Bài toán hàm số trong kì thi tuyển sinh vào 10

Trong các kì thi tuyển sinh vào 10 có dạng toán liên quan đến hàm số, chủ yếu là hàm bậc hai dạng $y = ax^2$ (1) và đường thẳng $y = mx + n$ (2)Trong bài viết này chủ yếu xét các bài toán tương giao giữa đồ thị hàm số (1) và (2).

Nếu hàm số $y =ax^2$ có đồ thị là parabol $(P)$ và hàm số $y = mx + n$ có đồ thị là đường thẳng $d$, thì phương trình hoành độ giao điểm của $(P)$ và $(d)$ là

$$ax^2 = mx + n \Leftrightarrow ax^2 – m x – n =0 (*)$$

$(*)$ là một phương trình bậc hai, nên có 3 trường hợp xảy ra:

  • TH1: Nếu $(*)$ vô nghiệm thì $(d)$ và $(P)$ không có giao điểm.
  • TH2: Nếu $(*)$ có 1 nghiệm thì $(d)$ và $(P)$ có 1 giao điểm, ta nói $d$ tiếp xúc với $(P)$.
  • TH3: Nếu $(*)$ có hai nghiệm phân biệt thì ta nói $(d)$ cắt $(P)$, và nghiệm của $(*)$ là hoành độ của hai giao điểm, từ hoành độ ta có thể tính tung độ của giao điểm dựa vào phương trình của $(d)$ hoặc của $(P)$.

Ta xét một vài ví dụ sau:

Bài 1. (Thi vào lớp 10 trường PTNK năm 2018) Gọi $(P),(d)$ lần lượt là đồ thị của các hàm số $y=x^2$ và $y=2 m x+3$.
a) Chứng minh đường thẳng $(d)$ luôn cắt $(P)$ tại hai điểm phân biệt $A\left(x_1 ; y_1\right), B\left(x_2 ; y_2\right)$ và tính $y_1+y_2$ theo $m$.
b) Tìm $m$ sao cho $y_1-4 y_2=x_1-4 x_2+3 x_1 x_2$.

Lời giải bài 1.
a) Phương trình hoành độ giao điểm của $(P)$ và $(d)$ là:
$$
x^2=2 m x+3 \Leftrightarrow x^2-2 m x-3=0 \quad(1)
$$

Xét phương trình (1), ta có: $\Delta^{\prime}=m^2+3>0$ với mọi $m \in \mathbb{R}$
Suy ra phương trình (1) luôn có hai nghiệm phân biệt $x_1, x_2$ với mọi $m$ hay $(d)$ luôn cắt $(P)$ tại hai điểm phân biệt $A\left(x_1 ; y_1\right), B\left(x_2 ; y_2\right)$.
Theo định lý Viete, ta có: $\left\{\begin{array}{l}x_1+x_2=2 m \\\ x_1 x_2=-3\end{array}\right.$
Khi đó $y_1=2 m x_1+3, y_2=2 m x_2+3$
$y_1+y_2=2 m x_1+3+2 m x_2+3=2 m\left(x_1+x_2\right)+6=4 m^2+6$
b) Ta có:
$y_1-4 y_2=x_1-4 x_2+3 x_1 x_2 $
$\Leftrightarrow 2 m x_1+3-8 m x_2-12=x_1-4 x_2-9 $
$ \Leftrightarrow 2 m\left(x_1-4 x_2\right)=x_1-4 x_2 $
$ \Leftrightarrow\left(x_1-4 x_2\right)(2 m-1)=0 $
$ \Leftrightarrow\left[\begin{array}{l}
x_1=4 x_2 \\\
m=\frac{1}{2} \quad(n)
\end{array}\right. $
Với $x_1=4 x_2 $ lại có $x_1 x_2=-3 \Rightarrow 4 x_2^2=-3 $ (vô lý)
Vậy $m=\frac{1}{2} $

Bài 2. (Đề thi vào 10 trường PTNK năm 2019) Cho $(P),(d)$ lần lượt là đồ thị hàm số $y=x^2$ và $y=2 x+m$.
a) Tìm $m$ sao cho $(P)$ cắt $(d)$ tại hai điểm phân biệt $A\left(x_1 ; y_1\right), B\left(x_2 ; y_2\right)$.
b) Tìm $m$ sao cho $\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2=5$.

Lời giải bài 2.
a) Phương trình hoành độ giao điểm của $(P)$ và $(d)$
$$
x^2=2 x+m \Leftrightarrow x^2-2 x-m=0 \quad(1)
$$
$(P)$ cắt $(d)$ tại 2 điểm phân biệt $A, B \Leftrightarrow (1)$ có 2 nghiệm phân biệt

$\Leftrightarrow \Delta^{\prime}>0 \Leftrightarrow 1+m>0 $
$ \Leftrightarrow m>-1(*)$
Vậy $m>-1$ thì $(P)$ cắt $(d)$ tại hai điểm phân biệt.


b) Với điều kiện $(*)$ theo Viete ta có: $S=x_1+x_2=2, P=x_1 \cdot x_2=-m$

Ta có: $A\left(x_1 ; y_1\right) \in(d) \Leftrightarrow y_1=2 x_1+m ; B\left(x_2 ; y_2\right) \in(d) \Leftrightarrow y_2=2 x_2+m$

Ta có: $\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2=5 $

$\Leftrightarrow\left(x_1-x_2\right)^2+\left(2 x_1-2 x_2\right)^2=5$

$\Leftrightarrow\left(x_1-x_2\right)^2+4\left(x_1-x_2\right)^2=5 $

$\Leftrightarrow\left(x_1-x_2\right)^2=1 \Leftrightarrow\left(x_1+x_2\right)^2-4 x_1 x_2=1$

$\Leftrightarrow 4+4 m=1 \Leftrightarrow m=\frac{-3}{4} $ thỏa (*)
Vậy $m = \dfrac{-3}{4}$.

Bài 3. Đồ thị của hàm số $f(x)=a x^2$ và $g(x)=-a x+b(a ; b$ là các số thực), điểm chung thứ nhất có hoành độ bằng 1 và tung độ điểm chung thứ 2 là 8 . Tìm hoành độ của điểm chung thứ hai của hai đồ thị và tính $a, b$.

Lời giải bài 3.

  • Phương trình hoành độ giao điểm $a x^2=-a x+b \Leftrightarrow a x^2+a x-b=0$ thì phương trình nhận 1 là nghiệm nên $a 1^2+a \cdot 1-b=0 \Rightarrow b=2 a$.
  • Khi đó gọi nghiệm còn lại là $x_2$ ta có $1 \cdot x_2=\frac{-b}{a}=-2$
  • Do đó tung độ $a(-2)^2=8$, suy ra $a=2$ và $b=4$.

Bài 4. (TS chuyên Đăk Lăk 2020 – 2021) Trong mặt phẳng $O x y$, cho parabol $(P): y=x^2$ và đường thẳng $(d): y=2(m+1) x+3$ với $m$ là tham số. Tìm tất cả các giá trị của tham số $m$ để đường thẳng $(d)$ cắt parabol tại hai điểm phân biệt có hoành độ $x_1, x_2$ thoả mãn điều kiện $x_1^2-2 m x_1+2 x_2-x_1 x_2=2$.

Lời giải bài 4.

  • Phương trình hoành độ giao điểm $x^2-2(m+1) x-3=0\left(^*\right)$ $\Delta^{\prime}=(m+1)^2+3>0$ với mọi $m$.
  • Theo định lý Viete ta có $x_1+x_2=2(m+1), x_1 x_2=-3$.
    Ta có $x_1^2-2(m+1) x_1-3=0$, suy ra $x_1^2-2 m x_1=2 x_1+3$ $x_1^2-2 m x_1+2 x_2-x_1 x_2=2 \Leftrightarrow 2 x_1+3+2 x_2-(-3)=2 \Leftrightarrow m=-2$.
  • Vậy $m=-2$.

Bài 5. (TS chuyên Khánh Hoà 2020 – 2021) Trên mặt phẳng toạ độ $O x y$, cho parabol $(P)$ có phương trình $y=2 x^2$ và đường thẳng $(d): y=-2 m x+m+1$ với $m$ là tham số.
a) Chứng minh đường thẳng $(d)$ luôn cắt Parabol $(P)$ tại hai điểm phân biệt.
b) Gọi $x_1, x_2$ lần lượt là hoành độ giao điểm của đường thẳng $(d)$ và parabol $(P)$, tìm $m$ thoả mãn đẳng thức $\frac{1}{\left(2 x_1-1\right)^2}+\frac{1}{\left(2 x_2-1\right)^2}=66$.

Lời giải bài 5 .
a) Phương trình hoành độ giao điểm của $d$ và $P$ là
$$
2 x^2+2 m x-m-1=0
$$
$\Delta^{\prime}=m^2-2(-m-1)=(m+1)^2+1>0$ với mọi $m$, do đó $d$ cắt $P$ tại hai điểm phân biệt với mọi $m$.
b) Theo định lý Viete ta có $x_1+x_2=-m, x_1 x_2=\frac{-m-1}{2}$.
Suy ra $x_1^2+x_2^2=\left(x_1+x_2\right)^2-2 x_1 x_2=m^2+m+1$
Ta có $66=\frac{1}{\left(2 x_1-1\right)^2}+\frac{1}{\left(2 x_2-1\right)^2}=\frac{\left(2 x_1-1\right)^2+\left(2 x_2-1\right)^2}{\left(2 x_1-1\right)^2\left(2 x_2-1\right)^2}=\frac{4\left(x_1^2+x_2^2\right)-4\left(x_1+x_2\right)+2}{\left(4 x_1 x_2-2\left(x_1+x_2\right)+1\right)^2}$
$$
=\frac{4\left(m^2+m+1\right)-4(-m)+2}{(-2 m-2-2(-m)+1)^2}=\frac{4 m^2+8 m+6}{1}
$$

Giải ra được $m=-5, m=3$.

Bài 6. (TS chuyên Thái Bình 2020 – 2021) Trong mặt phẳng toạ độ $O x y$, cho parabol $(P): y=\frac{x^2}{2}$ và hai đường thẳng $\left(d_1\right): y=5 x+2,\left(d_2\right): y=\left(m^2+1\right) x+m$ với $m$ là tham số.
a) Tìm $m$ để $\left(d_1\right)$ song song với $\left(d_2\right)$.
b) Tìm $m$ để $\left(d_2\right)$ cắt parabol $(P)$ tại hai điểm phân biệt có hoành độ $x_1, x_2$ sao cho $Q=x_1+x_2-4 x_1 x_2$ đạt giá trị nhỏ nhất.

Lời giải bài 6 .
a) Điều kiện để $d_1 || d_2$ là $m^2+1=5, m \neq 2$, giải ra được $m=-2$.
b) Phương trình hoành độ giao điểm của $d_2$ và $P$ là
$$
\frac{x^2}{2}=\left(m^2+1\right) x+m \Leftrightarrow x^2-2\left(m^2+1\right) x-2 m=0
$$

Điều kiện $\Delta^{\prime}=\left(m^2+1\right)^2-(-2 m)>0 \Leftrightarrow m^4+2 m^2+1+2 m>0 \Leftrightarrow m^4+m^2+(m+1)^2>0$ (Đúng với mọi $m)$

Theo định lý Viete ta có $x_1+x_2=2\left(m^2+1\right), x_1 x_2=-2 m$

Ta có $P=x_1+x_2-4 x_1 x_2=$ $2\left(m^2+1\right)-4(-2 m)=2\left(m^2+1+4 m\right)=2(m+2)^2-6 \geq-6$, đẳng thức xảy ra khi $m=-2$.

Bài 8. Trong mặt phẳng tọa độ $O x y$, cho parabol $(P): y=x^2$ và đường thẳng $(d): y=2 x-m-2$. Tìm tất cả các giá trị của tham số $m$ để $(d)$ cắt $(P)$ tại hai điểm phân biệt lần lượt có hoành độ $x_1, x_2$ thỏa mãn $x_1^2+1=2 x_2$.

Lời giải bài 8 .

  • Phương trình hoành độ giao điểm
    $$
    x^2=2 x-m-2 \Leftrightarrow x^2-2 x+m+2=0
    $$
  • Điều kiện $\Delta^{\prime}=1-(m+2)>0 \Leftrightarrow m<-1$.
  • Theo định lý Viete ta có $x_1+x_2=2, x_1 x_2=m+2$.

Ta có $x_1^2=2 x_1-m-2$, suy ra $x_1^2+1=2 x_2 \Leftrightarrow 2 x_1-m-2+1=2 x^2 \Leftrightarrow 2\left(x_1-x_2\right)=m+1$ Kết hợp với Viete ta có $x_1=\frac{m+5}{4}, x_2=\frac{3-m}{4}$
Khi đó $x_1 x_2=m+2 \Leftrightarrow \frac{m+5}{4} \frac{3-m}{4}=m+2 \Leftrightarrow m=-1(l), m=-17(n)$.

  • Vậy $m=-17$.

Bài 9. Cho $(P): y=x^2$ và đường thẳng $(d): y=(m+2) x-2 m$.
a) Tìm $m$ để $d$ cắt $(P)$ tại hai điểm phân biệt $A\left(x_1 ; y_1\right), B\left(x_2 ; y_2\right)$.
b) Tìm $m$ để $x_1+2 y_2=7$.

Lời giải bài 9 .
a) Phương trình hoành độ giao điểm

$\quad x^2-(m+2) x+2 m=0 $
$\Delta=(m+2)^2-8 m=(m-2)^2>0 \Leftrightarrow m \neq 2 .$

b) Khi đó phương trình có nghiệm $x=2, x=m$.
3

  • TH1: $x_1=2, x_2=m$ suy ra $y_1=4, y_2=m^2$. Ta có $2+2 m^2=7$ giải ra được $m=\sqrt{2,5}, m=$ $-\sqrt{2,5}$.
  • TH2: $x_1=m, x_2=2$, suy ra $y_1=m^2, y_2=4$. Ta có $m+2.4=7 \Leftrightarrow m=-1$.
  • Vậy có 3 giá trị $m$ thỏa đề bài $m=\sqrt{2,5}, m=-\sqrt{2,5}, m=-1$.

Bài 10. Trong mặt phẳng tọa độ $O x y$, cho parabol $(P)$ có phương trình $y=x^2$ và đường thẳng $(d)$ có phương trình $y=2 m x-m^2-m-2$ (với $m$ là tham số).
a) Tìm tọa độ điểm $M$ thuộc $(P)$ biết điểm $M$ có hoành độ bằng -3 .
b) Tìm điều kiện của $m$ để đường thẳng $(d)$ cắt parabol $(P)$ tại hai điểm phân biệt. Gọi $A\left(x_1 ; y_1\right), B\left(x_2 ; y_2\right)$ là hai giao điểm của đường thẳng $(d)$ và parabol $(P)$, xác định $m$ để $x_1 y_2+x_2 y_1=2 m^3+6$.

Lời giải bài 10.

b) Tìm điều kiện của $m$ để đường thẳng $(d)$ cắt parabol $(P)$ tại hai đie biệt. Gọi $A\left(x_1 ; y_1\right), B\left(x_2 ; y_2\right)$ là hai giao điểm của đường thẳng $(d)$ và $(P)$, xác định $m$ để $x_1 y_2+x_2 y_1=2 m^3+6$. Ta có phương trình hoành độ giao điểm của $(d)$ và $(P)$ là

$ x^2=2 m x-m^2-m-2 \Leftrightarrow x^2-2 m x+m^2+m+2=0(1) $
$ \Delta^{\prime}=(-m)^2-\left(m^2+m+2\right)=-m-2$

$(d)$ cắt parabol $(P)$ tại 2 điểm phân biệt khi và chỉ khi phương trình (1) có hai nghiệm phân biệt $\Leftrightarrow \Delta^{\prime}>$ $0 \Leftrightarrow-m-2>0 \Leftrightarrow m<-2(*)$

$ \text { Ta có } x_1+x_2=2 m, x_1 x_2=m^2+m+2 $
$x_1 y_2+x_2 y_1=x_1 \cdot x_2^2+x_2 \cdot x_1^2=x_1 \cdot x_2\left(x_1+x_2\right)=2$ $m\left(m^2+m+2\right) $
$=2 m^3+2 m^2+4 m $
$2 m^3+2 m^2+4 m=2 m^3+6 \Leftrightarrow 2 m^2+4 m-6=0 $

$\Leftrightarrow\left[\begin{array}{l}
m=1 \\\
m=-3
\end{array}\right.$

Đối chiếu (*) vậy $m=-3$.

Leave a Reply

Your email address will not be published. Required fields are marked *