Tag Archives: TPHCM

Đề thi và đáp án thi vào lớp 10 TPHCM 2013

I. Đề thi vào lớp 10 TPHCM 2013

Bài 1. Giải các phương trình và hệ phương trình sau:
a) $x^2-5x+6 = 0$.
b) $x^2-2x-1=0$
c) $x^4+3x^2-4=0$
d) $2x-y=3$ và $ x+2y=-1 $

Bài 2.
a) Vẽ đồ thị (P) của hàm số $y = x^2$ và đường thẳng $(D): y = -x+2$ trên cùng một hệ trục tọa độ.
b) Tìm tọa độ các giao điểm của $(P)$ và $(D)$ ở câu trên bằng phép tính.
Bài 3. Thu gọn các biểu thức sau:
a) $A = \left( {\dfrac{{\sqrt x }}{{\sqrt x + 3}} + \dfrac{3}{{\sqrt x – 3}}} \right).\dfrac{{\sqrt x + 3}}{{x + 9}}$ với $x \ge 0,x \ne 9$
b) $B = 21{\left( {\sqrt {2 + \sqrt 3 } + \sqrt {3 – \sqrt 5 } } \right)^2} – 6{\left( {\sqrt {2 – \sqrt 3 } + \sqrt {3 + \sqrt 5 } } \right)^2} – 15\sqrt {15} $
Bài 4. Cho phương trình $8x^2-8x+m^2+1=0$ (1) ($x$ là ẩn số).

a) Định $m$ để phương trình (1) có nghiệm $x = \dfrac{1}{2}$.
b) Định $m$ để phương trình (1) có hai nghiệm $x_1, x_2$ thỏa điều kiện $x_1^4 -x_2^4 =x_1^3- x_2^3$.
Bài 5. Cho tam giác $ABC$ không có góc tù $(AB < AC)$, nội tiếp đường tròn $(O;R)$. $B, C$ cố định, $A$ di động trên cung lớn $BC$). Các tiếp tuyến tại $B$ và $C$ cắt nhau tại điểm $M$. Từ $M$ kẻ đường thẳng song song với $AB$, đường thẳng này cắt $(O)$ tại $D$ và $E$ ($D$ thuộc cung nhỏ $BC$), cắt $BC$ tại $F$, cắt $AC$ tại $I$.
a) Chứng minh $\angle MBC = \angle BAC$. Từ đó suy ra $MBIC$ nội tiếp.
b) Chứng minh $FI.FM = FD.FE$.
c) Đường thẳng $OI$ cắt $(O)$ tại $P$ và $Q$ với $P$ thuộc cung nhỏ $AB$. Đường thẳng $QF$ cắt $(O)$ tại $T$ khác $Q$. Chứng minh ba điểm $P, T, M$ thẳng hàng.
d) Tìm vị trí điểm $A$ trên cung lớn $BC$ sao cho tam giác $IBC$ có diện tích lớn nhất.

II. ĐÁP ÁN

Bài 1.
a) $x^2 – 5x+6=0$
$\Delta = 25-24 =1 $
$\Leftrightarrow  x=\dfrac{5-1}{2}=2 $ hoặc $x=\dfrac{5+1}{2} =3 $
b)  $x^2 -2x -1 =0 $
$\Delta ‘ = 1+1 =2 $
$\Leftrightarrow x= 1- \sqrt{2}  hoặc x=1+ \sqrt{2}  $
c) Đặt $u= x^2 \ge 0$ phương trình trở thành:
$u^2 +3u-4=0$

$\Leftrightarrow u=1  hoặc u=-4  (l)$
Do đó phương trình $\Leftrightarrow x^2 =1 \Leftrightarrow x= \pm 1 $
Cách khác:
Phương trình tương đương: $\left( x^2 -1 \right) \cdot \left( x^2 + 4 \right) =0$

$\Leftrightarrow x^2 -1 =0 \Leftrightarrow x= \pm 1$
d)  $2x-y=3  (1)$  và   $x+ 2y = -1  (2)$
$\Leftrightarrow  2x-y=3  (1) và   5x=5 (3)\left( (2)+2(1) \right) $
$\Leftrightarrow  x=1 $ và   $y=-1$.

Bài 2.
a) Đồ thị:

Lưu ý: $(P)$ đi qua $O(0;0)$, $( \pm 1 ;1)$, $( \pm 2; 4 )$
$(D)$ đi qua $(1;1)$, $(0;2)$
b) Phương trình hoành độ giao điểm của $(P)$ và $(D)$ là:
$x^2 = -x + 2 \Leftrightarrow x^2 +x-2=0 $

$\Leftrightarrow  x=1 hoặc x=-2$
$y(1) = 1$, $y(-2)=4$
Vậy tọa độ giao điểm của $(P)$ và $(D)$ là $(-2;4)$, $(1;1)$.
Bài 3. Thu gọn các biểu thức sau:
a) Với $x \ge 0;  x\ne 9$
$A=\left( \dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{3}{\sqrt{x}-3} \right) \cdot \dfrac{\sqrt{x}+3}{x+9}$
$A= \dfrac{x-3\sqrt{x}+3\sqrt{x}+9}{\left( \sqrt{x}+3 \right) \cdot \left( \sqrt{x}-3 \right) } \cdot \dfrac{\sqrt{x}+3}{x+9} $
$=\dfrac{1}{\sqrt{x}-3}$

b) $B=21 \left( \sqrt{2+ \sqrt{3}} + \sqrt{3- \sqrt{5}} \right) ^2 -6 \left( \sqrt{2-\sqrt{3}} + \sqrt{3+\sqrt{5}} \right) ^2 -15\sqrt{15}$
$= \dfrac{21}{2}\left( \sqrt{4+2\sqrt{3}} + \sqrt{6-2\sqrt{5}} \right) ^2 -3 \left( \sqrt{4-2\sqrt{3}} + \sqrt{6+2\sqrt{5}} \right) ^2 – 15\sqrt{15} $
$=\dfrac{21}{2} \left( \sqrt{3}+1+\sqrt{5}-1 \right) ^2 -3 \left( \sqrt{3} -1 + \sqrt{5}+1 \right) ^2 – 15\sqrt{15} $
$= \dfrac{15}{2}\left( \sqrt{3}+\sqrt{5}\right) ^2 – 15 \sqrt{15}=60$
Bài 4.

a) Phương trình (*) có nghiệm $x=\dfrac{1}{2} \Leftrightarrow 2-4+m^2+1=0$

$\Leftrightarrow m^2=1 \Leftrightarrow m= \pm 1$
b) $\Delta ‘ = 16-8m^2 -8 = 8 \left( 1-m^2 \right) $
Khi $m= \pm 1$ thì ta có $\Delta ‘ =0 $ tức là: $x_1=x_2$ khi đó $x_1^4 – x_2^4 = x_1^3 -x_2^3$ (thỏa điều kiện).
Để phương trình có hai nghiệm phân biệt thì $m^2 <1 \Leftrightarrow -1 < m < 1$.
Khi đó ta có:
$x_1^4 – x_2^4 = x_1^3-x_2^3 $

$\Leftrightarrow \left( x_1^2 -x_2 ^2 \right) \left( x_1 ^2 + x_2 ^2 \right) = \left( x_1 -x_2 \right) \left( x_1 ^2 + x_2 ^2 +x_1 x_2 \right) $

$\Leftrightarrow \left( x_1 + x_2 \right) \left( x_1 ^2 + x_2 ^2 \right) = \left( x_1 ^2 + x_2 ^2 + x_1 x_2 \right) \;\; \left( \text{Do } x_1 \text{ khác } x_2 \right) $
$\Leftrightarrow \left( x_1 + x_2 \right) \left[ \left( x_1 + x_2 \right) ^2 – 2x_1 x_2 \right] = \left( x_1 + x_2 \right) ^2 – x_1 x_2 $
$\Leftrightarrow S\left( S^2 -2P \right) = S^2 – P $
$\Leftrightarrow 1 \left( 1^2 -2P \right) = 1^2 – P  \left( Vì  S=1 \right) $
$\Leftrightarrow P=0 \Leftrightarrow m^2 + 1 =0  (VN)$

Vậy $m= \pm 1 $
Cách khác
Khi $\Delta \ge 0$ ta có:
$x_1 + x_2 =1$ và $x_1 x_2 =\dfrac{m^2+1}{8}$
$x_1 ^4 – x_2 ^4 = x_1 ^3 – x_2 ^3 \Leftrightarrow x_1 ^3 \cdot \left( x_1 -1 \right) – x_2 ^3 \left( x_2 -1 \right) =0 $
$\Leftrightarrow -x_1 ^3x_2 + x_1 x_2 ^3 =0 \;\; \left( \text{thế } x_1 -1 = -x_2 \text{ và } x_2 -1 = – x_1 \right) $
$\Leftrightarrow x_1 x_2 \left( x_1 ^2 – x_2 ^2 \right) =0$
$\Leftrightarrow \left( x_1 + x_2 \right) \left( x_1 – x_2 \right) =0 \;\; \left( \text{vì } x_1 x_2 \ne 0 \right)$
$\Leftrightarrow x_1 = x_2 \;\; \left( \text{vì } x_1 + x_2 =1 \ne 0 \right) $
$\Leftrightarrow m= \pm 1$
Bài 5.


a) Ta có $\angle BAC = \angle MBC$ do cùng chắn cung $BC$
Và $\angle BAC = \angle MIC$ do $AB // MI$
Vậy $\angle MBC = \angle MIC$, nên bốn điểm $I$, $C$, $M$, $B$ cùng nằm trên đường tròn đường kính $OM$. (vì 2 điểm $B$, $C$ cùng nhìn $OM$ dưới một góc vuông)
b) Do 2 tam giác $FBD$ và $FEC$ đồng dạng nên $FB \cdot FC = FE \cdot FD$.
Và 2 tam giác $FBM$ và $FIC$ đồng dạng nên $FB \cdot FC = FI \cdot FM $.
Từ đó suy ra: $FI \cdot FM = FD \cdot FE$
c) Ta có $\angle PTQ = 90^ \circ$
$\triangle FIQ \backsim \triangle FTM$ ($\angle IFQ = \angle TFM$ và $\dfrac{FI}{FQ}= \dfrac{FT}{FM}$ vì $FI\cdot FM = FD \cdot FE = FT \cdot FQ$)
Nên $\angle FIQ = \angle FTM$ mà $\angle FIQ = \angle OIM = 90^ \circ $
Do đo $P$, $T$, $M$ thẳng hàng.
d) Ta có $BC$ không đổi nên $S_{IBC}$ lớn nhất khi và chỉ khi khoảng cách từ $I$ đến $BC$ lớn nhất.
Do đo $I$ trùng với $O$ thỏa yêu cầu bài toán vì $I$ nằm trên cung $BC$ của đường tròn đường kính $OM$. Khi $I$ trùng $O$ thì $\triangle ABC$ vuông tại $B$.
Vậy diện tích tam giác $IBC$ lớn nhất khi và chỉ khi $AC$ là đường kính của đường tròn $(O;R)$.

 

Đề thi và đáp án vào lớp 10 TPHCM 2017

I. ĐỀ

Câu 1.
a) Giải các phương trình: $x^2=(x-1)(3x-2)$.
b) Một miếng đất hình chữ nhật có chu vi $100m$. Tính chiều dài và chiều rộng của miếng đất biết rằng 5 lần chiều rộng hơn 2 lần chiều dài $40m$.

Câu 2. Trong mặt phẳng tọa độ $Oxy$:
a) Vẽ đồ thị $(P)$ của hàm số $y=\dfrac{1}{4}x^2$.
b) Cho đường thẳng $(D):y=\dfrac{3}{2}x+m$ đi qua điểm $C(6;7)$. Tìm tọa độ giao điểm $(D)$ và $(P)$.
Câu 3.
a) Thu gọn biểu thức $A=(\sqrt{3}+1)\sqrt{\dfrac{14-6\sqrt{3}}{5+\sqrt{3}}}$.
b) Lúc 6 giờ sáng , bạn An đi xe đạp từ nhà (điểm $A$) đến trường (điểm $B$) phải leo lên và xuống một con dốc (như hình bên dưới). Cho biết đoạn thằng $AB$ dài $762m$, góc $A=6^\circ$, góc $B=4^\circ$.

  1. Tính chiều cao $h$ của con dốc.
  2. Hỏi bạn An đến trường lúc mấy giờ? Biết rằng tốc độ trung bình lên dốc là $4km/h$ và tốc độ trung bình xuống dốc là $19km/h$.

Câu 4. Cho phương trình: $x^2-(2m-1)x+m^2-1=0\,(1)$ ($x$ là ẩn số).

a) Tìm điều kiện của $m$ để phương trình $(1)$ có 2 nghiệm phân biệt.
b) Định $m$ để hai nghiệm $x_1$, $x_2$ của phương trình $(1)$ thỏa mãn:
$$(x_1-x_2)^2=x_1-3x_2$$
Câu 5. Cho tam giác $ABC$ vuông tại $A$. Đường tròn tâm $O$ đường kính $AB$ cắt các đoạn $BC$ và $OC$ lần lượt tại $D$ và $I$. Gọi $H$ là hình chiếu của $A$ lên $OC$; $AH$ cắt $BC$ tại $M$.
a) Chứng minh tứ giác $ACDH$ nội tiếp và $\angle{CHD}=\angle{ABC}$.
b) Chứng minh hai tam giác $OHB$ và $OBC$ đồng dạng và $HM$ là tia phân giác của góc $BHD$.
c) Gọi $K$ là trung điểm $BD$. Chứng minh $MD.BC=MB.CD$ và $MB\cdot MD=MK\cdot MC$.
d) Gọi $E$ là giao điểm của $AM$ và $OK$; $J$ là giao điểm của $IM$ và $(O)$ ($J$ khác $I$). Chứng minh hai đường thẳng $OC$ và $EJ$ cắt nhau tại một điểm nằm trên $(O)$.

II. ĐÁP ÁN

Câu 1.
a) $x^2 = (x-1)(3x-2) $
$\Leftrightarrow x^2= 3x^2 – 5x + 2 $
$\Leftrightarrow 2x^2 – 5x+2=0 $
$\Leftrightarrow 2x^2 – 4x -x +2 =0 $
$\Leftrightarrow 2x(x-2)-(x-2) =0 $
$\Leftrightarrow (x-2)\left( 2x-1 \right) =0 $

$\Leftrightarrow  x=2$ hoặc $x=\dfrac{1}{2} $
b) Gọi $a$, $b$ (m) lần lượt là chiều dài và chiều rộng của hình chữ nhật. ($a,b >0$)
Ta có hệ phương trình:
$2(a+b) = 100$ và  $5b-2a=40$
$\Leftrightarrow a=30$ và $b= 20$
Vậy chiều dài và chiều rộng của hình chữ nhật lần lượt là 30m và 20m.

Câu 2. Trong mặt phẳng tọa độ $Oxy$:
a) Đồ thị:

Đồ thị $(P)$ đi qua điểm $(2; 1)$, $(-2;1)$ và $O(0;0)$
b) Đường thẳng $(D)$ đi qua điểm $C(6;7)$ nên
$7=\dfrac{3}{2}.6+m \Rightarrow m= -2$
Do đó phương trình đường thẳng $(D)$ là $(D):y=\dfrac{3}{2}x-2$.
Phương trình hoành độ giao điểm của $(D)$ và $(P)$ là:

$\dfrac{3}{2}x-2= \dfrac{1}{4}x^2 $
$\Leftrightarrow x^2 – 6x+8 =0 $
$\Leftrightarrow x= 4 \Rightarrow y= 4 $ hoặc $x=2 \Rightarrow y= 1$
Vậy các giao điểm của $(D)$ và $(P)$ có tọa độ là $(4;4)$ và $(2,1)$
Câu 3.
a) $\left( \sqrt{3}+1 \right) \sqrt{\dfrac{14-6\sqrt{3}}{5+\sqrt{3}}} = \left( \sqrt{3}+1 \right) \sqrt{\dfrac{20+4\sqrt{3}-10\sqrt{3}-6}{5+\sqrt{3}}} $
$= \left( \sqrt{3}+1 \right) \sqrt{\dfrac{\left( 4-2\sqrt{3}\right) \left( 5+ \sqrt{3} \right) }{5 + \sqrt{3}}} = \left( \sqrt{3}+1 \right) \sqrt{\left( \sqrt{3}-1 \right) ^2} $
$= \left( \sqrt{3}+ 1 \right) \left( \sqrt{3}-1 \right) =3-1 =2$
b)

  1. Ta có:
    $AH = h.cotg \angle CAH= h.cotg \; 6^\circ $
    $BH = h.cotg \angle CBH= h.cotg \; 4^\circ$
    Mà $AH + BH = AB$ nên
    $h.cotg \; 6^\circ + h.cotg \; 4^\circ = 762 $
    $\Leftrightarrow h= \dfrac{762}{cotg \; 6^\circ + cotg \; 4^\circ } $ $\Leftrightarrow h \approx 32$
    Vậy chiều cao của con dốc là $h \approx 32m$
  2.  $AC= \dfrac{h}{\sin \angle CAH} \approx \dfrac{32}{\sin 6^\circ }$
    Vận tốc An lên dốc là $4\; km/h = 4000 \; m /h$
    Thời gian An lên dốc là $\dfrac{\dfrac{32}{\sin 6^\circ }}{4000}$ (giờ)
    $BC= \dfrac{h}{\sin \angle CBH} \approx \dfrac{32}{\sin 4^\circ }$
    Vận tốc An xuống dốc là $19 \; km/h = 19000 \; m/h$
    Thời gian An xuống dốc là $\dfrac{\dfrac{32}{\sin 4^\circ }}{19000}$ (giờ)
    Thời gian để An đến trường là $\dfrac{\dfrac{32}{\sin 6^\circ }}{4000} + \dfrac{\dfrac{32}{\sin 4^\circ }}{19000} \approx 0.1$ (giờ) $\approx 6$ (phút)
    Vậy An đến trường lúc 6 giờ 6 phút.

Câu 4. $x^2 – (2m-1)x + m^2 -1 =0$ (1)

a) Để phương trình (1) có hai nghiệm phân biệt thì
$a=1 \ne 0$ và $\Delta >0 $
$\Leftrightarrow (2m-1)^2 – 4 \left( m^2 -1 \right) >0$
$\Leftrightarrow 4m^2 – 4m +1 – 4m^2 + 4 >0 \Leftrightarrow m < \dfrac{5}{4}$
b) Để phương trình có hai nghiệm $x_1$, $x_2$ thì $a=1 \ne 0$ và $\Delta \ge 0 $ $\Rightarrow m \le \dfrac{5}{4}$
Theo Viet, ta có: $S= 2m-1 $, $P= m^2 -1$
$\left( x_1 -x_2 \right) ^2 = x_1 – 3x_2 $
$\Leftrightarrow \left( x_1 + x_2 \right) ^2 = x_1 + x_2 + 4x_1x_2 -4x_2 $
$\Leftrightarrow (2m-1)^2 = 2m-1 + 4m^2 – 4 – 4x_2 $
$\Leftrightarrow 4m^2 -4m +1 = 2m -1 + 4m^2 -4 – 4x_2 $
$\Leftrightarrow 4x_2 = 6m-6 \Leftrightarrow x_2 = \dfrac{3}{2}m – \dfrac{3}{2}$
$S= x_1 + x_2 = 2m -1 \Rightarrow x_1 = \dfrac{1}{2}m+ \dfrac{1}{2}$
$P = x_1x_2 = m^2 -1 $
$\Rightarrow \left( \dfrac{1}{2}m + \dfrac{1}{2} \right) \left( \dfrac{3}{2}m – \dfrac{3}{2} \right) = m^2 -1 \Leftrightarrow m^2 -1 =0 \Leftrightarrow
m =1 (n)$ hay
m= -1 (n)
Vậy $m=1$ hoặc $m=-1$

Câu 5.

Cho tam giác $ABC$ vuông tại $A$. Đường tròn tâm $O$ đường kính $AB$ cắt các đoạn $BC$ và $OC$ lần lượt tại $D$ và $I$. Gọi $H$ là hình chiếu của $A$ lên $OC$; $AH$ cắt $BC$ tại $M$.
a) $\angle ADB = 90^\circ $ (góc nội tiếp chắn nửa đường tròn)
$\Rightarrow \angle AHC = \angle ADC = 90^\circ \Rightarrow ACDH$ là tứ giác nội tiếp.
$\Rightarrow \angle CAD= \angle CHD$.
Mà $\angle CAD= \angle ABC$ (cùng phụ với $\angle ACB$) nên $\angle CHD = \angle ABC$.
b) Theo câu a), ta có: $\angle CHD = \angle ABC \Rightarrow OBDH$ là tứ giác nội tiếp.
$\Rightarrow \angle OHB = \angle ODB$.
Mà $\angle ODB = \angle OBD$ nên $\angle OHB = \angle OBD \Rightarrow \triangle OHB \backsim \triangle OBC$
$\angle OHB = \angle OBD = \angle CHD \Rightarrow 90^\circ – \angle OHB = 90^\circ – \angle CHD \Rightarrow \angle BHM = \angle DHM$.
Do đó $HM$ là tia phân giác của $\angle BHD$
c) $HM$ là phân giác $\angle BHD$ mà $HM \bot HC$ nên $HC$ là phân giác ngoài của $\angle BHD$.
Do đó ta có $\dfrac{MB}{MD}= \dfrac{HB}{HD}= \dfrac{CB}{CD} \Rightarrow MD.BC= MB.CD$
Tiếp tuyến tại $B$ của $(O)$ cắt $AM$ tại $E$.
$\Rightarrow \angle OBE =90 ^\circ \Rightarrow OBEH$ là tứ giác nội tiếp. $\Rightarrow \angle BOE = \angle BHE$, mà $\angle BHE = \angle DHE$ nên $\angle BOE = \angle DHE$ (1)
Lại có $OBDH$ nội tiếp (cmt) nên 5 điểm $O$, $B$, $E$, $D$, $H$ cùng nằm trên một đường tròn.
$\Rightarrow OHDE$ nội tiếp $\Rightarrow \angle DHE = \angle DOE$ (2)
Từ (1) và (2) suy ra $\angle BOE = \angle DOE \Rightarrow OE$ là phân giác $\angle BOD$.
Do đó $O$, $K$, $E$ thẳng hàng.
$\Rightarrow EK \bot BC $
$\angle EKC = \angle EHC =90^\circ \Rightarrow EKHC$ nội tiếp $\Rightarrow MK.MC = MH.ME$.
$BHDE$ nội tiếp nên $MB.MD = MH.ME$.
Vậy $MB.MD = MK.MC$
d) Gọi $F$ là giao điểm của $EJ$ và $OC$.
Ta có $MH.ME = MB.MD$, $MB.MD = MI.MJ$ nên $MH.ME= MI.MJ \ \Rightarrow \triangle MJE \backsim \triangle MHI \Rightarrow \angle MJE = \angle MHI = 90^\circ \Rightarrow \angle IJF = 90^\circ
\Rightarrow \angle IJF$ là góc nội tiếp chắn nửa đường tròn $(O)$.
Do đó $F$ nằm trên đường tròn $(O)$.
Vậy $EJ$ và $OC$ cắt nhau tại điểm $F$ nằm trên đường tròn.

 

Đề thi và đáp án tuyển sinh vào lớp 10 TPHCM 2012

I. ĐỀ

Bài 1. Giải các phương trình và hệ phương trình sau:
a) $2x^2-x-3=0$
b) $ 2x-3y=7$ và $3x+2y=4 $
c) $x^4+x^2-12=0$
d) $x^2-2\sqrt{2}x-7=0$.

Bài 2.
a) Vẽ đồ thị $(P)$ của hàm số $y = \dfrac{1}{4}x^2$ và đường thẳng $(D): y =-\dfrac{1}{2}x + 2$ trên cùng một hệ trục tọa độ.
b) Tìm tọa độ giao điểm của $(P)$ và $(D)$ ở câu trên bằng phép tính.
Bài 3. Thu gọn các biểu thức sau:
a) $A = \dfrac{1}{{x + \sqrt x }} + \dfrac{{2\sqrt x }}{{x – 1}} – \dfrac{1}{{x – \sqrt x }}$ với $x > 0,x \ne 1$
b) $B = \left( {2 – \sqrt 3 } \right)\sqrt {26 + 15\sqrt 3 } – \left( {2 + \sqrt 3 } \right)\sqrt {26 – 15\sqrt 3 } $.
Bài 4. Cho phương trình $x^2-2mx+m-2=0$. ($x$ là ẩn số).

a) Chứng minh phương trình luôn có 2 nghiệm phân biệt với mọi $m$.
b) Gọi $x_1, x_2$ là các nghiệm của phương trình. Tìm $m$ để biểu thức $M = \dfrac{-24}{x_1^2+x_2^2-6x_1x_2}$ đạt giá trị nhỏ nhất.
Bài 5. Cho đường tròn $(O)$ có tâm $O$ và điểm $M$ nằm ngoài đường tròn $(O)$. Đường thẳng $MO$ cắt $(O)$ tại $E$ và $F$ (ME < MF). Vẽ cát tuyến MAB và tiếp tuyến $MC$ của $(O)$ ($C$ là tiếp điểm, $A$ nằm giữa hai điểm $M$ và $B$, $A$ và $C$ nằm khác phía đối với đường thẳng $MO$.
a) Chứng minh $MA.MB = ME.MF$.
b) Gọi $H$ là hình chiếu vuông góc của điểm $C$ lên đường thẳng $MO$. Chứng minh tứ giác $AHOB$ nội tiếp.
c) Trên nửa mặt phẳng bờ $OM$ có chứa điểm $A$, vẽ nửa đường tròn đường kính $MF$; nửa đường tròn này cắt tiếp tuyến tại $E$ của $(O)$ ở $K$. Gọi $S$ là giao điểm của hai đường thẳng $CO$ và $KF$. Chứng minh rằng đường thẳng $MS$ vuông góc với đường thẳng $KC$.
d) Gọi $P, Q$ lần lượt là tâm đường tròn ngoại tiếp các tam giác $EFS$ và $ABS$ và $T$ là trung điểm của $KS$. Chứng minh ba điểm $P, Q, T$ thẳng hàng.

II. ĐÁP ÁN

Bài 1.
a) $2x^2-x-3=0$ (a)
Vì phương trình (a) có $a-b+c=0$ nên
$(a) \Leftrightarrow x=-1$ hoặc $x=\dfrac{3}{2}$
b)
$2x-3y=7  (1)$  và
$3x+2y =4  (2)$
$\Leftrightarrow   2x-3y=7 (1)  và  $x+5y =-3  (3)  ((2)-(1))
$ \Leftrightarrow  -13y=13  ((1)-2(3))$  và  $x+5y=-3  (3)$
$\Leftrightarrow  y=-1$  và  $x=2$
c)  $x^4 + x^2 -12 =0$ $(c)$

Đặt $u= x^2 \ge 0$, phương trình trở thành: $u^2 + u -12 =0$ $(1)$
$(1)$ có $\Delta =49$ nên $(1) \Leftrightarrow u= \dfrac{-1+7}{2}=3$ hoặc $u=\dfrac{-1-7}{2}=-4$ (loại)
Do đó, $(c) \Leftrightarrow x^2=3 \Leftrightarrow x= \pm \sqrt{3}$
Cách khác:
$(c) \Leftrightarrow \left( x^2-3 \right) \left( x^2 +4 \right) =0 $

$\Leftrightarrow x^2 =3$

$\Leftrightarrow x = \pm \sqrt{3}$
d) $x^2 – 2\sqrt{2}-7=0$ (d)
$\Delta ‘ = 2+7=9$ do đó $(d) \Leftrightarrow x=\sqrt{2} \pm 3$.

Bài 2.
a) Đồ thị:

Lưu ý: $(P)$ đi qua $O(0;0)$, $( \pm 2 ;1)$, $(\pm 4; 4 )$
$(D)$ đi qua $(-4;4)$, $(2;1)$
b) Phương trình hoành độ giao điểm của $(P)$ và $(D)$ là:
$\dfrac{1}{4}x^2 = \dfrac{-1}{2}x+2 \Leftrightarrow x^2 +2x-8 =0 $

$\Leftrightarrow x=-4$ hoặc $x=2$
$y(-4) = 4,  y(2) =1$
Vậy tọa độ giao điểm của $(P)$ và $(D)$ là $(-4;4)$, $(2;1)$.
Bài 3.
a) $A= \dfrac{1}{x+\sqrt{x}}+ \dfrac{2\sqrt{x}}{x-1} – \dfrac{1}{x-\sqrt{x}}= \dfrac{x-\sqrt{x}-x-\sqrt{x}}{x^2-x}+ \dfrac{2\sqrt{x}}{x-1} $
$= \dfrac{-2\sqrt{x}}{x(x-1)}+\dfrac{2\sqrt{x}}{x-1}=\dfrac{2\sqrt{x}}{x-1} \left[- \dfrac{1}{x} +1 \right] = \dfrac{2\sqrt{x}(x-1)}{x(x-1)}=\dfrac{2}{\sqrt{x}}$ với $x>0$; $x\ne 1$
b) $B= \left( 2-\sqrt{3} \right) \sqrt{26+15\sqrt{3}}-\left( 2+\sqrt{3} \right) \sqrt{26-15\sqrt{3}}$
$= \dfrac{1}{\sqrt{2}}\left( 2-\sqrt{3} \right) \sqrt{52+30\sqrt{3}}-\dfrac{1}{\sqrt{2}}\left( 2+\sqrt{3} \right) \sqrt{52-30\sqrt{3}}$
$= \dfrac{1}{\sqrt{2}} \left( 2-\sqrt{3} \right) \sqrt{\left( 3\sqrt{3} + 5 \right)^2 } – \dfrac{1}{\sqrt{2}} \left( 2+\sqrt{3} \right) \sqrt{\left( 3\sqrt{3} – 5 \right)^2 }$
$= \dfrac{1}{\sqrt{2}} \left( 2-\sqrt{3} \right) \left( 3\sqrt{3} + 5 \right) – \dfrac{1}{\sqrt{2}} \left( 2+\sqrt{3} \right) \left( 3\sqrt{3} – 5 \right) $
$=\sqrt{2}$
Bài 4.

a) Phương trình (1) có:

$\Delta’ =m^2-m+2 = \left( m-\dfrac{1}{2} \right) ^2 + \dfrac{7}{4} >0 $ với mọi $m$ nên phương trình (1) có 2 nghiệm phân biệt với mọi $m$.
b) Do đó, theo Viet, với mọi $m$, ta có: $S=-\dfrac{b}{a} = 2m$; $P=\dfrac{c}{a}= m-2$
$M=\dfrac{-24}{\left( x_1+x_2 \right) ^2-8x_1x_2 } = \dfrac{-24}{4m^2-8m+16}= \dfrac{-6}{m^2-2m+4} = \dfrac{6}{(m-1)^2 + 3}$
Khi $m=1$ ta có $(m-1)^2 + 3$ nhỏ nhất
$\Rightarrow -M = \dfrac{6}{(m-1)^2+3}$ lớn nhất khi $m=1 $
$\Rightarrow M = \dfrac{-6}{(m-1)^2+3}$ nhỏ nhất khi $m=1$.
Vậy $M$ đạt giá trị nhỏ nhất là $-2$ khi $m=1$.
Bài 5.


a) Ta có $\angle MAE = \angle MFB$ (do $EFBA$ nội tiếp)
$\angle EMA = \angle BMF$
$\Rightarrow \triangle MEA \backsim \triangle MBF$
$\Rightarrow \dfrac{ME}{MB}= \dfrac{MA}{MF} \Rightarrow MA \cdot MB = ME \cdot MF $
b) Ta có $\triangle MCO$ vuông tại $C$, $CH$ là đường cao
$\Rightarrow MC^2 = MH \cdot MO$
$\triangle MAC \backsim \triangle MCB  (g-g) $
$\Rightarrow MC^2 = MA \cdot MB$
Do đó $MA \cdot MB = MH \cdot MO$
$\Rightarrow \dfrac{MA}{MO} = \dfrac{MH}{MB}$
mà $\angle AMH = \angle OMB $
$\Rightarrow \triangle AMH \backsim \triangle OMB $
$\Rightarrow \angle MAH = \angle MOB $
$\Rightarrow $ $AHOB$ nội tiếp
c) $\triangle MKF$ vuông tại $K$ có $KE$ là đường cao nên $MK^2 = ME \cdot MF$
Mà $MC^2 = MA \cdot MB = ME \cdot MF $
$\Rightarrow MK = MC$ (1)
Hai tam giác vuông $MKS$ và $MCS$ bằng nhau (cạnh huyền – cạnh góc vuông)
$\Rightarrow SK = SC$ (2)
Từ (1) và (2) $\Rightarrow$ $MS$ là trung trực của $KC$ $\Rightarrow MS \bot KC$
\item Gọi $I$ là giao điểm của $MS$ và $KC$
$\triangle MCS$ vuông tại $C$, $CI$ là đường cao nên $MC^2 = MI \cdot MS$
Mà $MC^2 = MA \cdot MB \Rightarrow MI \cdot MS = MA \cdot MB$
$\Rightarrow \dfrac{MA}{MS} = \dfrac{MI}{MB}$
$\angle AMI = \angle SMB \Rightarrow \triangle MAI \backsim \triangle MSB \Rightarrow \angle MIA = \angle MBS $
$\Rightarrow $ $ABSI$ nội tiếp (3)
$MI \cdot MS = MA \cdot MB = ME \cdot MF \Rightarrow \dfrac{ ME}{MS} = \dfrac{MI}{MF}$
Mà $\angle EMI = \angle SMF \Rightarrow \triangle MEI \backsim \triangle MSF $

$\Rightarrow \angle MEI = \angle MSF $
$\Rightarrow $ $EFSI$ nội tiếp (4)
Từ (3) và (4) suy ra hai đường tròn $(EFS)$ và $(ABS)$ cắt nhau tại $S$ và $I$
Mà $P$ và $Q$ là các tâm của hai đường tròn này
$\Rightarrow $ $PQ$ là trung trực của $SI$
$\triangle KIS$ vuông tại $I$ có $T$ là trung điểm của $KS$
$\Rightarrow TI = TS$
$\Rightarrow $ $T$ thuộc đường thẳng $PQ$.