Trong phần trước ta đã làm quen với phương pháp chứng minh quy nạp và áp dụng vào chứng minh một vài đẳng thức, bất đẳng thức hay các bài toán chia hết. Bài này tiếp tục là ứng dụng của quy nạp trong việc chứng minh các bài toán khác, trong cái đề thi học sinh giỏi hay tuyển sinh.
Ví dụ 1. Người ta lát nền nhà hình vuông kích thước $n \times n$ ô bằng các viên gạch như hình vẽ dưới sao cho còn chừa lại một ô không lát.
a) Hãy chỉ ra một cách lát như trên với nền nhà kích thước $4 \times 4$ và $8 \times 8$.
b) Hãy chứng minh rằng luôn tồn tại một cách lát nền nhà có kích thước $2^k \times 2^k$ (k nguyên dương) với ô trống còn lại nằm ở vị trí $(i,j)$ bất kì.
Ví dụ 2. Trong cuộc họp có $2n$ ($n \geq 2$) người, một số người bắt tay nhau và người ta đếm được có $n^2+1$ cái bắt tay. Chứng minh rằng có 3 người đôi một bắt tay nhau.
Ví dụ 3. a) Cho bốn số nguyên dương $a_1, a_2, a_3, a_4$ sao cho $1 \leq a_k \leq k$ với mọi $ k= 1,2, 3, 4$ và tổng $S = a_1 + a_2 + a_3 + a_4$ là một số chẵn. Chứng minh rằng có ít nhất một trong các số dạng $\pm a_1 \pm a_2 \pm a_3 \pm a_4$ có giá trị bằng 0.
b) Cho 1000 số nguyên dương $a_1, a_2,…, a_{1000}$ sao cho $1 \leq a_k \leq k$ với $k = 1, 2, …, 1000$ và tổng $S = a_1 + a_2 + …+a_{1000}$ là một số chẵn.\
Hỏi trong các số có dạng $\pm a_1 \pm a_2 … \pm a_{1000}$ có số nào bằng 0 hay không? Giải thích vì sao?
Ví dụ 4. (USAMO 2002) Cho tập S có 2002 phần tử, số tự nhiên $k$ thỏa $0 \leq k \leq 2^{2002}$ chứng minh rằng tồn tại cách tô màu các tập con của S bằng hai màu xanh và đỏ thỏa:
a) Có đúng $k$ tập được tô màu đỏ.
b) Hợp của hai tập đỏ là một tập đỏ.
c) Hợp của hai tập xanh là một tập xanh.
Trên đây là một vài ví dụ khá hay về áp dụng của Quy nạp, tất nhiên còn nhiều bài tập khác cũng hấp dẫn không kém, các bạn tự tìm hiểu nhé. Chúng ta sẽ trở lại trong bài viết sau về một số dạng quy nạp thường gặp.
Bài tập rèn luyện.
Bài 1. Lúc đầu có $n$ lít nước để vào một số lu, mỗi lu chứa đúng một số nguyên dương lít nước, ta thực hiện cách đong nước như sau: nếu số nước ở lu $A$ nhỏ hơn hoặc bằng lu $B$ thì ta có thể cho hết nước của $B$ vào $A$ một lượng bằng lượng nước lu $A$ đang có.
a) Nếu có 3 lu nước chứa lần lượt $2, 3, 8$ thì có thể đưa về hai lu không? Tại sao?
b) Nếu $n=1024 $. Chứng minh rằng ta có thể đưa số nước hết về một lu. Giả sử lu này là lu lớn, chứa đủ số nước đã có.
Bài 2. Cho $n$ đội bóng, $n$ là số chẵn lớn hơn 2. Mỗi một lượt, các đội chia cặp để đấu với nhau một trận. Chứng minh rằng sau hai lượt thì có thể tìm được $\dfrac{n}{2}$ đội mà không có hai đội nào đấu với nhau.
Bài 3. Cho $n = 2^k$, chứng minh rằng người ta có thể chọn $n$ số nguyên từ $2n-1$ số nguyên để tổng của chúng chia hết cho $n$.
Bài 4. Gọi $x_1, x_2$ là nghiệm của phương trình $x^2 + 2017 x – 1 = 0$. Đặt $S_n = x_1^2+x_2^n$. Chứng minh rằng $S_n$ và $S_{n+1}$ là nguyên tố cùng nhau với mọi $n$.