Tag Archives: ToHop

Các bài toán tổ hợp trên dãy số

CÁC BÀI TOÁN TỔ HỢP TRÊN DÃY SỐ

Thầy Lê Phúc Lữ 

(Lớp Cao học Khoa học tự nhiên TP.HCM)

Trong bài viết nhỏ này, chúng ta sẽ cùng xét khía cạnh tổ hợp của dãy số nguyên; khi cần đếm số lượng dãy thỏa mãn một điều kiện cho trước nào đó. Các phương pháp thường gặp: truy hồi, xuống thang, cực hạn, phản chứng, …

1. Các bài toán chọn lọc

Bài tập 1.1: Tìm tất cả các bộ số nguyên dương $x_1,\ x_2,\ x_3,\ \ldots ,\ x_{2017}$ sao cho có thể đặt chúng lên vòng tròn theo thứ tự đó mà $6$ số liên tiếp bất kỳ đều có thể chia thành hai nhóm $3$ có tổng bằng nhau.

Giải

Dùng phương pháp xuống thang.

Ta có $x_i+x_{i+1}+x_{i+2}+x_{i+3}+x_{i+4}+x_{i+5} \equiv 0 \pmod{2}$ với mọi $i=1,2,3,\ldots ,2017$ nên $x_i \equiv x_{i+6}$ với mọi $i.$

Vì $(6,2017)=1$ nên suy ra tất cả các số có cùng tính chẵn lẻ. Ta xét phép biến đổi dãy số sau:

  • Nếu tất cả các số cùng chẵn thì thay bằng $y_i=\dfrac{x_i}{2}$.
  • Nếu tất cả các số cùng lẻ thì thay bằng $y_i=\dfrac{x_i+1}{2}$.

Dễ thấy dãy mới cũng thỏa và tổng $S=\sum\limits_{i=1}^{2017} a_i$ sẽ giảm ngặt nếu có một số nào đó trong dãy khác $1$; suy ra quá trình biến đổi sẽ dừng lại khi tất cả đều là $1$. Vì ta thu được một dãy toàn là $1$ nên dãy ban đầu có tất cả các số hạng bằng nhau.

Nhận xét: Bài toán trên có thể thay việc chia 2 nhóm thành $3,4,5,\ldots $ nhóm và vẫn giải được bằng cách tương tự. Ta xét các bài tương tự sau:

Bài tập 1.2 (APMO 2017): Bộ năm số nguyên là tốt nếu có thể đặt chúng là $a,b,c,d,e$ để $a-b+c-d+e=29.$ Tìm tất cả các bộ $2017$ số sao cho $5$ số liên tiếp bất kỳ trong chúng đều tốt.

Ở bài toán này, điểm khó là không biết các số đã cho có dương hay không; vì thể, đại lượng tổng ở trên không xét tiếp tục được.

Tuy nhiên, cách áp dụng vẫn tương tự như sau:

  • Trừ tất cả các số của bộ cho $29$, ta thu được điều kiện tốt trở thành $a-b+c-d+e=0.$
  • Tất cả các số đã cho cùng tính chẵn lẻ, và chính xác là cùng chẵn.
  • Xét đại lượng $S=\sum\limits_{i=1}^{2017}{\left| \frac{{{a}_{i}}}{2} \right|}$ thì thông qua phép chia 2, tổng này giảm ngặt. Từ đó suy ra tất cả các số này phải là $0$ và tất cả ban đầu phải là $29.$

Bài tập 1.3 (VMO 2014): Tìm tất cả các bộ số $2014$ số hữu tỷ không âm sao cho nếu bỏ đi bất kỳ số nào trong chúng thì các số còn lại có thể được chia thành $3$ nhóm rời nhau, mỗi nhóm có $671$ số sao cho tích các số trong mỗi nhóm là bằng nhau.

Bài này khó hơn vì: số hữu tỷ chứ không nguyên, tích chứ không phải tổng, … Ta lần lượt giải quyết điều đó như sau:

  • Quy đồng mẫu để đưa về số nguyên.
  • Xét số mũ của 1 ước nguyên tố để đưa về tổng.
  • Chú ý thêm trường hợp số 0 (nếu có 1 số thì phải có ít nhất 4 số).

Bài tập 1.4: Cho dãy số nguyên dương $({{a}_{n}})$ thỏa mãn:

$i)$ Gồm các số phân biệt nhau.

$ii)$ Với mọi $n$ thì ${{a}_{n}}\ge n.$

$iii)$ $a_1=5,\ a_2=4,\ a_3=3$.

a) Chứng minh rằng tồn tại $n>2017$ sao cho $a_n \ne n+1$?

b) Giả sử $a_n=n+2$ với mọi $n>2017$, hỏi có tất cả bao nhiêu dãy số như thế?

Giải

a) Bài toán có thể giải quyết dễ dàng bằng phản chứng và Dirichlet. Thật vậy, nếu ${{a}_{n}}=n+1$ với mọi $n>2017$ thì các số hạng ${{a}_{4}}\to {{a}_{2017}}$ sẽ nhận các giá trị trong tập hợp $6\to 2018$. Khi đó, sẽ có hai số hạng bằng nhau, không thỏa.

b) Nếu đã có ${{a}_{n}}=n+2$ với mọi $n>2017$ thì các số hạng ${{a}_{4}}\to {{a}_{2017}}$ sẽ nhận các giá trị trong tập hợp $6\to 2019.$ Nhận xét:

  • ${{a}_{2017}}\in \left\{ 2017,2018,2019 \right\}$ nên có $3$ cách chọn.
  • ${{a}_{2016}}\in \left\{ 2016,2017,2018,2019 \right\}$ nhưng vì ${{a}_{2017}}$ đã lấy một số nên cũng còn $3$ cách chọn.
  • Tương tự, đến ${{a}_{6}}$ vẫn có $3$ cách chọn. Còn lại ${{a}_{5}}$ có $2$ cách chọn và ${{a}_{4}}$ có $1$ cách chọn.

Theo nguyên lý nhân, ta có $2\cdot {{3}^{2012}}$ dãy thỏa mãn.

Bài tập 1.5: Xét lục giác $ABCDEF$ có độ dài cạnh là $1$ được điền các số như hình vẽ

Một con ếch xuất phát từ $A$ và nhảy đến các đỉnh sao cho mỗi bước nhảy đều có độ dài nguyên. Hành trình của ếch là dãy các tên đỉnh mà ếch đã nhảy qua; và hai hành trình được coi là khác nhau nếu ở một lần thứ $k$ nào đó, đỉnh mà ếch nhảy đến ở hai hành trình là khác nhau.

Gọi $m$ là số hành trình ếch nhảy sao cho tổng các số mà nó nhảy qua là $2017$. Chứng minh rằng $m$ không phải là số chính phương.

Giải

Ta thấy $ACE$ và $BDF$ là hai tam giác đều có cạnh là $\sqrt{3}$ nên mỗi lần, ếch sẽ nhảy từ tam giác đều này đến tam giác đều kia.

Chia nhóm:

  • $I=(A,C,E)$ tương ứng với các số $(0,0,1)$.
  • $II=(B,D,F)$ tương ứng với $(1,1,2)$.

Ta thấy $\left\{ x+y|x\in I,y\in II \right\}=\left\{ 1,1,1,1,2,2,2,2,3 \right\}$ chứng tỏ tổng các số trên hai bước nhảy liên tiếp của ếch sẽ nhận giá trị là $4$ số $1$, $4$ số $2$ và $1$ số $3.$ Nếu gọi ${{s}_{n}}$ là số hành trình của ếch có tổng là $n$ thông qua chẵn bước thì

$${{s}_{n}}=4{{s}_{n-1}}+4{{s}_{n-2}}+{{s}_{n-3}}.$$

Một cách tương tự, gọi ${{t}_{n}}$ là số hành trình của ếch có tổng là $n$ thông qua lẻ bước thì công thức truy hồi vẫn thế (chỉ khác ở các số hạng đầu).

Vì vậy nên nếu gọi ${{u}_{n}}={{s}_{n}}+{{t}_{n}}$ là số hành trình của ếch có tổng là $n$ thì

$${{u}_{n}}=4{{u}_{n-1}}+4{{u}_{n-2}}+{{u}_{n-3}} \text{ với } n\ge 3.$$

Ta có ${{u}_{0}}=1,{{u}_{1}}=6,{{u}_{2}}=28$ và từ công thức truy hồi thì $m={{u}_{2017}}\equiv {{u}_{1}}\equiv 2 \pmod{4}$ nên $m$ không thể là số chính phương, ta có đpcm.

Nhận xét: Bài toán có thể giải bằng cách gọi $6$ dãy truy hồi $a_n,\ b_n,\ c_n,\ d_n,\ e_n,\ f_n$ chỉ số hành trình của ếch có tổng là $n$ và kết thúc tại $A,B,C,D,E,F$. Tuy nhiên, cách tiếp cận đó khá phức tạp, đòi hỏi phải khai thác nhiều các liên hệ giữa các đường đi.

Một bài toán tương tự:

Bài tập 1.6 (Ả Rập TST 2017): Người ta đặt các số $1,2,3,4$ trên vòng tròn theo thứ tự đó. Một con kiến xuất phát từ số $1$ và ở mỗi bước, nó sẽ bò qua số bên cạnh. Hỏi con kiến có bao nhiêu cách bò sao cho tổng tất cả các số mà nó bò qua (kể cả số ban đầu) bằng 21?

Tương tự bài trên, ta cũng tìm được hệ thức truy hồi là $s_n=s_{n-3}+2s_{n-5}+s_{n-7}$. Từ đó tính được $s_{21}=167.$

Bài tập 1.7: Đếm số dãy số nguyên dương $\left( a_1,\ a_2,\ \ldots ,\ a_{12}\right) $ thỏa mãn các điều kiện sau:

a) $1\le a_1 \le a_2 \le \ldots \le a_{12} \le 2017$

b) $a_i \equiv i^2 (\bmod 12)$.

Giải

Theo giả thiết, ta có

${{a}_{1}}\equiv {{a}_{5}}\equiv {{a}_{7}}\equiv {{a}_{11}}\equiv 1\text{ }(\bmod 12) $

$ {{a}_{2}}\equiv {{a}_{4}}\equiv {{a}_{8}}\equiv {{a}_{10}}\equiv 4\text{ }(\bmod 12) $

$ {{a}_{3}}\equiv {{a}_{9}}\equiv 9\text{ }(\bmod 12) $

$ {{a}_{6}}\equiv {{a}_{12}}\equiv 0\text{ }(\bmod 12) $

Đặt ${{a}_{i}}=12{{b}_{i}}+{{r}_{i}}$ với $i=1,2,3,\ldots ,12$ và ${{r}_{i}}$ là số dư tương ứng đã chỉ ra ở trên.

Do tính không giảm của dãy nên ta phải có

$$0\le {{b}_{1}}\le {{b}_{2}}\le {{b}_{3}}<{{b}_{4}}<{{b}_{5}}<{{b}_{6}}\le {{b}_{7}}\le {{b}_{8}}\le {{b}_{9}}<{{b}_{10}}<{{b}_{11}}<{{b}_{12}}\le 168.$$

Từ đó suy ra

$0\le {{b}_{1}}<{{b}_{2}}+1<{{b}_{3}}+2<{{b}_{4}}+2<{{b}_{5}}+2<{{b}_{6}}+2\le {{b}_{7}}+3\le {{b}_{8}}+4\le {{b}_{9}}+5 $

$<{{b}_{10}}+5<{{b}_{11}}+5<{{b}_{12}}+5\le 173 $

Do các số liệt kê ở trên đều phân biệt và thuộc $[0;173]$ nên số cách chọn một bộ như thế là $C_{174}^{12}$. Đó cũng chính là số dãy cần tìm.

Nhận xét: Điều kiện thứ hai có thể thay bằng một hàm số tùy ý theo $i$ chứ không nhất thiết phải là ${{i}^{2}}$, cách giải vẫn tương tự như trên.

Bài tập 1.8: Hỏi có bao nhiêu hoán vị $a_1,\ a_2,\ …,\ a_{2017}$ của $2017$ số nguyên dương đầu tiên thỏa mãn đồng thời các điều kiện sau:

$i)$ $a_{i+1}-a_i\le 1$ với mọi $i=1,2,3,\ldots,2016.$

$ii)$ Có đúng một chỉ số $i$ với $1\le i\le 2017$ sao cho $a_i=i$?

Giải

Trước hết, ta sẽ chứng minh nhận xét rằng số hoán vị của $n$ số nguyên dương đầu tiên thỏa mãn điều kiện i), gọi là hoán vị đẹp, sẽ là ${{2}^{n-1}}$. Thật vậy,

  • Đầu tiên, ta đặt số $1$ vào hoán vị.
  • Số $2$ có thể xếp trước hoặc sau số $1$, có $2$ cách.
  • Số $3$ có thể xếp vào đầu dãy hoặc ngay sau số $2$ đã xếp trước đó, có $2$ cách.
  • Số $4$ có thể xếp vào đầu dãy hoặc ngay sau số $3$ đã xếp trước đó, cũng có $2$ cách. Cứ như thế cho đến $n.$

Do đó, có tất cả ${{2}^{n-1}}$ cách xếp, tương ứng vời ${{2}^{n-1}}$ hoán vị.

Tiếp theo, giả sử ta có ${{a}_{i}}=i$.

Khi đó ${{a}_{i+1}}\le {{a}_{i}}+1=i+1$, nhưng không thể có ${{a}_{i+1}}=i+1$ (do chỉ có 1 chỉ số thỏa mãn ii) nên ${{a}_{i+1}}\le i$, mà ${{a}_{i}}=i$ nên ${{a}_{i+1}}\le i-1$. Tiếp theo, ${{a}_{i+2}}\le {{a}_{i+1}}+1\le i$ nên ${{a}_{i+2}}\le i-1$.

Do đó, các số từ ${{a}_{i+1}}$ đến ${{a}_{2017}}$ nhận giá trị không vượt quá $i-1$.

Lập luận tương tự, các số từ ${{a}_{1}}$ đến ${{a}_{i-1}}$ phải nhận giá trị không nhỏ hơn $i+1.$

Do đó, hai đoạn hoán vị phía trước và phía sau ${{a}_{i}}$ phải có độ dài bằng nhau, tức là ${{a}_{1009}}=1009$ là số ở giữa.

Rõ ràng các hoán vị phía trước và phía sau $1009$ đều phải là hoán vị đẹp và được sắp xếp độc lập với nhau.

Vậy số hoán vị cần tìm là ${{\left( {{2}^{1007}} \right)}^{2}}={{2}^{2014}}.$

Nhận xét: Nếu đề đổi số $2017$ thành $2018$ thì sẽ tồn tại hai chỉ số $i$ như trên và chúng sẽ cách đều hai đầu $1$ và $2018$. Khi đó, đoạn ở giữa cũng sẽ cố định, tức là có $i<j$ để

${{a}_{k}}=k$ với mọi $k=i,i+1,\ldots ,j$ và $i+j=2019.$

Phần trước $i$ và phần sau $j$ sẽ đổi chỗ cho nhau với số cách xếp là ${{({{2}^{i-1}})}^{2}}$.

Bài tập 1.9: Cho dãy các số nguyên dương $(u_n)$ thỏa mãn điều kiện

$0\le u_{m+n}-u_m-u_n \le 1$ với mọi $m,n\in \mathbb{Z}^+$.

Chứng minh rằng tồn tại $a\in \mathbb{R}^+$ sao cho $-1\le u_n-\left[ an \right]\le 1$ với mọi $n=1,2,3,\ldots ,2017.$

Giải

Ta đưa điều cần chứng minh về

$$\frac{{{u}_{n}}}{n}<a<\frac{{{u}_{n}}+1}{n}.$$

Đến đây, gọi

$$m=\min \left\{ \left. \frac{{{u}_{n}}+1}{n} \right|n=1,2,3,\ldots ,2017 \right\}$$ và

$$M=\max \left\{ \left. \frac{{{u}_{n}}}{n} \right|n=1,2,3,\ldots ,2017. \right\}$$

Cần chỉ ra $m>M$ rồi chọn số $a$ nằm giữa $(m,M)$ là xong. Gọi $p,q$ lần lượt là các chỉ số nhỏ nhất để có dấu bằng xảy ra ở các đánh giá trên. Khi đó

${{u}_{p}}+1=pm$ và ${{u}_{q}}=Mq.$

Ngoài ra, ${{u}_{k}}+1>km,\forall k<p$ và ${{u}_{k}}<kq,\forall k<q.$

  • Nếu $p=q$ thì hiển nhiên đúng.
  • Nếu $p>q$, ta đặt $p=q+k$ thì $k<p$ nên ${{u}_{k}}+1>km$, vì ${{u}_{p}}\ge {{u}_{q}}+{{u}_{k}}$ (theo giả thiết) nên $pm-1>Mq+km-1\Leftrightarrow m>M.$
  • Nếu $p<q$ thì cũng chứng minh tương tự với chú ý rằng ${{u}_{q}}\le {{u}_{p}}+{{u}_{k}}+1.$

Nhận xét: Nếu đề bài đổi giả thiết thành $0\le u_{m+n}-u_m-u_n\le 2$,

ta sẽ cần đến hai số $a,b$ sao mới thỏa mãn được kết luận (vì khoảng chênh lệch của các số hạng rộng hơn một tí), cụ thể là tồn tại $a,b>0$ để

$$-1\le u_n-\left[ an \right]-\left[ bn \right]\le 1.$$

Ở bài toán trên, ta còn chứng minh được một kết quả mạnh hơn là tồn tại $a$ để $u_n=[an]$ với mọi $n.$ Một bài toán tương tự trong đề trường Đông miền Trung:

Bài tập 1.10: Cho hàm số $f:\mathbb{R}\to \mathbb{R}$ thỏa mãn $\left| f(x+y)-f(x)-f(y) \right|\le 1,\forall x,y\in \mathbb{R}$. Chứng minh rằng tồn tại hàm cộng tính $g:\mathbb{R}\to \mathbb{R}$ thỏa mãn $\left| f(x)-g(x) \right|\le 1,\forall x.$

Đây có thể nói là một phiên bản trên $\mathbb{R}$ của bài toán trên (thay vì xét trên $\mathbb{N}$).

Tiếp theo, ta xét lớp các bài toán sử dụng một định lý thú vị trong dãy số, số học. Trước hết, ta xét định lý Beatty với nội dung như sau:

Cho hai số vô tỷ dương $\alpha ,\beta $. Xét hai dãy số:

  • $[\alpha ],[2\alpha ],[3\alpha ],\ldots $ tạo thành dãy $A.$
  • $[\beta ],[2\beta ],[3\beta ],\ldots $ tạo thành dãy $B.$

Khi đó $\dfrac{1}{\alpha }+\dfrac{1}{\beta }=1$ khi và chỉ khi $A,B$ là phân hoạch của $\mathbb{Z}^+$.

Chứng minh

Định lý này có thể chứng minh bằng cách sử dụng các BĐT về phần nguyên. Dưới đây là cách chứng minh cho chiều đảo:

Với mỗi số nguyên dương $k$, gọi $m,n$ là các số nguyên dương thỏa mãn

$$[m\alpha ]\le k<[(m+1)\alpha ] \text{ và } [n\beta ]\le k<[(n+1)\beta ].$$

Đặt $A=\{[i\alpha ],1\le i\le m\}$ và $B=\{[j\beta ],1\le j\le n\}$ thì $\left| A \right|=m,\left| B \right|=n$ và $A,B$ là phân hoạch của tập hợp $\left\{ 1,2,3,\ldots ,k \right\}$ theo định nghĩa của đề bài.

Do đó $m+n=k$. Theo bất đẳng thức phần nguyên thì $m\alpha -1<k<(m+1)\alpha $ nên $\dfrac{m}{k+1}<\dfrac{1}{\alpha }<\dfrac{m+1}{k}$.

Tương tự $\dfrac{n}{k+1}<\dfrac{1}{\beta }<\dfrac{n+1}{k}.$

Suy ra $$\dfrac{m+n}{k+1}<\dfrac{1}{\alpha }+\dfrac{1}{\beta }<\dfrac{m+n+2}{k} \text{ hay } \dfrac{k}{k+1}<\dfrac{1}{\alpha}+\dfrac{1}{\beta }<\dfrac{k+2}{k}.$$

Cho $k\to +\infty $, ta thu được $\dfrac{1}{\alpha }+\dfrac{1}{\beta }=1.$

Bài tập 1.11: Hai dung dịch $A,B$ có đặc điểm: số đo thể tích của $1$ kg $A$ bằng số đo khối lượng của $1$ lít $B.$ Ngoài ra, $p$ lít $A$ nặng bằng $q$ lít $B$ với $p,q$ nguyên tố khác nhau. Mỗi dung dịch được chia cho vào các bình nhỏ giống nhau, cùng chứa $1$ lít và vỏ nặng $1$ kg. Chứng minh rằng có đúng một cách ghép các bình cùng loại ($A$ hoặc $B$) lại với nhau mà khối lượng của chúng thuộc khoảng $(2017;2018).$

Giải

Gọi $x,y$ lần lượt là khối lượng riêng của các dung dịch thì $\dfrac{1}{x}=1\cdot y,px=qy$ nên $x=\sqrt{\dfrac{q}{p}},y=\sqrt{\dfrac{p}{q}}.$

Khối lượng mỗi bình là $\alpha =1+\sqrt{\dfrac{q}{p}},\beta =1+\sqrt{\dfrac{p}{q}}$. Dễ thấy $\dfrac{1}{\alpha }+\dfrac{1}{\beta }=1$, thỏa mãn định lý Beatty.

Suy ra hai dãy $[m\alpha ],[n\beta ]$ là phân hoạch của số nguyên dương nên ta có đpcm.

Bài tập 1.12 (APMO 2006): Với mỗi số nguyên dương $n$, gọi $a_n,\ b_n$ lần lượt là số cách viết $10^n$ trong hệ nhị phân, ngũ phân. Chứng minh rằng $(a_n),(b_n)$ là phân hoạch của $\mathbb{Z}^+ \backslash \{1\}.$

Giải

Để giải bài này, chú ý rằng: số chữ số của $M$ trong hệ $p$ phân là $[{{\log }_{p}}M]+1$.

Ngoài ra, $\alpha ={{\log }_{2}}10,\beta ={{\log }_{5}}10$ thỏa mãn điều kiện của định lý Beatty.

Từ đó, ta có một nhận xét thú vị rằng: tổng số chữ số của ${{2}^{n}}$ và ${{5}^{n}}$ trong hệ thập phân là $n+1.$

Bài tập 1.13 (VN TST 2000): Cho số nguyên dương $k$. Dãy số $(u_n)$ xác định bởi: $u_1=1$ và $u_{n+1}$ là số nguyên dương nhỏ nhất không thuộc tập hợp

$$\left\{ u_1,\ u_2,\ \ldots ,\ u_n,\ u_1+k,\ u_2+2k,\ \ldots ,\ u_n+nk \right\}.$$

Chứng minh rằng tồn tại $\alpha $ vô tỷ dương sao cho $u_n=\left[ n\alpha \right]$ với mọi $n.$

Giải

Để giải bài toán này, ta xét đa thức $P(x)={{x}^{2}}+(k-2)x-k$ với $k$ là số nguyên dương đã cho thì $P(x)$ có hai nghiệm phân biệt trái dấu. Hơn nữa, ${{\Delta }_{P(x)}}={{(k-2)}^{2}}+4k={{k}^{2}}+4$, không thể là số chính phương với bất kì số k nguyên dương nào nên hai nghiệm này đều là số vô tỉ. Ta thấy $$P(1)=1+(k-2)-k=-1<0,P(2)=4+2(k-2)-k=k>0$$ nên nghiệm dương của phương trình $P(x)=0$ thuộc khoảng $(1,2)$. Gọi nghiệm đó là $a.$

Đặt $b=a+k$ thì $a,b$ đều vô tỉ và $ab=a(a+k)={{a}^{2}}+ak=2a+k=a+b$ nên $\dfrac{1}{a}+\dfrac{1}{b}=1$.

Xét $f(n)=[na],g(n)=[nb]=f(n)+kn$ với $n$ là số nguyên dương.

Ta sẽ chứng minh rằng ${{x}_{n}}=f(n)$ bằng quy nạp. Thật vậy,

– Với $n=1$, khẳng định hiển nhiên đúng vì $1<a<2.$

– Giả sử ${{x}_{n}}=f(n)$ với mọi $n=1,2,3,…,m$. Ta sẽ chứng minh rằng ${{x}_{m+1}}=f({{x}_{m+1}})$.

Ta có $f(i)={{x}_{i}},g(i)=f(i)+ik={{x}_{i}}+ik$ với mọi $i=1,2,3,…,m$ nên ta có tập hợp

$H=\left\{ {{x}_{1}},{{x}_{2}},…,{{x}_{m}},{{x}_{1}}+k,{{x}_{2}}+2k,…,{{x}_{m}}+mk \right\} $

$ =\left\{ f(1),f(2),…,f(m),g(1),g(2),…,g(m) \right\} $

Rõ ràng $f(m+1)\notin H$ và $g(n)>f(n)$ với mọi $n$, $f(n)$ là hàm số đồng biến trên $\mathbb{N}*$ nên ta thấy rằng $f(m+1)$ chính là số tự nhiên nhỏ nhất không thuộc H. Theo định nghĩa dãy số $({{x}_{n}})$ đã cho thì ta có ${{x}_{m+1}}=f(m+1)$.

Do đó, khẳng định cũng đúng với $m+1.$ Theo nguyên lí quy nạp, ta có đpcm. Vậy số tự nhiên cần tìm chính là $a$ là nghiệm dương của phương trình ${{x}^{2}}+(k-2)x-k=0$.

Nhận xét: Đây là một kết quả có từ $1959$. Ta có thể phân tích cách tiếp cận như sau:

Xuất phát từ việc $\alpha =\sqrt{2},\beta =\sqrt{2}+2$ thỏa mãn điều kiện Beatty. Ta có hai dãy với công thức

$a_n=\left[ n\sqrt{2} \right],\ b_n=a_n+2n$ là phân hoạch của $\mathbb{Z}^+$.

Từ đó, để giấu dãy $b_n$ đi, ta chỉ cần xét $a_n+2n$.

Để ý $a_1=1,\ a_2=2,\ a_3=4,\ b_1=3,\ b_2=6,\ b_3=10$ nên $a_4$ có thể định nghĩa là số nguyên dương nhỏ nhất không thuộc $\left\{ a_1,\ a_2,\ a_3,\ a_1+2,\ a_2+4,\ a_3+6 \right\}$. Đó chính là cơ sở để có bài toán trên.

Bài tập 1.14 (Dãy Wythoff): Cho chuỗi $S_1=1$. Chuỗi $S_n$ được tạo thành từ chuỗi $S_{n-1}$ bằng cách thay $1\to 01$ và $0\to 1.$ Các chuỗi $S_1,\ S_2,\ S_3,\ \ldots $ được ghép liên tiếp lại với nhau thành một chuỗi vô hạn $L$. Gọi $a_n$ là vị trí của số $1$ thứ $n$ trong chuỗi $L.$ Chứng minh rằng tồn tại $\alpha $ vô tỷ dương sao cho $a_n=\left[ n\alpha \right],\forall n.$

Ở đây, ta có nhận xét rằng số $0$ thứ $n$ được sinh ra bởi số $1$ thứ $n$ nên nếu gọi $k_n$ là số các số $0$ đứng trước số $1$ thứ $n$ và $b_n$ là vị trí của số $0$ thứ $n,$ ta sẽ có $a_n=n+k_n$ và $b_n=2n+k_n$ nên $b_n=a_n+n$.

Chú ý rằng $(a_n),\ (b_n)$ chính là phân hoạch của $\mathbb{Z}^+$ nên dễ dàng tìm được $\alpha $ là nghiệm của $\dfrac{1}{\alpha }+\dfrac{1}{\alpha +1}=1$ hay $\alpha $ chính là tỷ số vàng.

Bài tập 1.15: Cho $n$ là số nguyên dương, hỏi có bao nhiêu dãy số $a_1,\ a_2,\ \ldots ,\ a_{2n}$ sao cho

$i)$ $a_i \in \left\{ -1,1 \right\}$ với $i=1,2,3,\ldots ,2n.$

$ii)$ $\left| \sum\limits_{i=2k+1}^{2l} a_i \right|\le 2$ với $0\le k<l\le n$?

Giải

Gọi $S$ là tập hợp các dãy thỏa mãn đề bài và đặt $\left| S \right|={{s}_{n}}$. Gọi $T$ là tập hợp tất cả các tổng các ${{a}_{i}}$ lấy từ chỉ số lẻ bất kỳ đến $2n.$ Theo giả thiết thì $T\subset \left\{ \pm 2,\pm 1,0 \right\}$, tuy nhiên, tất cả các tổng trong $T$ đều có chẵn số hạng mà mỗi số hạng đều là $\pm 1$ nên tất cả phải đều chẵn. Suy ra $T\subset \left\{ \pm 2,0 \right\}$.

Nếu trong $T$ chứa cả $2$ lẫn $-2$ thì giả sử $\sum\limits_{k=2i+1}^{2n}{{{a}_{k}}}=2$ và $\sum\limits_{k=2j+1}^{2n}{{{a}_{k}}}=-2$ với $i<j$ , khi đó

\[4=\sum\limits_{k=2i+1}^{2n}{{{a}_{k}}}-\sum\limits_{k=2j+1}^{2n}{{{a}_{k}}}=\sum\limits_{k=2i+1}^{2j}{{{a}_{k}}},\] mâu thuẫn.

Ứng với $({{a}_{1}},{{a}_{2}},\ldots ,{{a}_{2n}})\in S$, ta có phân loại sau:

  • Tất cả các tổng trong $T$ đều là $0$, đặt số lượng dãy có tính chất này là ${{a}_{n}}$.
  • Trong $T$ có chứa số $2$, đặt số lượng dãy có tính chất này là ${{b}_{n}}$.
  • Trong $T$ có chứa số $-2$, đặt số lượng dãy có tính chất này là ${{c}_{n}}$.

Từ đó, ta dễ dàng chứng minh được hệ thức truy hồi

$ {{a}_{n+1}}=2{{a}_{n}} $

${{b}_{n+1}}={{a}_{n}}+2{{b}_{n}}+{{c}_{n}} $

$ {{c}_{n+1}}={{a}_{n}}+{{b}_{n}}+2{{c}_{n}} $

Chú ý rằng ${{a}_{n}}={{2}^{n}}$ và ${{a}_{n}}+{{b}_{n}}+{{c}_{n}}={{s}_{n}}$. Cộng hai công thức cuối lại, ta có

$${{b}_{n+1}}+{{c}_{n+1}}=2{{a}_{n}}+3({{b}_{n}}+{{c}_{n}})\Leftrightarrow {{s}_{n+1}}-{{2}^{n+1}}={{2}^{n+1}}+3({{s}_{n}}-{{2}^{n}})$$ hay

$${{s}_{n+1}}=3{{s}_{n}}+{{2}^{n}}\Leftrightarrow {{s}_{n+1}}+{{2}^{n+1}}=3({{s}_{n}}+{{2}^{n}}).$$

Với $n=1$, ta có $4$ dãy là $(1,1),(-1,-1),(-1,1),(1,-1)$ nên ${{s}_{1}}=4.$

Từ đẳng thức trên, ta có ${{s}_{n}}+{{2}^{n}}={{3}^{n-1}}({{s}_{1}}+{{2}^{1}})=2\cdot {{3}^{n}}$ nên ${{s}_{n}}=2\cdot {{3}^{n}}-{{2}^{n}}$.

Nhận xét: Bài toán thoạt nhìn có vẻ quen thuộc nhưng thật không đơn giản. Điều kiện đề cho là giá trị tuyệt đối của tất cả các tổng con từ vị trí lẻ đến vị trí chẵn bất kỳ đều không vượt quá $2$ buộc ta phải có đánh giá thích hợp mới có thể truy hồi được.

2. Bài tập áp dụng

Bài 1 (TP.HCM 2018): Hỏi có bao nhiêu hoán vị $(a_1,\ a_2,\ \ldots ,\ a_{164})$ của $164$ số nguyên dương đầu tiên sao cho $a_i \ne i$ và $ a_i \equiv i\text{ }(\bmod 41)$ với mọi $i=1,2,\ldots ,164?$

Bài 2: (Bài toán phát kẹo) Cô giáo có $10$ loại kẹo (mỗi loại có nhiều viên) và cần phát cho $30$ học sinh của lớp (một em nhận không quá $1$ viên/loại), giả sử rằng các em này có học lực đôi một khác nhau. Hỏi cô giáo có bao nhiêu cách phát kẹo, biết rằng nếu học sinh $A$ giỏi hơn $B$ thì $B$ có kẹo gì là $A$ có kẹo đó (tính cả trường hợp không em nào nhận được kẹo)?

Bài 3: (Bài toán con nhện) Một con nhện có $8$ cái chân, $8$ cặp vớ – giày khác nhau (vớ chỉ dùng chung với chiếc giày tương ứng). Con nhện có bao nhiêu thứ tự mang vớ và giày để sao cho trên cùng một chân, giày phải được mang vào sau vớ?

Phương pháp ánh xạ trong các bài toán tổ hợp

Bài viết dựa vào bài giảng của NCS. Vương Trung Dũng (trường PTNK-ĐHQG) trong lớp chuyên đề 10 toán tại Star Education.

 

Ánh xạ là một khái niệm khó và quan trọng trong toán học, có vai trò trong hầu hết các lĩnh vực toán học. Trong bài giảng này ta xét ứng dụng của ánh xạ trong các bài toán tổ hợp.

Ánh xạ và một số tính chất

Định nghĩa. Cho hai tập hợp $X$ và $Y$ khác rỗng. Một ánh xạ $f$ từ tập $X$ đến tập $Y$ là một quy tắc đặt tương ứng mỗi phần tử $x$ của $X$ với một và chỉ một phần tử $y$ của $Y$, kí hiệu là $y = f(x)$.

Kí hiệu $f: X \longrightarrow Y$.

$f(x) = y$.

Các khái niệm: Cho ánh xạ $f: X \longrightarrow Y$.

  • $y = f(x)$ được gọi là ảnh của $x$.
  • $f(X) = \{f(x)|x \in X\}$ tập ảnh của $f$.
  • $y \in Y$ thì $f^-1(y) = \{x\in X|f(x) = y\}$ được gọi là tạo ảnh của $y$.

Đơn ánh, toàn ánh, song ánh

  1. Ánh xạ $f: X \longrightarrow Y$ được gọi là đơn ánh nếu với $a,b \in X$ mà $a \ne b$ thì $f(a) \ne f(b)$. Nói một cách khác ánh xạ $f$ là một đơn ánh nếu và chỉ nếu với $a, b \in X$ mà $f(a)=f(b)$ thì suy ra $a=b.$
  2. Ánh xạ $f:X \longrightarrow Y$ được gọi là toàn ánh nếu với mỗi phần tử $y \in Y$ đều tồn tại một phần tử $x \in X$ sao cho $f(x)=y$. Như vậy $f$ là toàn ánh nếu và chỉ nếu $f(X)=Y$.
  3. Ánh xạ $f: X \longrightarrow Y$ được gọi là song ánh giữa $X$ và $Y$ nếu và chỉ nếu nó vừa là đơn ánh và vừa là toàn ánh. Như vậy $f$ là song ánh nếu với mỗi $y \in Y$ tồn tại duy nhất một phần tử $x \in X$ sao cho $y=f(x).$

Ánh xạ và tập hợp

Cho $A = { 1, 2,\cdots, n }$. $X$ là tập khác rỗng. Nếu có một song ánh từ tập $X$ đến $A$ thì ta nói $X$ có $n$ phần tử và kí hiệu $|X| = n$.

Nếu không tồn tại song ánh thì ta nói $X$ có vô hạn phần tử.

  • Nếu tồn tại một song ánh từ $X$ vào tập các số tự nhiên, ta nói $X$ có lực lượng đếm được, ngược lại thì ta nó $X$ có lực lượng không đếm được.
  • Các tập số tự nhiên, số nguyên và hữu tỷ là các tập có lực lượng đếm được.

Định lý Cho $A$ và $B$ là hai tập hợp hữu hạn.

  • Nếu có một đơn ánh $f: X \longrightarrow Y$ thì $|X| \le |Y|.$
  • Nếu có một toàn ánh $f: X \longrightarrow Y$ thì $|X| \ge |Y|.$
  • Nếu có một song ánh $f: X \longrightarrow Y$ thì $|X| = |Y|.$

Ánh xạ và các bài toán đếm, đẳng thức tổ hợp.

Ví dụ 1. Cho tập $X_n = {1, 2, \cdots, n}$, gọi $P(X_n)$ là tập các tập con của $X_n$, và $S_n$ là tập các dãy nhị phân có độ dài $n$. Tìm một song ánh từ $P(X_n)$ vào $S_n$, suy ra số tập con của $X_n$.

Gợi ý

Định nghĩa một ánh xạ $f: P(X_n) \longrightarrow S_n$ như sau:
Với mỗi $S \in P(X_n)$ (tức là $S \subset X_n$) ta đặt $$ f(S)=y_1y_2 \dots y_n$$
trong đó
$$y_i=\begin{cases}
1, y_i \in S&\\
0, y_i \notin S.&
\end{cases}
$$
Ví dụ , nếu $X=\{1; 2; 3; 4; 5\}, S_1=\{4\}, S_2=\{2; 3; 5\}$ thì $f(S_1)=00010, f(S_2)=01101, f(\emptyset)=00000, f(X)=11111$ .
Dễ dàng kiểm tra đây là một song ánh từ $P(X)$ vào $Y$.
Do đó theo nguyên lý song ánh ta có $|P(X)|=|Y|=2^n$.

Ví dụ 2. Hãy tính trung bình cộng của tất cả các số N gồm 2014 chữ số thỏa mãn N chia hết cho 9 và các chữ số của N được lập từ $X={1,2,…,8}$

Gợi ý

Gọi M là tập các số thỏa yêu cầu đề bài.

Ta xây dựng một ánh xạ đi từ M đến M như sau: Với mỗi $N=\overline{a_1a_2…a_{2014}} \in M$ dặt $f(N)=\overline{b_1,b_2,…,b_{2014}}$ với $b_i=9-a_i$ với mọi $i=1,2,…,2014$. Vì $N+f(N)=99…9$ (2014 số 9) chia hết cho 9 và N chia hết cho 9 nên suy ra $f(N)$ cũng chia hết cho 9. Do đó $f$ là một ánh xạ đi từ M vào M. Hơn nữa dễ thấy $f$ là một song ánh. Từ đó suy ra $$ 2\sum_{N \in M}N=\sum_{N \in M}(N+f(N))=|M|.99…9 .$$ Vậy trung bình cộng của các số trong M là $99…9:2.$

Ví dụ 3. Cho tập S gồm tất cả các số nguyên dương trong đoạn $[1,2,…,2002]$. Gọi T là tập hợp tất cả các tập con khác rỗng của S. Với mỗi X thuộc T ký hiệu m(X) là trung bình cộng các phần tử thuộc X. Tính $$ m=\frac{\sum_{X \in T}m(X)}{|T|}. $$

Gợi ý

Xây dựng song ánh $f: T \longrightarrow T$ như sau: với mọi $X \in T $ đặt tương ứng $f(X)=\{2003-x: x \in X\}$.\\
Khi đó $m(X)+m(f(X))=2003$. Do đó $$2 \sum m(X)=\sum (m(X)+m( f(X)))=|T|.2003 \Rightarrow m=\dfrac{\sum m(X)}{|T|}=\dfrac{2003}{2}$$

Ví dụ 4.  Cho $X={1,2,…,n}$. Có bao nhiêu tập con $k$ phần tử của X sao cho trong mỗi tập con không chứa 2 số nguyên liên tiếp.

Gợi ý

Gọi A là tập tất cả các tập con $k $ phần tử của X mà trong mỗi tập không chứa 2 số nguyên liên tiếp và B là tập tất cả các tập con của tập $Y=\{1,2,…, n-(k-1) \}$. Ta xây dựng song ánh từ A đến B như sau: Lấy $S=\{s_1,s_2,…,s_k \} \in A$ (không mất tổng quát có thể giả sử $s_1<s_2<…<s_k$) đặt tương ứng với $f(S)=\{s_1, s_2-1, s_3-2,…, s_k-(k-1) \}$. Dễ chứng minh đây là một song ánh. Từ đó có $C^k_{n-k+1}$ tập thoả yêu cầu đề bài.

Bài tập rèn luyện 

Bài 1. Cho $X={ 1,2,..,n}$. Một tập con $S={s_1,s_2,…,s_k }$ của X ($s_1<s_2<…<s_k$) được gọi là \textit{m- tách được} $(m \in \mathbb{N})$ nếu $s_i-s_{i-1} \ge m; i=1,2,…,k$. Có bao nhiêu tập con m- tách được gồm $k$ phần tử của X, trong đó $0 \le k \le n-(m-1)(k-1)$.

Bài 2. Cho $X={1,2,…,n}$, với mỗi tập con khác rỗng $A_i={a_1,a_2,…,a_i }$ (không mất tổng quát giả sử $a_1>a_2>…>a_i$) ta định nghĩa \textit{tổng hỗn tạp} của $A_i$ là số $m(A_i)=a_1-a_2+a_3-… \pm a_i$. Tính $\sum \limits_{A_i \subset X} m(A_i)$.

Bài 3. Cho số nguyên dương $n$ và $d$ là một ước dương của $n$. Gọi S là tập tất cả những bộ $(x_1,x_2,…,x_n)$ nguyên dương thỏa $0 \le x_1 \le x_2 \le… \le x_n \le n$ và $d| x_1+x_2+…+x_n$. Chứng minh rằng có đúng một nửa các phần tử của S có tính chất $x_n=n$.

Bài 4. Gọi $a_n$ là số các xâu nhị phân độ dài $n$ không chứa ba bit 0, 1, 0 liên tiếp. Gọi $b_n$ là số các xâu nhị phân độ dài $n$ chứa bốn bit 0, 0, 1, 1 hoặc 1, 1, 0, 0 liên tiếp. Chứng minh rằng $b_{n+1}=2a_n$ với mọi số nguyên dương $n$.

Bài 5. Cho các số tự nhiên $k, n, m$ thỏa điều kiện $1<k \le n, m>1$. Hỏi có bao nhiêu chỉnh hợp chập $k: (a_1,a_2,…,a_k)$ của $n$ số tự nhiên đầu tiên mà mỗi chỉnh hợp đều thỏa mãn ít nhất một trong hai điều kiện sau:

i) Tồn tại $i, j \in {1,2,…,k}$ sao cho $i < j$ và $a_i>a_j$.

ii) Tồn tại $i \in {1,2,…,k}$ sao cho $a_i-i$ không chia hết cho $m$.

Bài 6. Cho các số nguyên dương $n, k, p$ với $k \ge 2$ và $k(p+1) \le n.$ Cho $n$ điểm phân biệt cùng nằm trên một đường tròn. Tô tất cả $n$ điểm đó bởi hai màu xanh, đỏ (mỗi điểm được tô bởi một màu) sao cho có đúng $k$ điểm được tô bởi màu xanh và trên mỗi cung tròn mà hai đầu mút là hai điểm màu xanh liên tiếp (tính theo chiều quay kim đồng hồ) đều có ít nhất $p$ điểm được tô màu đỏ. Hỏi có tất cả bao nhiêu cách tô khác nhau?

Bài 7. Gọi $a_n$ là số các xâu nhị phân độ dài $n$ không chứa ba bit 0, 1, 0 liên tiếp. Gọi $b_n$ là số các xâu nhị phân độ dài $n$ chứa bốn bit 0, 0, 1, 1 hoặc 1, 1, 0, 0 liên tiếp. Chứng minh rằng $b_{n+1}=2a_n$ với mọi số nguyên dương $n$.

Bài 8. Trong một hội nghị có $n$ nhà toán học. Biết rằng nếu hai nhà toán học nào đó quen nhau thì họ không quen chung thêm một người nào nữa, còn nếu hai nhà toán học này không quen nhau thì họ quen chung với đúng hai nhà toán học khác nữa. Chứng minh rằng $8n-7$ là số chính phương.

Bài 9. Trong một trại hè toán học có 40 học sinh. Biết rằng cứ 19 học sinh bất kỳ thì đều viết thư hỏi bài một học sinh khác (Nếu học sinh A viết thư hỏi bài học sinh B thì không nhất thiết học sinh B phải viết thư hỏi bài học sinh A và dĩ nhiên A cũng không viết thư hỏi chính mình). Chứng minh rằng trong trại hè này tồn tại một tập $T_0$ gồm 20 học sinh sao cho với mỗi $P \in T_0$ thì 19 người còn lại không đồng thời viết thư hỏi bài P.

Bài 10. Gọi M là số số nguyên dương trong hệ thập phân có $2n$ chữ số trong đó có $n$ chữ số 1 và $n$ chữ số 2. Gọi N là số số nguyên dương có $n$ chữ số trong hệ thập phân trong đó chỉ có các chữ số 1, 2, 3, 4 và số chữ số 1 bằng số chữ số 2. Chứng minh $|M|=|N|.$

(Hết phần 1)

Tổ hợp lặp và bài toán chia kẹo Euler

Trong các bài toán đếm ta gặp bài toán sau: Một người vào cửa hang mua dụng cụ học tập để làm thành một món quà gồm viết, sách và tập, người đó chỉ mua tổng cộng 5 món đồ. Biết rằng trong cửa hàng có 5 cây viết giống nhau, 6 sách giống nhau và 10 cuốn tập giống nhau, hỏi có bao nhiêu cách chọn viết, sách tập để làm quà?

Ta thấy rằng số lượng các viết sách và tập đều lớn hơn số cần mua, do đó bài toán chỉ quay lại việc đếm là có bao nhiêu bộ sách viết tập mà tổng số là 5 cái, trong đó mỗi cái có hoặc không có.

Có ba đối tượng là viết, sách và tập, tạ kí hiệu là $A = \{ V, S, T \}$. Một món quà gồm 5 cái, do đó quà có thể là $X = \{ V, V, V, S, T \}$, gồm 3 cây viết và 1 sách, 1 tập, hoặc là tập $Y = \{ V, V, S, T, T \}$, ta thấy các đối tượng $V, T$ là lập lại. Khi đó ta nói tổ hợp $X, Y$ là tổ hợp lặp.

Để định nghĩa rõ hơn ta có định nghĩa sau:

Định nghĩa.  Cho tập $A = \{ a_1, a_2, \cdots, a_k \}$. Một ánh xạ từ $p: A \mapsto \mathbb{N} $, khi đó $P$ được gọi là một multiset của A.

Ví dụ 1. Cho $A = \{ a, b, c \}$. Ánh xạ $p: A \mapsto \mathbb{N}$ như sau: $p(a) = 2, p(b) = 1, p(c) = 1$. Khi đó ta có thể kí hiệu $p$ là $(aabc)$, hay $(baac)$,.., không tính đến thứ tự của các phần tử $a, b, c$.

Đặt $n = p(a_1) + p(a_2)+\cdots +p(a_k)$, bài toán đặt ra là có bao nhiêu ánh xạ $p: A \mapsto \mathbb{N}$ mà $n = p(a_1) + p(a_2)+\cdots +p(a_k)$.

Tiếp theo ví dụ trên, nếu $ p(a) + p(b) + p(c) = 2$ thì có các multiset sau: $(ab), (ac), (bc), (aa), (bb), (cc)$, 6 multiset.

Tính chất. Cho tập $A = \{ a_1, a_2, \cdots, a_k \}$, số ánh xạ $p: A \mapsto \mathbb{N}$ thỏa $p(a_1) + \cdots + p(a_k) = n$ là $C^n_{n+k-1}$

Chứng minh

Mỗi ánh xạ $p$ ta cho tương ứng với một dãy nhị phân độ dài $n+k-1$, trong đó $p(a_1)$ chữ số đầu là 0, tiếp theo là số 1, rồi $p(a_2)$ chữ số $0$,…cuối cùng là $p(a_k)$ chữ số $0$. Ví dụ bộ $VVSTT$ ứng với dãy $0010100$.

Rõ ràng đây là tương ứng 1 – 1, do đó số ánh xạ $p$ bằng số dãy nhị phân, do đó ta chỉ cần đếm số dãy nhị phân.

Ta thấy dãy có $n+k-1$ chữ số trong đó có $k-1$ chữ số $1$, do đó số dãy nhị phân chỉ là số cách chọn vị trí cho $k-1$ chữ số $1$ nên số dãy nhị phân là $C^{k-1}_{n+k-1}$.

Do đó số ánh xạ $p$ là $C^{k-1}_{n+k-1} $

Trở lại bài toán trên, ta thấy số món quà có 5 cái là một tổ hợp lặp chập 5 của sách, viết, tập, do đó số món quà có thể là $C^{2}_{5+2-1} = C^2_6 = 15$.

(Chú ý trong bài toán trên, đảm bảo số mỗi loại sản phẩm có không ít hơn 5 cái).

Bài toán 1. (Chia kẹo Euler). Cho $n$ viên kẹo giống nhau đem chia cho $k$ người, hỏi có bao nhiều cách chia.

Giải

Ta gọi $k$ người là $a_1, a_2, \cdots a_k$, với mỗi cách chia kẹo là một multiset của $A$ mà $p(a_1) + p(a_2)+\cdots +p(a_k) = n$.

Do đó số cách chia kẹo là $C^n_{n+k-1}$.

Bài toán 2. Giải bài toán trên với cách chia sao cho mỗi người có ít nhất một viên.

Giải

Trước hết phát cho mỗi người một viên, thì còn $n-k$ viên kẹo, tiếp tục áp dụng bài toán trên với $n-k$. Khi đó số cách chia là

$C^{k-1}_{n-1}$

Ta có thể giải bài toán trên mà không cần sử dụng bài toán 1 bằng cách xây dựng dãy nhị phân thỏa: $a_1$ chữ số đầu là 0, tiếp theo là số 1, tiếp là $a_2$ chữ số 0, …., cuối cùng là $a_k$ chữ số 0. Dãy này có $k-1$ chữ số 1 đứng giữa $n$ chữ số 0 và không có hai chữ số $1$ nào đứng kề nhau. Khi đó số dãy nhị phân là: $C^{k-1}_{n-1}$.

Phần kế tiếp ta cùng tìm hiểu và giải một số bài toán có thể đưa về bài toán tổ hợp lặp hay bài toán chia kẹo Euler. Các bạn chờ nhé.

Bài toán 1 và 2 có thể phát biểu dưới dạng sau.

Bài toán 3. Cho phương trình $x_1 + x_2 + \cdots + x_k = n$ trong đó $k, n$ là các số nguyên dương.

a. Tìm số nghiệm tự nhiên của phương trình.

b. Tìm số nghiệm nguyên dương của phương trình.

Như bài toán trên ta đã biết, số nghiệm tự nhiên của phương trình là  $C^{k-1}_{n+k-1}$.

Số nghiệm nguyên dương của phương trình là $C^{k-1}_{n-1}$.

(Phần 2)

Trong phần trước ta đã biết, số nghiệm nguyên không âm của phương trình $x_1 +x_2+\cdots + x_k = n$ là $C_{n+k-1}^{k-1}$, và số nghiệm nguyên dương là $C^{k-1}_{n-1}$.

Từ bài toán này ta có thể giải các bài toán sau:

Ví dụ 1. Tìm số nghiệm nguyên của phương trình $x_1 + x_2 + x_3 + x_4 + x_5 = 30$ nếu:

a) $x_i \geq 2 \forall i = \overline{1,5}$.

b) $ 3 < x_1, x_2 $ và $x_3, x_4, x_5 > 5$.

c) $x_1, x_2, x_3, x_4 \geq 4$ và $ 0 < x_5 < 3$.

Giải

a) $x_1 + x_2 + x_3 + x_4 + x_5 = 30$, $x_i \geq 2 \forall i = \overline{1,5}$. (1). Ta đi tìm số nghiệm của hệ (1).

Để đưa về bài toán gốc, ta đặt ẩn phụ như sau: $y_i = x_i – 1 \geq 1$ với mọi $i = \overline{1,5}$.

Khi đó ta có $y_1 +1 + y_2+1 + y_3 + 1 + y_4 + 1 + y_5 + 1 = 30 \Leftrightarrow y_1+y_2+y_3+y_4+y_5 = 25$ với $y_i \geq 1$. (2)

Một bộ nghiệm của (2) cho tương ứng một bộ nghiệm thỏa (1), mà số nghiệm của $(2)$ là $C_{24}^{4}$ (Theo bài toán chia kẹo Euler), do đó số nghiệm của (1) là $C_{24}^{4}$.

b) Tương tự câu a, đặt $y_1 = x_1 – 3, y_2 = x_2 – 3, y_3 = x_3 – 5, y_4= x_4-5, y_5 = x_5 – 5$, từ (1) ta có phương trình $y_1+y_2+y_3+y_4+y_5 = 9$ và $y_i \geq 1$. Số nghiệm là $C_8^4$.

c) Xét $x_5 = 1, 2$ và đặt ẩn phụ $y_i = x_i-3$ ta có đáp số là: $C_{16}^3 + C_{15}^3$.

Ví dụ 2. Có bao nhiêu bộ $(x_1, x_2, ..., x_{10})$ các số nguyên dương thỏa $x_1 + x_2 + \cdots x_{10} < 2020$.

Giải

Đặt $x_{11} = 2020 – (x_1+x_2+\cdots + x_{10}) $ thì $x_{11} \geq 1$.

Khi đó ta có phương trình $x_1 + \cdots + x_{11} = 2020$ và $x_i \geq 1$.

Do đó số nghiệm là $C_{2019}^{10}$.

Ví dụ 3.  Có bao nhiêu bộ $(x_1, x_2, ..., x_{10})$ các số tự nhiên thỏa $x_1 \leq x_2 \leq x_3 \leq \cdots \leq x_{10} \leq 2020$.

Giải

Đặt $y_1 = x_1, y_2 = x_2 – x_1 \geq 0$, $y_2 = x_3-x_2 \geq 0$, …, $y_{11} = 2020 -x_{10} \geq 0$.

Khi đó $y_1 + y_2 + \cdots +y_{11} = 2020$ với $y_i \geq 0$. (2)

Với một bộ nghiệm của (2) sẽ tương ứng duy nhất một bộ $(x_1, x_2, …, x_{10})$  thỏa đề bài.

Số nghiệm của (2) là $C_{2030}^{10}$, đó cũng chính là số bộ $(x_1, x_2, …, x_{10})$ thỏa đề bài.

Ví dụ 4. (VMO 2012) Cho một nhóm gồm 5 cô gái, kí hiệu là $G_1, G_2, G_3, G_4, G_5$ và 12 chàng trai. Có 17 chiếc ghế được xếp thành một hàng ngang. Người ta xếp nhóm người đã cho vào các chiếc ghế sao đó sao cho các điều kiện sau được đồng thời thỏa mãn :
1) Mỗi chiếc ghế có đúng một người ngồi;
2) Thứ tự ngồi của các cô gái, xét từ trái qua phải, là $G_1, G_2, G_3, G_4, G_5$ ;
3) Giữa $G_1$ và $G_2$ có ít nhất 3 chàng trai;
4) Giữa $G_4$ và $G_5$ có ít nhất 1 chàng trai và nhiều nhất 4 chàng trai.
Hỏi có tất cả bao nhiêu cách xếp như vậy?

Giải

Đánh số thứ tự các ghế từ trái sang phải là $1,2, \ldots, 17$.

Gọi $x_{1}$ là số chàng trai được xếp bên trái $G_{1}, x_{2}$ là số chàng trai ở giũa $G_{1}$ và $G_{2}, x_{3}$ là số chàng trai ở giữa $G_{2}$ và $G_{3}, x_{4}$ là số chàng trai ở giữa $G_{3}$ và $G_{4}, x_{5}$ là số chàng trai ở giữa $G_{4}$ và $G_{5}, x_{6}$ là số chàng trai được xếp ở bên phải $G_5$. Khi đó bộ số $\left(x_{1}, x_{2}, \ldots, x_{6}\right)$ hoàn toàn xác định vị trí các cô gái và ta có:
1) $x_{1}+x_{2}+\cdots+x_{6}=12$
2) $3 \leq x_{2}$.
3) $1 \leq x_{5} \leq 4$
Đổi biến $y_{2}=x_{2}-3$ và $y_{5}=x_{5}-1$ ta được $x_{1}+y_{2}+x_{3}+x_{4}+y_{5}+x_{6}=8$ với các $\hat{\text {ẩn}}$ không âm và có thêm điều kiện $y_{5} \leq 3$. Tiếp theo, sử dụng bài toán chia kẹo của Euler ở dạng $x_{1}+y_{2}+x_{3}+x_{4}+x_{6}=8-y_{5}$ ta được đáp số (phần phân ghế cho các cô gái) là $C_{12}^{4}+C_{11}^{4}+C_{10}^{4}+C_{9}^{4}=1161$.
Vì còn có 12 chàng trai có thể hoán đổi vị trí ở 12 chiếc ghế dành cho họ nên số cách xếp thỏa mãn yêu cầu bài toán là $1161 \cdot 12 !$

Ví dụ 5. Có bao nhiêu bộ số nguyên dương $(a, b, c, d)$ thỏa $d = max\{a,b,c,d\}, d \leq 2015$ và

$(ad+bc)(bd+ac)(cd+ab) = (d-a)^2(d-b)^2(d-c)^2$.

Giải
  • Trước hết ta chứng minh $d = a+b+c$ bằng phản chứng.
  • Khi dó $ 3 \leq d \leq 2015$, với mỗi $d$ thì số bộ $(a,b,c)$ là $C_{d-1}^2$.
  • Do đó số bộ thỏa đề bài là $C_2^2 + C_3^2 + \cdots + C_{2014}^2$.

Trên đây là một số bài toán liên quan đến bài toán chia kẹo Euler, các bạn hãy đọc và tìm hiểu thêm trong các tài liệu khác.

Bài tập rèn luyện.

Bài 1. Tìm số nghiệm nguyên dương của phương trình: $x_1 + x_2 + ...+ x_5 = 100$
Bài 2. Tìm số nghiệm không âm của phương trình $x_1 + x_2 + x_3 + x_4 = 20$.
Bài 3. Có bao nhiêu số tự nhiên có 3 chữ số mà tổng các chữ số bằng 11 ?
Bài 4. Tìm số nghiệm nguyên của phương trình $x_1 + x_2 + x_3 + x_4 = 30$ nếu:
a) $x_i \geq 0 \forall i$.
b) $2 \leq x_1 \leq 7$, $x_i \geq 0, i = 2, 3, 4$.
c) $x_1 \geq -3, x_2 \geq -1, x_3, x_4 \geq 1$.
Bài 5. Tìm số nghiệm nguyên dương của phương trình $4x_1 + x_2 + x_3 +x_4 = 15$.
Bài 6. Có 4 viên bi vàng và 10 viên bi xanh. Hỏi có bao nhiêu cách sắp xếp các viên bi thỏa:
a) Không có bi vàng nào kề nhau.
b) Giữa hai bi vàng có ít nhất 2 bi xanh.

Bài 7. Để bảo vệ máy tính của minh khỏi su tấn công của hacker, một lâp trinh viên muốn thiết lập một mât khẩu cho máy tính của mình. Mât khẩu này bao gồm tất cả các chữ cái trong bảng chữ cái tiêng Anh, mỗi chữ cái một lần xuất hiện và các chữ nguyên âm không đứng cạnh nhau. Hỏi lâp trình viên đó có bao nhiêu cách cài đăt mât khẩu?

Bài 8. Bốn anh em An, Bình, Cừng, Danh rất thích ăn keo. Nhân dip Tết, me của các câu đực thửng rất nhiều quà, trong đó có một phần quà là một bịch keo bao gồm 125 viên keo. Vì quá thich ăn kẹo nên bốn anh em đã xin mẹ thêm một vài bịch keo khác giống nhu vậy nữa, nhưng me nhất quyết không cho vì sơ ăn nhiều keo sẽ bi sâu răng, do đó mẹ chỉ cho các câu ăn số kẹo trong bịch kia thôi. Thế là họ ngay lâp tức chia nhau số keo nói trên. Hỏi họ có tông công bao nhiêu cách chia keo ? (cho rằng 125 viên keo là giống hệt nhau, và anh em họ có quyền không ăn môt số viên keo trong số 125 viên keo ban đầu, đồng thời cũng có thể xảy ra trường họ có một nguròi không durọc chia viên keo nào).

Tài liệu tham khảo. 

  1. Jiri-herman-radan-kucera-jaromir-simsa, Counting-and-configurations-problems-in-combinatorics-arithmetic-and-geometry
  2. Chuyên đề toán học 11 - Tập san của học sinh Trường Phổ thông Năng khiếu.

Tổ hợp lặp – Bài toán chia kẹo Euler (Phần 1)

Trong các bài toán đếm ta gặp bài toán sau: Một người vào cửa hang mua dụng cụ học tập để làm thành một món quà gồm viết, sách và tập, người đó chỉ mua tổng cộng 5 món đồ. Biết rằng trong cửa hàng có 5 cây viết giống nhau, 6 sách giống nhau và 10 cuốn tập giống nhau, hỏi có bao nhiêu cách chọn viết, sách tập để làm quà?

Ta thấy rằng số lượng các viết sách và tập đều lớn hơn số cần mua, do đó bài toán chỉ quay lại việc đếm là có bao nhiêu bộ sách viết tập mà tổng số là 5 cái, trong đó mỗi cái có hoặc không có.

Có ba đối tượng là viết, sách và tập, tạ kí hiệu là $A = { V, S, T }$. Một món quà gồm 5 cái, do đó quà có thể là $X = { V, V, V, S, T }$, gồm 3 cây viết và 1 sách, 1 tập, hoặc là tập $Y = { V, V, S, T, T }$, ta thấy các đối tượng $V, T$ là lập lại. Khi đó ta nói tổ hợp $X, Y$ là tổ hợp lặp.

Để định nghĩa rõ hơn ta có định nghĩa sau:

Định nghĩa.  Cho tập $A = { a_1, a_2, \cdots, a_k }$. Một ánh xạ từ $p: A \mapsto \mathbb{N} $, khi đó $P$ được gọi là một multiset của A.

Ví dụ 1. Cho $A = { a, b, c }$. Ánh xạ $p: A \mapsto \mathbb{N}$ như sau: $p(a) = 2, p(b) = 1, p(c) = 1$. Khi đó ta có thể kí hiệu $p$ là $(aabc)$, hay $(baac)$,.., không tính đến thứ tự của các phần tử $a, b, c$.

Đặt $n = p(a_1) + p(a_2)+\cdots +p(a_k)$, bài toán đặt ra là có bao nhiêu ánh xạ $p: A \mapsto \mathbb{N}$ mà $n = p(a_1) + p(a_2)+\cdots +p(a_k)$.

Tiếp theo ví dụ trên, nếu $ p(a) + p(b) + p(c) = 2$ thì có các multiset sau: $(ab), (ac), (bc), (aa), (bb), (cc)$, 6 multiset.

Tính chất. Cho tập $A = { a_1, a_2, \cdots, a_k }$, số ánh xạ $p: A \mapsto \mathbb{N}$ thỏa $p(a_1) + \cdots + p(a_k) = n$ là $C^n_{n+k-1}$

Chứng minh

Mỗi ánh xạ $p$ ta cho tương ứng với một dãy nhị phân độ dài $n+k-1$, trong đó $p(a_1)$ chữ số đầu là 0, tiếp theo là số 1, rồi $p(a_2)$ chữ số $0$,…cuối cùng là $p(a_k)$ chữ số $0$. Ví dụ bộ $VVSTT$ ứng với dãy $0010100$.

Rõ ràng đây là tương ứng 1 – 1, do đó số ánh xạ $p$ bằng số dãy nhị phân, do đó ta chỉ cần đếm số dãy nhị phân.

Ta thấy dãy có $n+k-1$ chữ số trong đó có $k-1$ chữ số $1$, do đó số dãy nhị phân chỉ là số cách chọn vị trí cho $k-1$ chữ số $1$ nên số dãy nhị phân là $C^{k-1}_{n+k-1}$.

Do đó số ánh xạ $p$ là $C^{k-1}_{n+k-1} $

Trở lại bài toán trên, ta thấy số món quà có 5 cái là một tổ hợp lặp chập 5 của sách, viết, tập, do đó số món quà có thể là $C^{2}_{5+2-1} = C^2_6 = 15$.

(Chú ý trong bài toán trên, đảm bảo số mỗi loại sản phẩm có không ít hơn 5 cái).

Bài toán 1. (Chia kẹo Euler). Cho $n$ viên kẹo giống nhau đem chia cho $k$ người, hỏi có bao nhiều cách chia.

Giải

Ta gọi $k$ người là $a_1, a_2, \cdots a_k$, với mỗi cách chia kẹo là một multiset của $A$ mà $p(a_1) + p(a_2)+\cdots +p(a_k) = n$.

Do đó số cách chia kẹo là $C^n_{n+k-1}$.

Bài toán 2. Giải bài toán trên với cách chia sao cho mỗi người có ít nhất một viên.

Giải

Trước hết phát cho mỗi người một viên, thì còn $n-k$ viên kẹo, tiếp tục áp dụng bài toán trên với $n-k$. Khi đó số cách chia là

$C^{k-1}_{n-1}$

Ta có thể giải bài toán trên mà không cần sử dụng bài toán 1 bằng cách xây dựng dãy nhị phân thỏa: $a_1$ chữ số đầu là 0, tiếp theo là số 1, tiếp là $a_2$ chữ số 0, …., cuối cùng là $a_k$ chữ số 0. Dãy này có $k-1$ chữ số 1 đứng giữa $n$ chữ số 0 và không có hai chữ số $1$ nào đứng kề nhau. Khi đó số dãy nhị phân là: $C^{k-1}_{n-1}$.

Phần kế tiếp ta cùng tìm hiểu và giải một số bài toán có thể đưa về bài toán tổ hợp lặp hay bài toán chia kẹo Euler. Các bạn chờ nhé.

Bài toán 1 và 2 có thể phát biểu dưới dạng sau.

Bài toán 3. Cho phương trình $x_1 + x_2 + \cdots + x_k = n$ trong đó $k, n$ là các số nguyên dương.

a. Tìm số nghiệm tự nhiên của phương trình.

b. Tìm số nghiệm nguyên dương của phương trình.

Như bài toán trên ta đã biết, số nghiệm tự nhiên của phương trình là  $C^{k-1}_{n+k-1}$.

Số nghiệm nguyên dương của phương trình là $C^{k-1}_{n-1}$.

(Phần 2)

 

PHƯƠNG PHÁP ĐẾM BẰNG HAI CÁCH – Phần 1

PHƯƠNG PHÁP ĐẾM BẰNG HAI CÁCH

(Dành cho học sinh lớp 10 chuyên toán)

Lời nói đầu
Đếm bằng hai cách là một phương pháp hay gặp trong đời sống, ví dụ bài toán sau: Một công ty nhập vào 3 xe hàng $ A, B, C $ gồm hai loại hàng $ I $ và $ II $. Trong đó xe $ A $ có 3 loại $ I $ và 2 loại $ II $, xe $ B $ có 4 loại $ I $ và 6 loại $ II $, xe $ C $ có 4 loại $ I $ và 6 loại $ II $. Tính số lượng hàng mà công ty nhâp vào. Đây là bài toán khá đơn giản, để giải bài toán ta có thể lập bảng và khi đó ta có thể tính bằng 2 cách như sau: Tính tổng số hàng trên mỗi xe rồi cộng lại; hoặc ta có thể tính tổng số hàng loại $ I $ trên 3 xe,tổng số hàng loại 2 trên 3 xe, rồi sau đó cộng lại.


Trên đây là một ví dụ của tính bằng hai cách, ta có thể tính tổng theo dòng hoặc có thể tính tổng theo cột. Tổng quát hơn ta có công thức đại số sau: $\sum_{i \in I,j \in J}a_{ij}=\sum_{j \in J}(\sum_{j \in J}a_{ij})=\sum_{j \in J}(\sum_{i \in J}a_{ij})$

Trong một số tình huống đề bài yêu cầu đếm số phần tử của một tập hợp mà không quan tâm ta đếm bằng cách nào, khi đó đếm bằng hai cách cho ta cùng một đáp số giống nhau, khi đó ta sẽ thiết lập được một đẳng thức tổ hợp. Một ví dụ đơn giản như đếm số tập con của tập có $ n $ phần tử, ta có thể đếm số tập có $ k $ phần tử với $ k = 0,1,…,n $, lấy tổng ta được $ C^0_n +C^1_n +….+C^n_n $. Nhưng nếu ta đếm bằng cách khác như sau: xét một tập hợp $ A $ bất kì, khi đó phần tử $ i $ có thể thuộc $ A $ hoặc $ i $ không thuộc $ A $, mỗi phần tử có 2 trường hợp, mà có $ n $ phần tử nên số tập $ A $ là $ 2^n $. Từ đó ta có đẳng thức $ C^0_n + C^1_n + …. + C^n_n = 2^n $. Đếm bằng hai cách cho ta một phương pháp để chứng minh đẳng thức liên quan tới hệ số khai triển nhị phân hay các đẳng thức tổ hợp.

Ngoài ra đếm bằng hai cách có thể áp dụng trong các bài toán bất đẳng thức, cực trị tổ hợp hay một số bài toán chứng minh sự tồn tại.

Để sử dụng phương pháp đếm bằng hai cách, đòi hỏi học sinh phải biết và vận dụng tốt các phép đếm cơ bản. Bài viết này được sử dụng để giảng dạy cho học sinh lớp 10 chuyên Toán, các em mới bước đầu làm quen với các bài toán tổ hợp nói chung và các bài toán đếm nói riêng nên ví dụ được nêu ra có độ khó không cao giúp các em làm quen với phương pháp này. Vì thời gian quá gấp rút nên không tránh khỏi sai sót, bạn đọc có thắc mắc xin liên hệ địa chỉ nguyentangvu@gmail.com,cảm ơn.

1. Chứng minh các đẳng thức tổ hợp
Ví dụ 1. Cho các số nguyên dương $ n $ và $ k $ với $ 0 < k \leq n $. Chứng minh các đẳng thức tổ hợp sau:

a) $ C_n^k=C^k_{n-1}+C^{k-1}_{n-1} $

b) $ \sum_{k \geq 0}C^{2k}_n=2^{n-1} $

Giải

a) Dễ thấy vế trái của đẳng thức là số cách chọn $ k $ phần tử từ  $ n $  phần

tử. Để chọn $ k $ phần tử từ $ n $ phần tử ta có thể làm như sau: Xét phần tử

$ a $, nếu $ a $ được chọn thì ta cần chọn thêm $ k−1 $ phần tử từ $ n−1 $

phần tử còn lại ta có $ C^{k−1}_{ n−1} $ cách. Nếu $ a $ không được chọn,

ta chọn $ k $ phần tử từ $ n−1 $ phần tử còn lại, ta có $ C^k_ {n−1} $. Do

đó số cách chọn trong hai trường hợp là $C^k_{n-1}+C^{k-1}_{n-1} $. Từ

đó ta có điều cần chứng minh.

b) Ta xét bài toán “đếm số cách chọn một số chẵn phần tử từ $ n $ phần tử”.Ta có thể đếm theo cách sau:

Cách 1: Ta có số cách chọn $ 2k $ phần tử từ $ n $ phần tử là $ C^{2k}_n $ . Khi

đó $ \sum_{k \geq 0}C^{2k}_n $ lần tổng số cách chọn một số chẵn phần tử từ

$ n $ phần tử.

Cách 2: Xét một phần tử $ a $, thì có hai khả năng $ a $ được chọn hoặc $ a $

không được chọn, ta có 2 trường hợp. Khi đó với $ n−1 $ phần tử đầu tiên, thì

số trường hợp là $ 2^{n−1} $. Tới phần tử thứ $ n $, nếu ta đã chọn được một

số chẵn phần tử thì ta không chọn, còn nếu ta đã chọn được một số lẻ phần

tử thì phần tử này sẽ được chọn, do đó số cách chọn là $ 2^{n−1} $.

Ví dụ 2. Cho các số nguyên dương $ n $ và $ k $ với $ 0 \leq k \leq n $. Chứng minh rằng:

a) $ kC^k_n=nC^{k-1}_{n-1} $

b) $ \sum_{k=0}^{n}kC^k_n=n2^{n-1} $

Giải
a) Xét bài toán “Một đội văn nghệ có n thành viên, có bao nhiêu cách chọn

$k$ người thể hiện một tiết mục hát tốp ca trong đó có một bạn hát sô lô”.

Cách 1: Chọn đội văn nghệ gồm $ k $ người từ $ n $ ta có số cách là $ C^k_n $,

từ $ k $ người này ta chọn một người hát sô lô có $ k $ cách. Khi đó số cách

chọn là $ kC^k_n $.(1)

Cách 2: Chọn người hát sô lô trước, có $ n $ cách, sau đó chọn $ k−1 $ người từ

$ n−1 $ người còn lại có $ C^{k−1}_{n−1} $ cách.

Vậy số cách chọn là $ nC^{k−1}_{n−1} $. (2)

Từ (1) và (2) ta có đẳng thức $ kC^k_n = nC^{k−1}_{n−1}. $

b) Xét bài toán “Từ $ n $ thành viên của đội văn nghệ, có bao nhiêu cách lập một nhóm hát trong đó có một nhóm trưởng?”. Làm tương tự như câu trên ta sẽ có đẳng thức cần chứng minh.

Ví dụ 3. Cho các số nguyên dương $ n $ và $ k $ với $ 0 \leq k \leq n $. Chứng minh rằng:
a) $ \sum_{m=k}^{n}C^k_m=C^{k+1}_{n+1} $

b) $ \sum_{m=k}^{n-k}C^k_mC^k_{n-m}=C^{2k+1}_{n+1} $

với $ 0 \leq k \leq\dfrac{n}{2} $.

Giải

a) Xét tập $ X = {1,2,…,n + 1} $. Khi đó ta đếm số tập con có $ k + 1 $ phần tử của $ X $.

Cách 1: Rõ ràng số tập con là $ C^{k+1}_{ n+1} $.

Cách 2: Ta chọn tập con sao cho phần tử lớn nhất là $ m $. Khi đó số tập con

có phần tử lớn nhất $ m $ là $ C^k_m $. Vì $ k \leq m \leq n $ nên ta có số tập

con là $ C^k_k + C^k_{k+1} + … + C^k_n $. Từ đó suy ra đẳng thức cần chứng

minh.

b) Xét bài toán “Đếm số tập con có $ 2k+1 $ phần tử của $ X $”.

Cách 1: Số tập con là $ C^{2k+1}_n $.

Cách 2: Ta xét phần tử thứ $ k + 1 $, giả sử đó là $ m $, khi đó ta chọn $ k $

phần tử nhỏ hơn $ m $ và $ k $ phần tử lớn hơn $ m $, số cách chọn là

$ C^k_mC^k_{n−m} $, vì $ k \leq m \leq n−k $ nên ta có số cách chọn là

$ \sum_{m=k}^{n-k} C^k_mC^k_{n-m}$.

Từ đó ta có đẳng thức cần chứng minh.

Bài tập

Bài 1 Cho $ 0 \leq k \leq m \leq n. $ Chứng minh các đẳng thức sau:

a) $ C^k_mC^m_n=C^k_nC^{m-k}_{n-k} $

b) $ \sum_{k \geq 0}k(C^k_n)^2=nC^{n-1}_{2n-1} $

c) $ \sum_{k \geq 0}C^k_nC^{m-k}_{n-k}=2^mC^m_n $

Bài 2. Chứng minh các đẳng thức sau:

a) $\sum_{i=0}^{k} C^i_n C^{k-i}_{n-i} = 2^kC^k_n$

b) $ kC^k_m C^0_p+(k-1)C^{k-1}_m C^1_p+…+C^1_mC^{k-1}_p$

$=\dfrac{m}{m+p}.k.C^k_{m+p} $

Ví dụ 4. Trong một hội nghị, mỗi thành viên tham gia đúng 3 cuộc họp và mỗi cuộc họp thì có đúng 6 thành viên tham gia. Chứng minh rằng số cuộc họp thì bằng nửa số thành viên tham gia hội nghị.

Giải
Gọi số thành viên là $ n $, số cuộc hộp là $ m $. Khi đó mỗi cuộc họp có 6 thành viên tham gia, nên tổng số lượt thành viên tham gia $ m $ cuộc họp là $ 6m $ (có lặp lại). Tương tự mỗi thành viên tham gia 3 cuộc họp mà có $ n $ thành viên nên số lượt thành viên tham gia là $ 3n $. Do đó $ 3n = 6m $ hay $ n = 2m $.
Trong bài toán trên ta có thể làm như sau: giả sử có $ m $ cuộc họp là $ 1,2,…,m $ và $ n $ thành viên là $ 1,2,3,…,n $. Xét bảng vuông $ m \times n $ gồm $ m $ dòng và $ n $ cột trên đó ghi các số dòng thứ $ i $ cột $ j $ là $ aij $ thỏa $ aij = 1 $ nếu người $ j $ tham gia cuộc họp thứ $ i $ và $ a{ij} = 0 $ trong trường hợp ngược lại. Ta được bảng sau:


Dựa vào trên, ta thấy mỗi dòng có 6 số 1 và mỗi cột có 3 số 1. Khi đó ta có $ 6m = 3n $ hay $ n = 2m $.
Bảng trên được gọi là một ma trận nhị phân, dùng để biểu diễn các mối quan hệ hai ngôi như phần tử thuộc tập hợp, quen nhau, đồ thị… và là mô hình biểu diễn rất hữu dụng trong các bài toán tổ hợp. Trong mỗi bảng nhị phân trên, nếu gọi $ r_i $ là số số 1 ở dòng thứ $ i $ và $ c_j $ là số số 1 ở cột thứ $ j $, ta có :
$ \sum_{i=1}^{m}r_i=\sum_{j=1}^{n}cj $

Ví dụ 5 (HK 1994) Trong một trường học có $ m $ giáo viên và $ n $ học sinh thỏa điều kiện sau:
i) Mỗi giáo viên dạy đúng p học sinh.
ii) Với hai học sinh phân biệt thì có đúng $ q $ giáo viên dạy họ.
Chứng minh rằng $ \dfrac{m}{q}=\dfrac{n(n-1)}{p(p-1)} $

Giải
Lập bảng gồm $ m $ dòng và $ n $ cột trong đó $ aij = 1 $ nếu giáo viên $ i $ dạy học sinh $ j $, và bằng $ 0 $ nếu ngược lại. Khi đó từ (i) thì mỗi dòng có đúng $ p $ số $ 1 $. Ta đếm các cặp số $ (1;1) $ trên cùng một dòng. Nếu đếm theo dòng thì mỗi dòng có $ C^2_p $ cặp, có $ m $ dòng nên số cặp là $ mC^2_p $. (1)
Nếu đếm theo cột, do điều kiện (ii) nên với hai cột bất kì thì có đúng $ q $ cặp. Do đó số cặp là $ qC^2_n $ (2). Từ (1) và (2) ta có $ mC^2_p=qC^2_n $ hay $ \dfrac{m}{q} =\dfrac{n(n-1)}{p(p-1)}$.

Trên đây là một kĩ thuật đếm theo cặp $ (1;1) $ cùng một dòng hoặc cùng một cột. Ta có mệnh đề sau:

Định lý 1. Nếu trong một bảng nhị phân $ m \times n, $ mỗi dòng có $ k $ số 1, hai cột bất kỳ có đúng $ p $ cặp $ (1;1) $ cùng một dòng.

Khi đó ta có $ pC^2_n=kC^2_m. $

Bài tập
Bài 1. Cho tập $ X = {1,2,…,8} $ và các tập $ A1,A2,…,A6 $ là các tập con của $ X $ sao cho mỗi tập $ Ai $ có $ 4 $ phần tử và mỗi phần tử của $ S $ thuộc $ m $ tập $ Ai $. Tìm $ m $.

Bài 2. Trong một vòng thi toán chung kết tại trường PNTK, các thí sinh phải giải 9 bài toán. Biết rằng mỗi thí sinh giải được đúng 6 bài, và với hai thí sinh bất kì thì giải đúng chung 3 bài. Tìm số thí sinh dự thi.
Bài 3. Gọi $ p(n,k) $ là số hoán vị của $ {1,2,…,n} $ có $ k $ điểm bất động. Chứng minh rằng:
$ \sum_{k=1}^{n}kp(n,k)=n! $

2. Chứng minh các bài toán bất đẳng thức và cực trị tổ hợp

Ví dụ 6. (Iran 2011) Cho $ n $ điểm trên mặt phẳng sao cho không có 3 điểm nào thẳng hàng. Chứng minh rằng số tam giác có diện tích bằng 1 có các đỉnh thuộc $ n $ điểm trên không vượt quá $ \dfrac{2}{3}(n^2-n) $.

Giải
Bài toán này ta đi tính số cặp (cạnh;tam giác). Với đoạn thẳng $ AB $, khi đó nếu điểm $ C $ thỏa $ S_{ABC} = 1 $ thì khoảng cách từ $ C $ đến $ AB $ bằng $ \dfrac{2}{AB} $ , vì không có 3 điểm nào thẳng hàng nên chỉ có nhiều nhất 4 điểm thỏa. Vậy với 1 đoạn ta sẽ có nhiều nhất 4 tam giác có diện tích 1 nhận đoạn thẳng đó làm đỉnh. Suy ra tổng số cặp nhiều nhất là $ 4C^2_n $.
Mặt khác nếu gọi số tam giác là $ m $ thì tổng số cặp là $ 3m $.
Từ đó ta có: $ 3m \leq 4C^2_n $ hay $ m \leq \dfrac{2}{3}(n^2-n) $.

Ví dụ 7.(USA TST 2005) Cho $ n > 1 $. Với số nguyên dương $ m $. Đặt $ X_m = {1,2,…,mn} $. Xét họ $ T $ gồm $ 2n $ tập hợp thỏa các điều kiện sau:
i) Mỗi phần tử của $ T$ là một tập con có $ m $ phần tử của $ X_m. $
ii) Mỗi cặp thuộc $ T $ có nhiều nhất một phần tử chung.
iii) Mỗi phần tử thuộc $ X_m $ thuộc đúng hai tập của $ T. $
Tìm giá trị lớn nhất của $ m $ theo $ n. $

Giải

Xét bảng vuông sao cho gồm $ 2n $ dòng và $ mn $ cột sao cho $ a_{ij} =1$ nếu số $ j $ thuộc $ a_i $ và bằng $ 0 $ trong trường hợp ngược lại.
Ta xét bài toán đếm số cặp $ (1;1) $ cùng một cột. Do (i) nên ta có số cặp nhiều nhất là $ C^2_{2n} $.
Do (ii) nên ta có số cặp là $ mn $.
Do đó $ mn \geq C^2_ {2n} $, suy ra $ m \geq 2n−1 $. Nếu $ m = 2n−1 $, ta xét mô hình sau. Cho $ 2n $ đường thẳng không có 3 đường nào đồng quy và không có hai đường nào song song. Khi Xm là tập các giao điểm và $ T $ là họ gồm các điểm thuộc một đường thẳng. Rõ ràng đây là mô hình thỏa đề bài. Bảng sau cho ví dụ $ n=2, m=3 $.

Ví dụ 8. (IMO 1998, P2) Trong một cuộc thi có $ a $ thí sinh và $ b $ giám khảo, với $ b $ là số lẻ lớn hơn 3. Mội giám khảo có thể đánh giá thí sinh rớt hay đậu.Giả sử với hai giám khảo bất kì thì quyết định giống nhau nhiều nhất là $ k $ thí sinh. Chứng minh rằng $ \dfrac{k}{a} \geq \dfrac{b-1}{2b} $
Giải
Cũng như ví dụ trên, ta thấy việc biểu diễn các mối quan hệ bằng bảng nhị phân rất thuận lợi trong việc trình bày lời giải. Trong bài này ta cũng có thể lập bảng $ b \times a $ theo quy tắc sau: dòng i cột j bằng 1 nếu giám khảo i cho thí sinh j đậu. Ta sẽ đếm số cặp $ (0;0) $ và $ (1;1) $ cùng một cột bằng hai cách.
Cách 1 ta đếm theo dòng: Vì với hai vị giáo bất kì có nhiều nhất $ k $ kết luận giống nhau nên với hai dòng bất kì có $ k $ cặp, do đó số cặp nhiều nhất là $ kC^2_b $.
Cách 2 ta đếm theo cột: Trong mỗi cột số cặp là $ C^2_m+C^2_n $ cặp, trong đó $ m $ là số các số $ 0 $ và $ n $ là số các số $ 1, $ ta có $ m+n=b=2t+1, $ suy ra $ n=2t+1-m. $
Khi đó $ C^2_m+C^2_n=\dfrac{m(m-1)+(21-m)(2t-m-1)}{2}=\dfrac{(2t-m)^2+m^2}{2} \geq t^2=\dfrac{(b-1)^2}{4}. $
Từ đó ta có $ kC^2_b \geq \dfrac{a(b-1)^2}{4} $, suy ra $ \dfrac{k}{a} \geq \dfrac{b-1}{2b.} $

Ví dụ 9. Cho $ n $ điểm trong mặt phẳng. Chứng minh rằng số cặp điểm có

khoảng cách bằng 1 không quá $ \dfrac{n}{4}+\dfrac{\sqrt{2n^3}}{2}. $

Giải

Gọi $ d_i $ là số đoạn thẳng có độ dài 1 mà có đỉnh là $ A_i $. Đặt khi

đó số cặp điểm là $ k = \dfrac{1}{2} (d_1 + d_2 + … + d_n) $. Ta đếm số cặp

$ (A,B) $ mà khoảng cách từ $ A,B $ đến $ A_i $ bằng 1. Số cặp là $ C^2 _{di} $,

suy ra tổng số cặp là $ \sum_{i=1}^{n}C^2_{d_i} $. Ta biết rằng hai điểm $ C,D $

thì có chung nhiều nhất một cặp $ (A,B) $ nên số cặp không vượt quá

$ 2C^2_n $. Do đó: $ \sum_{i=1}^{n}C^2_{d_i} \leq n(n-1) $

hay $ \dfrac{2k(2k-n)}{2n} \leq n(n-1) \Leftrightarrow 2k^2-nk-n^2(n-1) \leq 0 $

Do đó $ k \leq \dfrac{n}{4}+\dfrac{\sqrt{2n^3}}{2} $

3 Các bài toán tồn tại
Ví dụ 10. Cho 133 số nguyên dương, có ít nhất 799 cặp số là nguyên tố cùng nhau. Chứng minh rằng tồn tại 4 số nguyên dương phân biệt $ a,b,c,d $ sao cho $ a $ và $ b; b $ và $ c, c $ và $ d; d $ và $ a $ nguyên tố cùng nhau.

Giải

Mỗi số được đại diện bởi một điểm, hai số nào nguyên tố cùng nhau thì hai điểm tương ứng được nối nhau bởi một đoạn. Ta cần chứng minh có 4 đoạn $ AB,BC,CD,DA $. Ta cần chứng minh rằng có hai điểm $ B $ và $ D $ cùng nối với hai điểm $ A $ và $ C $.
Gọi $ d_i $ là số cạnh có đỉnh là $ A_i $. Khi đó ta có

$ d_1 + d_2 + … + d_{133} = 2 \times 799 $. Nếu hai đỉnh $ Y, Z $ cùng nối với đỉnh $ X $ thì ta sẽ xem $ (Y;Z) $ là một cặp. Ta sẽ tính số cặp này. Rõ ràng, tổng số cặp là
$ \sum_{i=1}^{133} C^2_{d_i}$

$=\dfrac{1}{2}\left(\sum_{i=1}^{133}d^2_i-\sum_{i=1}^{133}d_i \right) $

Ta có

$ \sum_{i=1}^{133}d^2_i \geq \dfrac{1}{133} \left(\sum_{i=1}^{133}d_i \right)^2 $

Do đó

$ \sum_{i=1}^{133}C^2_{d_i} \geq \dfrac{1}{2}(\dfrac{1}{133}(\sum_{i=1}^{133}d_i)^2)$

$-\sum_{i=1}^{133}d_i ]>C^2_{133} $
Nhưng $ 133 $ điểm thì có $ C^2_{133} $ cặp, nên sẽ có một cặp nào đó được tính hai lần, tức là tồn tại cặp $ (A,C) $ cùng được nối với $ B$ và $ D $. Tức là ta có 4 đoạn $ AB, BC,CD,DA. $

Ví dụ 11.  Cho tập $ X $ có $ n $ phần tử, gọi $ A_1,A_2,…,A_m $ là một họ các tập con của $ X $, sao cho $ |Ai| = 3 $ và $ |A_i \cap A_j| \leq 1 $ với $ i \neq j $. Chứng minh rằng tồn tại một tập con $ A $ của $ X $ có ít nhất $ [\sqrt{2n}] $ phần tử và không chứa bất kì tập $ A_i $ nào.

Giải
 

Ta xét tập tất cả các tập con của $ X $ mà không chứa bất kỳ tập $ A_i $ nào, khi đó dễ thấy tập này là khác rỗng (xét tập có 2 phần tử là thỏa) và hữu hạn, nên tồn tại một tập $ M $ có nhiều phần tử nhất. Đặt $ |M|=k $. Khi đó, do $ M $ có số phần tử lớn nhất nên mọi tập có số phần tử lớn hơn $ M $ đều chứa một tập $ A_i. $ Xét tập $ M’=X \setminus M= \{a_1,a_2,…,a_{n-k}\} $. Khi đó $ M \cup \{a_i\} $ có $ k+1 $ phần tử, nên theo cách xác định $ M $ thì sẽ tồn tại $ A_i \subset M’,$ do $ A_i \nsubseteq M $ nên $ A_i=\{a_i,x,y\} $ trong đó $ x,y \in M. $
Hơn nữa hai tập giao nhau có không quá một phần tử nên với mỗi $ a_i $ có nhiều nhất một cặp $ (x,y) \in A_i$. Ta đếm số cặp $ (x,y) $ theo hai cách:\\
Số cặp $ (x,y) \in X $ là $ C_k^2. $
Vì $ i=1,2,…,n-k $ nên có $ n-k $ cặp. Vậy ta có:
$ n-k \leq C^2_k \Leftrightarrow k^2+k \geq 2n $
Mà $ k \leq \sqrt{k^2+k} \leq k+1, $ suy ra $ k \geq [\sqrt{2n}] $. Ta có điều cần chứng minh.

Bài tập rèn luyện
Bài 1.  Cho 7 tập $ A1,A2,…,A7 $ là các tập con của $ X = {1,2,3,4,5,6,7} $, sao cho mội cặp phần tử thuộc $ X $ thuộc đúng một tập con, và $ |Ai|\geq 3 $ với mọi $ i $. Chứng minh rằng $ |A_i \cap Aj| = 1 $ với mọi $ i,j. $

Bài 2. Cho 16 bạn học sinh làm một bài kiểm tra trắc nghiệm, trong đó mỗi câu hỏi có 4 lựa chọn. Sau bài kiểm tra, ta thấy rằng với hai học sinh bất kì có nhiều nhất một câu trả lời giống nhau. Hỏi bài kiểm tra có nhiều nhất bao nhiêu câu hỏi?

Bài 3. Một hội nghị có n thành viên tham gia, hội nghị đã tổ chứng $ n + 1 $ cuộc họp, trong đó mỗi cuộc họp có đúng 3 người và không có cuộc họp nào có thành viên giống nhau. Chứng minh rằng có hai cuộc họp mà có chung đúng một thành viên.

Bài 4.  (China 1996) Trong một hội nghị có 8 người tham gia, hội nghị tổ chức $ m $ cuộc họp, mỗi cuộc họp có đúng 4 người tham gia. Hơn nữa hai người bất kì thì cùng tham gia một số cuộc họp như nhau. Tìm giá trị nhỏ nhất của $ m $.
Bài 5.  Cho $ A1,A2,…,Ak $ là các tập con của $ S = {1,2,…,10} $ sao cho:
i) $ |A_i| = 5,i = 1,2,…,k. $
ii) $ |A_i \cap A_j| \leq 2, 1 \leq i < j \leq k. $ Tìm giá trị lớn nhất của $ k $.

Bài 6. (IMO 2001) Có 21 bạn nam và 21 bạn nữ tham dự một kì thi học sinh giỏi toán. Biết rằng:
a) Mỗi bạn giải được nhiều nhất sáu bài.
b) Mỗi cặp một nam và một nữ thì có ít nhất một bài toán được giải bởi hai người đó.
Chứng minh rằng có môt bài toán mà giải được bởi ít nhất 3 nam và 3 nữ.

Bài 7.  (USAMO 2001) Có 8 hộp, mỗi hộp chứa 6 viên bi. Mỗi viên bi được tô màu sao cho:
i) Mội hộp chứa các viên bi khác màu.
ii) Không có hai màu nào cùng xuất hiện nhiều hơn trong một hộp.
Tìm số màu ít nhất cần dùng.

Bài 8.  (IMO 1989) Cho $ n $ và $ k $ là các số nguyên dương và $ S $ là tập $ n $ điểm trong mặt phẳng sao cho:
i) Không có 3 điểm nào thẳng hàng,
ii) Với điểm $ P $ bất kì thuộc $ S $ thì có ít nhất $ k $ điểm của $ S $ cách đều $ P $.
Chứng minh rằng: $ k<\dfrac{1}{2}+\sqrt{2n} $

Bài 9. (IMO 2005) Trong một cuộc thi toán trong đó đề thi có 6 bài. Mỗi một cặp bài toán được giải bởi nhiều hơn $ \dfrac{2}{5} $ số thí sinh. Không có ai giải được 6 bài. Chứng minh rằng có ít nhất 2 thí sinh giải được đúng 5 bài.

Bài 10. Trong một hội nghị có 35 người tham gia. Biết rằng có 111 cặp đôi một quen nhau. Chứng minh rằng có thể chọn ra 4 thành viên xếp ngồi vào một bàn tròn sao cho hai người ngồi gần nhau thì quen nhau.

 

Tổ hợp

1.Định nghĩa

  • Cho tập $A$ có $n$ phần tử, mỗi tập con có $k$ phần tử của $A$ ($ 0 \leq k \leq n$) được gọi là một tổ hợp chập $k$ của $n$.

Ví dụ 1. Cho $A = { 1, 2, 3, 4 }$. Các tổ hợp chập 3 của là $A$ là $ {1, 2, 3}, {1, 2, 4}, {1, 3, 4 }, {2, 3, 4 }$.

  • Số tổ hợp chập $k$ của $n$ là $C_n^k   = \dfrac{A^k_n}{k!} = \dfrac{n!}{(n-k)!k!}$.

2.Các ví dụ.

Ví dụ 1. Lớp 11A có 15 bạn nam và 20 bạn nữ, hỏi có bao nhiêu cách chọn một nhóm 5 bạn để đi làm việc biết

a. Có 3 bạn nam và 2 bạn nữ.

b. Có ít nhất 2 bạn nữ.

Lời giải.

a.

  • Số cách chọn 3 bạn nam từ 15 bạn nam là số tổ hợp chập 3 của 15 nên có $C^3_{15}$ cách.
  • Số cách chọn 2 bạn nữ từ 20 bạn nữ là số tổ hợp chập 2 của 20 nên có $C^2_{20}$.
  • Vậy theo quy tắc nhân, số cách chọn là $C^3_{15} \cdot C^2_{20} = 86.450$

b. Bài này ta có thể sử dụng phần bù.

  • 0 bạn nữ, 5 bạn nam: $C^0_{20} \cdot C^5_{15}$.
  •  1 bạn nữ, 4 bạn nam: $C^1_{20} \cdot C^4_{15}$.
  • Chọn 5 bạn tùy ý: $C^5_{35}$.
  • Do đó ta có, số cách chọn ít nhất 2 bạn nữ:
  •  $C^5_{35} – C^0_{20} \cdot C^5_{15} – C^1_{20} \cdot C^4_{15}$

Ví dụ 2. Trong hộp có 5 bi xanh, 4 bi đỏ và 5 bi vàng. Lấy ra 4 viên bi, hỏi có bao nhiêu cách lấy thỏa:

a. Có cùng một màu.

b. Có đầy đủ 3 màu.

Lời giải.

a.

  • Cùng màu xanh: $C^4_5 = 5$ cách.
  • Cùng màu đỏ: $C^4_4 = 1$ cách.
  • Cùng màu vàng $C^4_5 = 5$ cách.
  •  Số cách lấy là: $ 5 + 1 + 5 = 11$ cách

b.

  • 2 vàng 1 đỏ 1 xanh. $C^2_5 \cdot C^1_4 \cdot C^1_5$
  • 2 vàng 1 đỏ 1 xanh:$C^1_5\cdot C^2_4 \cdot C^1_5$

3.Bài tập

Bài 1. Một nhóm học sinh có 10 bạn. Có bao nhiêu cách chọn
a) 3 bạn đi dọn vệ sinh trường lớp.
b) 5 bạn để lập một nhóm tình nguyện, trong đó có một đội trưởng.

Bài 2.  Trong hộp có 7 bi xanh và 8 bi vàng. Có bao nhiêu cách lấy ra 5 bi thỏa:
a) Lấy tùy ý.
b) Có ít nhất 2 bi vàng.
c) Các bi cùng màu.
 Bài 3. Có 3 hộp, trong đó hộp thứ nhất chứa 5 viên bi xanh, hộp thứ hai chứa 6 viên bi đỏ và hộp thứ ba chứa 8 viên bi vàng, các viên bi đều khác nhau. Chọn ra 5  viên bi từ 3 hộp. Hỏi có bao nhiêu cách chọn
a) 5 viên bi đều màu vàng.
b) 2 viên bi màu đỏ, 3 viên bi màu xanh.
c) Có đầy đủ 3 màu.
d) Không có bi màu đỏ hoặc màu xanh và ít nhất 2 viên bi màu vàng.

Bài 4. Từ 5 bông hồng vàng, 3 bông hồng trắng, và 4 bông hồn đỏ (các bông hoa xem như đôi một khác nhau) người ta muốn chọn ra 1 bó hoa gồm 7 bông. Có bao nhiêu cách chọn 1 bó hoa trong đó có ít nhất 3 bông hồng vàng và ít nhất 3 bông hồng đỏ.

Bài 5. Bạn An mời tiệc sinh nhật, vì nhà nhỏ nên trong 20 người bạn của mình An chỉ có thể mời được 8 bạn. Biết rằng trong các bạn của An thì có Nam và Long không thích nhau nên An không thể mời cả hai bạn dự cùng lúc. Hỏi An có bao nhiêu cách mời?

 

Quy tắc cộng, quy tắc nhân

I. Lý thuyết

1. Quy tắc cộng

  • Giả sử một công việc có thể thực hiện theo phương án A hoặc phương án B. Có $n$ cách thực hiện phương án A và $m$ cách thực hiện phương án B. Khi đó công việc có thể thực hiện theo $n+m$ cách.
  • Tổng quát: “Giả sử một công việc có thể thực hiện theo một trong $k$ phương án $A_{1},A_{2},…,A_{k}.$ Có $n_{1}$ cách thực hiện phương án $A_{1}$, $n_{2}$ cách thực hiện phương án $A_{2},$…, và $n_{k}$ cách thực hiện phương án $A_{k}$. Khi đó công việc có thể thực hiện theo $n_1+n_2+…+n_k$ cách.

Ví dụ 1. Một hộp đựng 8 viên bi trắng, 5 viên bi đỏ và 6 viên bi xanh lá. Bạn Khoa muốn chọn một viên bi để chơi, hỏi có bao nhiêu cách chọn?

Để chọn 1 viên bi ta có thể chọn:

  • Bi trắng: có 8 cách chọn.

  • Bi đỏ: có 5 cách chọn.

  • Bi xanh lá: có 6 cách chọn.

Nên tổng cộng có: 8+5+6=19 cách chọn.

2. Quy tắc nhân

  • Giả sử một công việc nào đó bao gồm hai công đoạn A và B. Công đoạn A có thể làm theo $n$ cách. Với mỗi cách thực hiện công đoạn A thì công đoạn B có thể thực hiện theo $m$ cách. Khi đó công việc có thể thực hiện theo $m.n$ cách.
  • Tổng quát: “Giả sử một công việc nào đó gồm $k$ công đoạn $A_{1},A_{2},…,A_{k}.$ Có $n_{1}$ cách thực hiện công đoạn $A_{1}$, $n_{2}$ cách thực hiện công đoạn $A_{2},$…, và $n_{k}$ cách thực hiện công đoạn $A_{k}$. Khi đó công việc có thể thực hiện theo $n_1.n_2…n_k$ cách.

Ví dụ 2. Trong một đội văn nghệ có 8 nam và 6 nữ. Hỏi có bao nhiêu cách chọn ra một đôi song ca nam nữ?

Để chọn 1 đôi nam nữ, ta phải chọn ra 1 bạn nữ, rồi chọn 1 bạn nam.

  • Để chọn 1 bạn nữ có 6 cách chọn.

  • Chọn 1 bạn nam có 8 cách chọn.

Nên có 6.8=48 cách chọn.

II. Bài tập

1.Từ tập $A=\left{2,3,4,5,6\right}$ lập được bao nhiêu số tự nhiên có 5 chữ số, các chữ số phân biệt và thỏa mãn:

a) Bắt đầu bằng số 3.

b) Không bắt đầu bằng số 2.

c) Chia hết cho 5.

d) Có hai chữ số 4 và 5 đứng gần nhau.

  1. Từ các số 0,1,2,3,4,5 lập được bao nhiêu số:

a) Có 3 chữ số khác nhau và chia hết cho 9.

b) Có 4 chữ số khác nhau và chia hết cho 4.

c) Có 3 chữ số khác nhau và không chia hết cho 3.

  1. Có hai dãy ghế, mỗi dạy có 5 ghế hướng vào nhau. Có bao nhiêu cách sắp xếp 5 bạn nam, 5 bạn nữ ngồi vào đó thoả:

a) Sắp xếp bất kì.

b) Đối diện một bạn nam và một bạn nữ.

  1. Có bao nhiêu bộ số $(a,b, c)$ thoả $a, b, c \in {1, 2, …, 50}$ và $a<b, a<c$.

  2. Từ tập $A = {0, 1, 2, 3, 4, 5, 6}$ có thể lập được bao nhiêu số không lớn hơn 3000 và có các chữ số khác nhau.

 

 

 

Hoán vị

I. Lí thuyết

  • Cho tập hợp $A$ có $n (n \ge 1)$ phần tử. Khi sắp xếp $n$ phần tử này theo một thứ tự ta được một hoán vị các phần tử của tập $A$ (gọi tắt là một hoán vị của $A$).
  • Số các hoán vị của một tập gồm $n$ phần tử là: $$ P_{n}=n!=n(n-1)(n-2)…2.1 $$
  • Qui ước: $0!=1.$

Ví dụ 1. Từ tập hợp $X=\left\{1,2,3,4,5\right\}$, ta có thể lập được bao nhiêu số có 5 chữ số khác nhau từng đôi một?

Đáp số

Gọi số cần tìm là $\overline{abcde}$, ta thấy số cần tìm là một hoán vị của các phần tử của $X$, vậy số cách chọn là: $P_5=5!=120$.

Ví dụ 2. Có 7 quyển sách Toán, 6 quyển sách Lí và 4 quyển sách Hóa. Hỏi có bao nhiêu cách xếp số sách trên lên một kệ sách dài, sao cho:

a) Các quyển sách được xếp tùy ý.

b) Các quyển sách cùng môn được xếp cạnh nhau.

Đáp số

a) Mỗi cách xếp tùy ý là một hoán vị của 17 phần tử. Vậy số cách chọn là $17!$.

b) Ta chia thao tác xếp thỏa mãn yêu cầu thành 4 công đoạn:

Bước 1: Hoán vị 7 quyển sách Toán với nhau.

Bước 2: Hoán vị 6 quyển sách Lí với nhau.

Bước 3: Hoán vị 4  quyển sách Hóa với nhau.

Bước 4: Hoán vị 3 nhóm sách của 3 môn với nhau.

Vậy số cách xếp là: $7!.6!.4!.3!$

II. Bài tập

1.Có hai dãy ghế, mỗi dãy 5 ghế. Xếp 5 nam và 5 nữ vào 2 dãy ghế trên, có bao nhiêu cách nếu:

a) Nam, nữ xếp tùy ý.

b) Nam 1 dãy, nữ 1 dãy.

2. Có 10 học sinh lớp 10 và 10 học sinh lớp 12 xếp vào 4 dãy ghế, mỗi dãy 5 học sinh. Có bao nhiêu cách xếp cách học sinh cùng lớp ngồi nối đuôi nhau. Bao nhiêu cách xếp học sinh ngồi cạch nhau thì khác lớp

3. Xét tập hợp các số tự nhiên

a) Có bao nhiêu số tự nhiên gồm 4 chữ số, đôi một khác nhau và các chữ số đều lớn hơn 5.

b) Tính tổng tất cả các số đó.

Đáp số
  1. a) $10!$, b) $2.5!.5!$
  2. $2(10!)^2$
  3. a) $24$, b) $199980$.