ĐỀ VÀ ĐÁP ÁN THI VÀO 10 CHUYÊN TOÁN SGD THÀNH PHỐ HỒ CHÍ MINH NĂM 2023

THỜI GIAN LÀM BÀI 150 PHÚT

Bài 1. (1,0 diểm) Cho $a, b$ là các số thực, $b \neq 0$ thỏa mãn điều kiện
$$
a^2+b^2=\frac{4 b^2}{\sqrt{a^2+b^2}+a}+a \sqrt{a^2+b^2}
$$

Tính giá trị của biểu thức $P=a^2+b^2$.
Bài 2. (2,5 điếm)
a) Giải phương trình: $x=\frac{5}{x-1}+2 \sqrt{x-2}$.
b) Giải hệ phương trình $\left\{\begin{array}{l}\frac{9 y+49}{x+y}+x+y=23 \\\ x \sqrt{x}+y \sqrt{y}=7(\sqrt{x}+\sqrt{y})\end{array}\right.$.

Bài 3. (2,5 điểm) Cho tam giác $A B C$ vuông tại $A(A B<A C)$, có đường cao $A H$. Dường tròn tâm $I$ nội tiếp tam giác $A B C$, tiếp xúc với các cạnh $B C, C A, A B$ lần lượt tại $D, E, F$. Gọi $J$ là giao điểm của $A I$ và $D E . K$ là trung điểm $A B$.
a) Chứng minh tứ giác $B I J D$ nội tiếp
b) Gọi $M$ là giao điểm của $K I$ và $A C, N$ là giao điểm của $A H$ và $E D$. Chứng minh $A M=A N$.
c) Gọi $Q$ là giao điểm của $D I$ và $E F, P$ là trung điểm của $B C$. Chứng minh ba điểm $A, P, Q$ thẳng hàng.

Bài 4. (2,0 diểm) Cho các số thực dương $x, y, z$ thỏa mãn $\sqrt{1+4 x y+2 x+2 y}+2 z=5$.
a) Chứng minh $\frac{1}{\sqrt{(2 x+1)(2 y+1)}}+\frac{1}{2 z+1} \geq \frac{2}{3}$.
b) Tìm giá trị nhỏ nhất của biễu thức $P=\frac{x+1}{2 x+1}+\frac{y+1}{2 y+1}+\frac{2 z+3}{4 z+2}$.

Bài 5. (1,0 điểm) Cho đường tròn tâm $O$ nội tiếp hình thoi $A B C D$. Gọi $E, F, G, H$ là các điểm lần lượt thuộc các cạnh $A B, B C, C D, D A$ sao cho $E F, G H$ cùng tiếp xúc với $(O)$.
a) Chứng minh $C G \cdot A H=A O^2$.
b) Chứng minh $E H$ song song $F G$.

Bài 6. (1,0 điểm) Xét các số nguyên $a<b<c$ thỏa mãn $n=a^3+b^3+c^3-3 a b c$ là số nguyên tố.
a) Chứng minh $a<0$.
b) Tìm tât cả các số nguyên $a, b, c(a<b<c)$ sao cho $n$ là một ước của 2023.

ĐÁP ÁN CỦA GIÁO VIÊN STAR EDUCATION

Leave a Reply

Your email address will not be published. Required fields are marked *