\sin t}{{{\cos }^{2}}t}>0$ nên đây là hàm đồng biến. Chú ý rằng $x_n=f\left( \frac{1}{n} \right)$, mà $\frac{1}{n}$ là dãy giảm nên $x_n$ cũng là dãy giảm. \medskip
Suy ra $x_1>x_2,x_3>x_4,\ldots,x_{2n-1}>x_{2n}$ nên $y_n>1$. \medskip
Ngoài ra, ta cũng có $x_3<x_2,x_5<x_4,\ldots,x_{2n-1}<x_{2n-2}$ nên $y_n< \frac{x_1+x_2+x_4+\cdots+x_{2n-2}}{x_2+x_4+\cdots+x_{2n}}$
$= 1-\frac{x_1-x_{2n}}{x_2+x_4+\cdots+x_{2n}}<1-\frac{x_1}{x_2+x_4+\cdots+x_{2n}}$
Dễ thấy rằng $$x_2+x_4+\cdots+x_{2n}=\sum\limits_{i=1}^{n}{\frac{1}{2i\cos \frac{1}{2i}}}\ge \sum\limits_{i=1}^{n}{\frac{1}{2i}}=\frac{1}{2}\sum\limits_{i=1}^{n}{\frac{1}{i}}.$$
Theo bổ đề trên thì $\sum\limits_{i=1}^{n}{\frac{1}{i}}$ tiến tới vô cực nên $$\lim \left( x_2+x_4+\cdots+x_{2n} \right)=+\infty .$$
Do đó $$\lim \left( 1-\frac{x_{1}}{x_2+x_4+\cdots+x_{2n}} \right)=1-0=1.$$ Theo nguyên lý kẹp, ta có $\lim x_n=1.$
Bài 6.
Đặt $X=x-1,Y=y+1$, thay vào, ta có
$$\begin{aligned}
& \left\{ \begin{aligned}
& {{X}^{2}}+{{Y}^{2}}=b \\
& Y-1={{(X+1)}^{2}}+(2a+1)(X+1)+{{a}^{2}} \\
\end{aligned} \right. \
& \Leftrightarrow \left\{ \begin{aligned}
& {{X}^{2}}+{{Y}^{2}}=b \\
& Y={{X}^{2}}+(2a+3)X+{{a}^{2}}+2a+3.
\end{aligned} \right. \\
\end{aligned}$$
Ta đưa về tìm điều kiện của $b$ để tồn tại $a$ mà hệ trên có nghiệm $(X,Y).$ Do $$Y-(X+2)={{X}^{2}}+2(a+1)X+{{(a+1)}^{2}}={{\left( X+a+1 \right)}^{2}}\ge 0$$ nên $Y\ge X+2$. Suy ra $Y-X\ge 2>0$, tức là ${{(X-Y)}^{2}}\ge 4.$ Ta có
$$b={{X}^{2}}+{{Y}^{2}}=\frac{{{(X-Y)}^{2}}+{{(X+Y)}^{2}}}{2}\ge \frac{{{(Y-X)}^{2}}}{2}\ge 2.$$ Mặt khác, với $b\ge 2$, nếu chọn $X=-(a+1)$ thì có $Y=X+2=1-a$. Khi đó, ta có
$${{X}^{2}}+{{Y}^{2}}={{(a+1)}^{2}}+{{(a-1)}^{2}}=2({{a}^{2}}+1)=b.$$ Như thế, với $a$ thỏa mãn $2({{a}^{2}}+1)=b$ thì hệ có nghiệm là $$(X,Y)=(-a-1,1-a).$$ Dễ dàng thấy rằng do $b\ge 2$ nên luôn tồn tại $a$ như thế. \medskip
Vậy các giá trị cần tìm của $b$ là $b\ge 2$.
Bài 7.
(a) Giả sử ngược lại, tồn tại $2$ cặp $(A_i,B_i)$ và $(A_j,B_j)$ thỏa mãn điều kiện đề bài đã cho. \medskip
Vì $i\ne j$ nên theo giả thiết, $$\left| A_i \cap B_j \right|\ge 1,\left| A_j\cap B_i \right|\ge 1.$$ Đặt $x_r\in A_i\cap B_j,x_s\in A_j\cap B_i$ với $1\le r,s\le n$ thì:
Do $x_r\in B_j$ nên với mọi $x_k\in A_j$, ta đều có $k<r.$
Do $x_r\in A_i$ nên với mọi $x_k\in B_i$, ta đều có $k>r$.
Từ đây suy ra $$A_j \subset \left\{ x_1,x_2,\ldots,x_{r-1} \right\},B_i\subset \left\{x_{r+1},x_{r+2},\ldots,x_n \right\}.$$
Điều này cho thấy $A_j\cap B_i=\varnothing $, mâu thuẫn với giả thiết. Vậy tồn tại không quá $1$ cặp $(A_i,B_i)$ thỏa mãn điều kiện đã cho. \medskip
(b) Gọi $T$ là tập hợp các cách chọn hai dãy $$A_1,A_2,\ldots,A_m \text{và} B_1,B_2,\ldots,B_m$$ thỏa mãn điều kiện là: với mỗi $i,j\in \left\{ 1,2,3,\ldots,n \right\}$, $A_i\cap B_j=\varnothing $ nếu và chỉ nếu $i=j.$ \medskip
Gọi $T_i\subset T$ là các cách chọn sao cho sao cho cặp $(A_i,B_i)$ thỏa mãn điều kiện là: cặp $(A_i,B_i)$ với $i=1,2,3,\ldots,n$ sao cho nếu $x_k \in A_i$ và $x_l\in B_i$ thì $x_k<x_l$ (ở đây ta xét thứ tự ban đầu của các phần tử của $X$). \hfill (*) \medskip
Theo câu (a) thì $T_i \cap T_j=\varnothing $ với $i\ne j$ nên ta có $$\left| T_1 \right|+\left| T_2 \right|+\cdots +\left| T_m \right|=\left| T_1 \cup T_2 \cup \ldots \cup T_m \right|\le T.$$ Tiếp theo, với $1\le i\le m$, xét một tập hợp $S\subset X$ và $\left| S \right|=a_i+b_i$. Khi đó, tương ứng với $S$, có đúng $1$ cách chọn $(A_i,B_i)$ thỏa mãn tính chất $(*)$ – tức là $A_i$ sẽ nhận $a_i$ số nhỏ nhất trong tập $S,$ $B_i$ là lấy phần còn lại. \medskip
Trong khi đó, nếu không có điều kiện $(*),$ ta có thể chọn tùy ý $C_{a_i+b_i}^{a_i}$ phần tử trong $S$ và $A$ và số còn lại cho $B.$ \medskip
Do đó, ta có
$\left| T_i \right|=\frac{\left| T \right|}{C_{a_i+b_i}^{a_i}} $ với $i=1,2,\ldots,m.$
Từ đây suy ra
$$\sum\limits_{i=1}^{m}\frac{\left| T \right|}{C_{a_i+b_i}^{a_i}}\le \left| T \right|\Leftrightarrow \sum\limits_{i=1}^{m}\frac{1}{C_{a_i+b_i}^{a_i}}\le 1$$
Ta có đpcm.
Bài 8.
(a) Giả sử $EF$ cắt $BC$ ở $L$ và $(T),(O)$ cắt nhau tại $J$ khác $A.$ Suy ra $AJ$ chính là trục đẳng phương của $(T),(O).$ Do đó $OT\bot AJ$. \medskip
Khi đó,
[LB\cdot LC=LE\cdot LF] nên $L$ thuộc trục đẳng phương của $(T),(O)$. Suy ra $A,J,L$ thẳng hàng. Theo định lý Brocard cho tứ giác $BEFC$ nội tiếp trong đường tròn $(I)$ thì $I$ chính là trực tâm của tam giác $ADL.$ \medskip
Vì thế nên $ID\bot AL$, mà $OT\bot AJ$ nên $ID\parallel OT$. \medskip

(b) Dễ dàng thấy rằng $D$ là trực tâm của tam giác $AGH$ nên $AD\bot GH$. Ta sẽ chứng minh rằng $A,D,K$ thẳng hàng. \medskip
Ta có $DB\cdot DF=DE\cdot DC$ nên $D$ có cùng phương tích tới $(ABF),(AEC)$. Suy ra $AD$ chính là trục đẳng phương của $2$ đường tròn này. \medskip

Bằng biến đổi các góc nội tiếp, ta thấy rằng
$$\angle MPQ=\angle MBF=\angle CEF=\angle CNQ.$$ Suy ra $MNPQ$ nội tiếp, dẫn đến $KM\cdot KP=KN\cdot KQ$, tức là $K$ cũng có cùng phương tích tới $2$ đường tròn $(ABF),(AEC)$. \medskip
Từ đó suy ra $A,D,K$ thẳng hàng. Do đó, $DK$ vuông góc với $GH.$
Đáp án thi chọn đội tuyển trường PTNK năm 2014
Đề bài
Ngày thi thứ nhất
Bài 1. Cho $a,b,c > 0$ thỏa mãn điều kiện $(a+1)(b+1)(c+1)=1+4abc$.
Chứng mình rằng ta có bất đẳng thức $a+b+c\le 1+abc.$
Bài 2. Cho tập hợp $A=\left\{ {{n}^{3}}-4n+15|n\in \mathbb{N} \right\}.$ Tìm tất cả các phần tử $a\in A$ thỏa mãn đồng thời hai điều kiện sau đây:
i) $a$ là số chẵn.
ii) Nếu $a_1,a_2$ là các ước số của $\dfrac{a}{2}$ với $a_1,a_2>1$ thì $\gcd (a_1,a_2)>1$.
Bài 3. Tìm tất cả các hàm số $f:\mathbb N^* \rightarrow \mathbb N^*$ thỏa mãn:
$$f \left(\dfrac{f(n)}{n} \right)=n^2 \ \forall n\in \mathbb N^*.$$
Bài 4. Cho tam giác $ABC$ nội tiếp $(O)$, có $B,C$ cố định và $A$ thay đổi trên $(O).$ Ký hiệu $(I)$ là đường tròn nội tiếp tam giác $ABC.$ Gọi $({{O}_{1}})$ là đường tròn qua $A,B$ và tiếp xúc với đường tròn $(I)$ tại $E.$ Gọi $({{O}_{2}})$ là đường tròn qua $A,C$ và tiếp xúc với đường tròn $(I)$ tại $F$. Đường phân giác trong của góc $\angle AEB$ cắt $({{O}_{1}})$ tại $M$ và đường phân giác trong của góc $\angle AFC$ cắt $({{O}_{2}})$ tại $N.$
a) Chứng minh rằng tứ giác $EFMN$ nội tiếp.
b) Gọi $J$ là giao điểm của $EM$ và $FN$. Chứng minh rằng đường thẳng $IJ$ luôn đi qua một điểm cố định.
Ngày thi thứ hai
Bài 5. Cho dãy số $({{x}_{n}})$ bởi $x_0=1,x_1=2014$ và $x_{n+1}=\sqrt[3]{x_nx_{n-1}^2}\ \forall n\in \mathbb{N}^*.$
a) Chứng minh rằng dãy số $(x_n)$ có giới hạn hữu hạn và tìm giới hạn đó.
b) Với mỗi $n\ge 2$, hãy tìm số nguyên dương $k$ nhỏ nhất sao cho $a=x_n^k$ là một số nguyên. Chứng minh rằng khi đó $a$ không thể viết được dưới dạng tổng các lũy thừa bậc ba của hai số tự nhiên.
Bài 6. Cho $X$ là tập hợp gồm $19$ phần tử.
a) Chứng minh rằng tồn tại ít nhất $2600$ tập con $7$ phần tử của $X$ sao cho với hai tập con $A,B$ bất kỳ trong số $2600$ tập con đó, ta có $\left| A \cap B \right|\le 5.$
b) Xét một họ $\Omega $ gồm $k$ tập con có $7$ phần tử của $X$. Một tập $A\subset X$ được gọi là một cận trên của $\Omega $ nếu như $\left| A \right|=8$ và tồn tại một tập con $F$ của họ $\Omega $ sao cho $F\subset A$. Gọi $d$ là số tập con cận trên của họ $\Omega$. Chứng minh rằng $d\ge \frac{3}{2}k.$
Bài 7. Cho tam giác $ABC$ không cân. Gọi $I$ là trung điểm $BC$. Đường tròn $(I)$ tâm $I$ đi qua $A$ cắt $AB,AC$ lần lượt tại $M,N.$ Giả sử $MI,NI$ cắt $(I)$ tại $P,Q$. Gọi $K$ là giao điểm của $PQ$ với tiếp tuyến tại $A$ của $(I)$. Chứng minh rằng $K$ thuộc đường thẳng $BC.$
Bài 8. Tìm số nguyên dương $n$ lớn nhất thỏa mãn các điều kiện sau:
a) $n$ không chia hết cho $3$.
b) Bảng vuông $n\times n$ không thể được phủ kín bằng $1$ quân tetramino $1\times 4$ và các quân trimino $1\times 3$. Trong phép phủ, các quân tetramino và trimino được phép quay dọc nhưng không được phép chườm lên nhau hoặc nằm ra ngoài bảng vuông.
Hết
Đáp án thi chọn Đội Tuyển Trường PTNK năm học 2013-2014
Đề thi và đáp án kì thi chọn đội tuyển Toán trường Phổ thông Năng khiếu – ĐHQG TPHCM được tổ chức vào tháng 10 năm 2013, chọn ra 6 học sinh dự thi kì thi HSG Quốc gia năm 2014. Các thí sinh từ các lớp 11, 12 (chủ yếu là học sinh chuyên toán), thực hiện bài thi trong 2 ngày, mỗi ngày 4 bài, mỗi bài 180 phút. Sau đây là đề thi và đáp án thực hiện bởi Star Education.
Ngày thi thứ 1
Bài 1. Tìm tất cả các hàm số $f: \mathbb{R} \rightarrow \mathbb{R}$ thoả mãn
$$f(x^{3}+y+f(y))=2 y+x^{2} f(x), \forall x, y \in \mathbb{R}$$
Bài 2. Cho dãy $\left\{u_{n}\right\}$ thoả mãn $u_{1}=2013, u_{n+1}=u_{n}^{3}-4 u_{n}^{2}+5 u_{n} \forall n \in \mathbb{N}^{*}$. Tìm tất cả các số nguyên tố $p$ là ước của $\left(u_{2014}+2009\right)$ và $p \equiv 3(\bmod 4)$.
Bài 3. Trong một hội nghị khoa học có 5000 đại biểu tham dự, mỗi một đại biểu biết ít nhất một thứ tiếng. Một uỷ ban gồm một số đại biểu được gọi là “uỷ ban làm viẹc” nếu tất cả thành viên trong uỷ ban đều biết chung một thú tiếng; gọi là “uỷ ban thách thức” nếu không có hai thành viên nào của uỷ ban biết chung một thứ tiếng (uỷ ban có thểgồm 1 thành viên; uỷ ban này gọi là làm việc họ̆c thách thức đều được). Chứng minh rằng có thể chia các đại biểu thành 100 uỷ ban rời nhau (mỗi đại biểu thuộc một uỷ ban) sao cho các uỷ ban này họ̆c là uỷ ban làm việc hoặc là uỷ ban thách thức.
Bài 4. Tam giác $A B C$ có $B, C$ cố định còn $A$ di động sao cho $A B=A C$ và $\angle B A C>60^{\circ} .$ Đường thẳng đối xúng với $B C$ qua $A B$ cắt AC tai $P$. Trên đoạn $P C$ lấy $M$ sao cho $P M=P B$. Gọi $N$ là giao điểm của $A B$ với phân giác ngoài góc BCA. Chứng minh $M N$ luôn đi qua một điểm cố định.
Ngày thi thứ 2
Bài 5. Cho 2014 số thực $x_{1}, x_{2}, \ldots, x_{2014}$ thỏa mãn điều kiện $\sum_{i=1}^{2014} x_{i}=0$ và $\sum_{i=1}^{2014} x_{i}^{2}=2014$. Tìm giá trị lớn nhất của biểu thức $P=x_{1} x_{2} \cdots x_{2014}$.
Bài 6. Cho dãy số $u_{n}$ xác định bởi $u_{1}=1, u_{n+1}=\frac{u_{n}}{\sqrt{u_{n}^{2}+1}+\sqrt{2}}$ với mọi $n \in \mathbb{N}^{*}$. Tìm giới hạn $\lim \frac{u_{n+1}}{u_{n}}$.
Bài 7. Cho n nguyên dương và A là tập con khác rỗng của $X={1,2, \ldots, n}$.
- Tính giá trị của tổng $S(A)=\sum_{E C X} \cdot(-1)^{|E \cap A|}$,trong đó $E$ lấy trên tất cả các tập con của tập $X$ (kể cả tập rỗng).
-
Cho $m \in \mathbb{N}^{*}$,xét $m$ tập con khác rỗng của $X$ là $A_{1}, A_{2}, \ldots, A_{m}$ và $m$ số nguyên khác không là $a_{1}, a_{2}, \ldots, a_{m}$ sao cho $a_{1}+a_{2}+\cdots+a_{m}<0$. Chứng minh tồn tại tập con $E$ của $X$ sao cho $\sum_{i=1}^{m}(-1)^{|E \cap A|} a_{i}>0$ (Kí hiệu $|A|$ chỉ số phần tử của tập $A$, số phần tử của tập rỗng là 0 ).
Bài 8. Cho tam giác $A B C$ nhọn có $H$ là trực tâm và $P$ là điểm di động bên trong tam giác $A B C$ sao cho $\angle B P C=\angle B H C$. Đường thẳng qua $B$ và vuông góc với $A B$ cắtPC tại $M$.Đường thẳng qua $C$ và vuông góc với $A C$ cắt $P B$ tại N. Chứng minh rằng trung điểm I của $M N$ luôn thuộc một đường cố định.
Hết
Tham khảo từ sách “Tuyển tập đề thi môn Toán đội tuyển và dự tuyển trường PTNK”
Đáp án thi chọn Đội Tuyển thi Quốc Gia của trường PTNK năm học 2015 – 2016
Ngày thứ 1
Bài 1. Cho tập hợp
$$
A=\{n \in \mathbb{N} \mid 1 \leq n \leq 2015,(n, 2016)=1\}
$$
Hỏi có bao nhiêu số nguyên $a \in A$ sao cho tồn tại số nguyên b mà $a+2016 b$ là số chính phương?
Bài 2. Cho $a, b, c, d$ là các số thực thỏa mãn điều kiện
$$
a^{2} \leq 1, a^{2}+b^{2} \leq 5, a^{2}+b^{2}+c^{2} \leq 14, a^{2}+b^{2}+c^{2}+d^{2} \leq 30
$$
1. Chúng minh rằng $a+b+c+d \leq 10$.
2. Chứng minh rằng $a d+b c \leq 10$.
Bài 3. Tìm tất cả các hàm số $f: \mathbb{R} \rightarrow \mathbb{R}$ thỏa mãn điều kiện
$$
f(x-2 f(y))=5 f(x)-4 x-2 f(y)
$$
với mọi $x, y \in \mathbb{R}$.
Bài 4. Cho đường tròn $k$ và các điểm $B, C$ thuộc đường tròn, không phải là đường kính; I là trung điểm $B C$. Điểm $A$ di động trên cung lớn $B C$ của $k$. Gọi $i_{1}$ là đường tròn qua $I$ và tiếp xúc với $A B$ tại $B ; i_{2}$ là đường tròn qua $I$ và tiếp xúc với $A C$ tại $C$. Các đường tròn $i_{1}, i_{2}$ cắt nhau tại $D$ (khác $I$ ).
1. Chứng minh rằng đường tròn ngoại tiếp tam giác AID luôn đi qua một điểm cố định.
2. Gọi $K$ là trung điểm $A D$, $E$ là tâm đường tròn qua $K$ và tiếp xúc với $A B$ tại $A, F$ là tâm đường tròn qua $K$ và tiếp xúc với AC tại $A$. Chứng minh rằng góc EAF có số đo không đổi.
Ngày thứ 2
Bài 5. Dãy số $\left(x_{n}\right)$ được xác định bởi công thức $x_{n}=\frac{1}{n \cos \frac{1}{n}}$ với mọi $n \geq 1$. Tính giới hạn sau
$$\lim \frac{x_{1}+x_{3}+x_{5}+\cdots+x_{2 n-1}}{x_{2}+x_{4}+x_{6}+s+x_{2 n}}$$
Bài 6. Tim các giá trị của $b$ sao cho tồn tại a để hệ phương trình sau có nghiệm $(x, y)$
$$
\left\{\begin{array}{l}
(x-1)^{2}+(y+1)^{2}=b \\y=x^{2}+(2 a+1) x+a^{2}
\end{array}\right.
$$
Bài 7. Cho n là số nguyên dương, $n \geq 2$ và $X={1,2,3, \ldots, n}$. Gọi $A_{1}, A_{2}, \ldots, A_{m}$ và $B_{1}, B_{2}, \ldots, B_{m}$ là hai dãy các tập con khác rỗng của $X$ thỏa mãn điều kiện: Với mỗi $i, j \in{1,2,3, \ldots, n}, A_{i} \cap B_{j}=\varnothing$ nếu và chỉ nếu $i=j$.
1. Chúng minh rằng với mỗi hoán vị $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ của $X$, có không quá một cặp tập hợp $\left(A_{i}, B_{i}\right)$ với $i=1,2,3, \ldots, n$ sao cho nếu $x_{k} \in A_{i}$ và $x_{l} \in B_{i}$ thì $k<l$.
2. Gọi $a_{i}, b_{i}$ lần lượt là số phần tử của tập hợp $A_{i}, B_{i}$ với $i=1,2,3, \ldots, m$. Chúng minh rằng
$$
\sum_{i=1}^{m} \frac{1}{C_{a_{i}+b_{i}}^{a_{i}}} \leq 1
$$
Bài 8. Cho tam giác $A B C$ nhọn nội tiếp đường tròn tâm $O$. Đường tròn tâm $I$ đi qua $B$, $C$ lần lượt cắt các tia $B A$, CA tại $E, F$.
1. Giả sử các tia $B F, C E$ cắt nhau tại $D$ và $T$ là tâm đường tròn $(A E F)$. Chứng minh rằng $O T$ || ID.
2. Trên BF, CE lần lượt lấy các điểm $G, H$ sao cho $A G \perp C E, A H \perp B F$. Các đường tròn $(A B F),(A C E)$ cắt $B C$ tai $M, N$ (khác $B, C)$ và cắt EF tại $P, Q$ (khác $E, F)$. Gọi $K$ là giao điểm của $M P, N Q$. Chứng minh rằng DK vuông góc với GH.









