Category Archives: Đề thi

Đáp án đề thi học kì 1 môn toán 10 năm học 2018 trường PTNK – Cơ sở 2

Bài 1. Giải các phương trình sau:
a)$\sqrt{7x+2} = 1 + \sqrt{4x+1}$
b) $\left| x^2-x-1 \right|+3= 2x$
Bài 2. 

a) Tìm $a$, $b$, $c$ biết parabol $(P):y= ax^2 + bx +c$ đi qua điểm $A(1;-1)$ và có đỉnh $I(-1; -5)$.
b) Tìm $m$ để phương trình $(x-1)\left( \sqrt{x+m}-1 \right) =0$ có hai nghiệm là độ dài các cạnh góc vuông của một tam giác vuông với cạnh huyền có độ dài bằng 3.
Bài 3. Cho hệ phương trình
$$\left\{ \begin{array}{l}
(1-2m)x +4y = 4m^2 + 4m +3 \\
mx + 2(m-1)y=-m-2
\end{array} \right. \quad (I) $$
Chứng minh khi $m$ nhận giá trị bất kì trên $\mathbb{R}$, hệ $(I)$ luôn có nghiệm duy nhất. Giả sử $(x_0, 1)$ là nghiệm của hệ $(I)$. Tìm $x_0$.
Bài 4. Cho góc $\alpha$ thỏa $\tan \left( \alpha + \dfrac{\pi}{3} \right) = -\dfrac{ 3\sqrt{3}}{5}$. Tính giá trị của biểu thức:
$$ P=\dfrac{\cos ^3 \alpha + 2\sin \alpha \cdot \cos ^2 \alpha}{\sin ^2 \alpha \cdot \cos \alpha + \sqrt{3} \sin ^3 \alpha }$$
Bài 5. Cho tam giác $ABC$ có $AB=3a$, $AC=6a$, $BC=7a$.
a) Tính $\overrightarrow{AB} \cdot \overrightarrow{AC}$ và $\cos A$.
b) Gọi $M$, $N$ là hai điểm được xác định bởi $\overrightarrow{AM} = \dfrac{2}{3} \overrightarrow{AB}$, $\overrightarrow{AN} = -\dfrac{3}{2} \overrightarrow{AC}$, tính $MN$ theo $a$.

Bài 6. Trong mặt phẳng $Oxy$, cho tam giác $ABC$ có $A(1;3)$, $B(6;-2)$.

a) Tìm tọa độ điểm $C$ sao cho $G(1;1)$ là trọng tâm của tam giác $ABC$.
b) Tìm tọa độ chân đường vuông góc kẻ từ $M(4;3)$ đến đường thẳng $AB$.

Hết

Lời giải

 

Bài 1. 

a) Nghiệm của phương trình: $x=2$.
b) $\left| x^2-x-1 \right| +3= 2x$
$\Leftrightarrow \left| x^2-x-1 \right| = 2x-3 \quad \left( x \ge \dfrac{3}{2} \right) $
$\Leftrightarrow \left[ \begin{array}{l}
x^2-x-1 = 2x-3 \\\\
x^2-x-1=3-2x
\end{array} \right. $
Từ đó suy ra nghiệm của phương trình: $x=2$ hoặc $x=\dfrac{\sqrt{17}-1}{2}$

Bài 2.

a) $P$ qua điểm $A(1;-1)$ nên $-1=a+b+c$.

$(P)$ có đỉnh $I(-1;-5)$ nên $-5=a-b+c$ và $-\dfrac{b}{2a}= -1$.

Từ đó suy ra $P: y= x^2 + 2x-4$.
b) Điều kiện: $x\ge -m$

Từ phương trình suy ra: $\left[ \begin{array}{l}
x= 1 \\\\
x= 1-m
\end{array} \right. $

Để hai nghiệm là độ dài các cạnh góc vuông của tam giác vuông có cạnh huyền bằng 3 thì: $1^2 + (1-m)^2 =3^2$ $\Rightarrow \left[ \begin{array}{l}
m= 1+2\sqrt{2} \\\\
m= 1-2\sqrt{2} \quad \text{(loại vì } x\ge -m)
\end{array} \right. $

Vậy $m=1+2\sqrt{2}$.

Bài 3. 

$D= \left| \begin{array}{*{20}{c}}
{1-2m}&{4}\\\\
{m}&{2(m-1)}
\end{array} \right| = (1-2m)(2m-2)-4m = -4m^2+2m-2 $

$D_x = \left| \begin{array}{*{20}{c}}
{4m^2+4m+3}&{4}\\\\
{-m-2}&{2(m-1)}
\end{array} \right| = 8m^3+2m+2 $

$D_y= \left| \begin{array}{*{20}{c}}
{1-2m}&{4m^2+4m+3}\\\\
{m}&{-m-2}
\end{array} \right| = -4m^3-2m^2-2 $

$D=0 \Leftrightarrow -4m^2+2m-2 =0$ (vô nghiệm).

Suy ra $D \ne 0$ với mọi $m \in \mathbb{R}$

Vậy với mọi $m \in \mathbb{R}$ thì hệ $(I)$ luôn có nghiệm duy nhất.

Khi $(x_0;1)$ là nghiệm của hệ $(I)$ thì $y=\dfrac{D_y}{D}=\dfrac{-4m^3-2m^2-2}{-4m^2+2m-2}=1 \Leftrightarrow m=0$

Khi đó $x=\dfrac{D_x}{D}= \dfrac{2}{-2}=-1$

Bài 4.

$\tan\left( \alpha + \dfrac{\pi}{3} \right) =\dfrac{\tan \alpha + \tan \dfrac{\pi}{3}}{1-\tan \alpha \cdot \tan \dfrac{\pi}{3}} = -\dfrac{3\sqrt{3}}{5} \Leftrightarrow \tan \alpha = 2\sqrt{3}$

$P=\dfrac{\cos ^3 \alpha + 2\sin \alpha \cdot \cos ^2 \alpha}{\sin ^2 \alpha \cdot \cos \alpha + \sqrt{3} \sin ^3 \alpha } = \dfrac{1+2\tan \alpha}{\tan ^2 \alpha + \sqrt{3} \tan ^3 \alpha} = \dfrac{1+4\sqrt{3}}{84}$

Bài 5. 

a) $\overrightarrow{AB} \cdot \overrightarrow{AC} = -2a^2$; $\cos A = \dfrac{-2a^2}{3a\cdot 6a}= -\dfrac{1}{9}$
b) $\overrightarrow{MN} = \overrightarrow{AN} – \overrightarrow{AM} = -\dfrac{3}{2} \overrightarrow{AC} – \dfrac{2}{3} \overrightarrow{AB} \Rightarrow MN^2=\overrightarrow{MN}^2 = \ldots = 81a^2 \Rightarrow MN = 9a$

Bài 6. 

a) $C(-4;2)$
b) Gọi chân đường vuông góc hạ từ $M$ đến $AB$ là $H(x,y)$

Ta có: $\left\\{ \begin{array}{l}
\overrightarrow{MH} \bot \overrightarrow{AB} \\\\
\overrightarrow{AH} \parallel \overrightarrow{AB}
\end{array} \right. $

Từ đó suy ra: $H\left( \dfrac{5}{2}; \dfrac{3}{2} \right) $

Đáp án đề thi HK1 lớp 11 trường PTNK năm học 2017 – 2018

Bài 1. Giải các phương trình sau:
a)  $ 2\cos ^2 \dfrac{x}{2}+\sqrt{3}\sin x=1+2\sin 3x $
b) $ 3 \tan^2 x+4\tan x+4\cot x+3\cot^2 x+2=0 $

Bài 2. Gọi S là tập tất cả các số tự nhiên gồm 4 chữ số phân biệt được chọn từ các số 1;2;3;4;5;6;7. Lấy ngẫu nhiên một số từ S. Tính xác suất để lấy được số có mặt chữ số 6.

Bài 3. Trong khai triển của $ \left(2x^3-\dfrac{3}{x^2}\right)^n $ với $ n $ là số nguyên dương thỏa $ 2C_{n+6}^{5}=7A_{n+4}^3, $ tìm số hạng không chứa $ x? $

Bài 4. Tìm số hạng đầu và công sai của cấp số cộng $ (u_{n}) $ biết rằng công sai của $ (u_{n}) $ là số nguyên dương và
$u_{1}+u_{3}+u_{5}=15, \dfrac{1}{u_{1}}+\dfrac{1}{u_{3}}+\dfrac{1}{u_{5}}=\dfrac{59}{45} $.

Bài 5. Trong mặt phẳng tọa độ Oxy, cho điểm $ I(2;-5) $ và đường thẳng $ d:3x-2y+3=0. $ Viết phương trình đường thẳng $ d’ $ là ảnh của $ d $ qua phép đối xứng tâm $ I. $

Bài 6. Cho hình chóp $ S.ABCD $ có đáy $ ABCD $ là hình thang có $ AD $ là đáy lớn, $ AD=2BC. $ Gọi $ O $ là giao điểm của $ AC $ và $ BD. $ Gọi $ G_{1},G_{2} $ lần lượt là trọng tâm $ \Delta SCD, \Delta SAB, \ E $ là trung điểm $ SD. $
a)  Mặt phẳng $ (BCE) $ cắt $ SA $ tại $ F. $ Chứng minh: $ F $ là trung điểm $ SA. $
b) Chứng minh $ G_{1}G_{2} \parallel (SAD) $
c) Chứng minh $ (OG_{1}G_{2}) \parallel (SBC) $
d) Gọi $ M $ là điểm trên cạnh $ AB $ sao cho $ AB=4AM. $ Mặt phẳng $ (P) $ qua $ M $ và song song với $ BC, SD. $ Xác định thiết diện của hình chóp với mặt phẳng $ (P). $ Thiết diện là hình gì?

Hết

Đáp án

[userview]

Bài 1.

a) Phương trình tương đương với
$$
\begin{aligned}
& \cos x+\sqrt{3} \sin x=2 \sin 3 x \\
\Leftrightarrow & \frac{1}{2} \cos x+\frac{\sqrt{3}}{2} \sin x=\sin 3 x \\
\Leftrightarrow & \sin \left(x+\frac{\pi}{6}\right)=\sin 3 x \\
\Leftrightarrow x+\frac{\pi}{6}=3 x+k 2 \pi \text { hoặc } x+\frac{\pi}{6}=\pi-3 x+k 2 \pi \\
\Leftrightarrow x=\frac{\pi}{12}+k \pi \text { hoặc } x=\frac{5 \pi}{24}+\frac{k \pi}{2}, k \in \mathbb{Z}
\end{aligned}
$$

Bài 2. Gọi $\overline{a b c d}(a \neq 0)$ là số tự nhiên có 4 chữ số phân biệt được chọn từ các chữ số 1,2,3,4,5,6,7 .
$\overline{a b c d}:$ Có $A_{7}^{4}=840$ số tự nhiên có 4 chữ số phân biệt được chọn từ các chữ số 1,2,3,4,5,6,7
$\Longrightarrow|\Omega|=840$Gọi A là biên có sao cho số dược lậy là một số có mặt chữ số $6 .$
$$
|A|=4 . A_{6}^{3}=480 \Longrightarrow P(A)=\frac{|A|}{|\Omega|}=\frac{4}{7}
$$

Bài 3. 

\begin{aligned}
&2 C_{n+6}^{5}=7 A_{n+4}^{3} \Longleftrightarrow 2 \cdot \frac{(n+6) !}{5 !(n+1) !}=7 \cdot \frac{(n+4) !}{(n+1) !} \Longleftrightarrow \frac{(n+6) !}{(n+4) !}=420 \Longleftrightarrow(n+6)(n+5)=\\
&420 \Longleftrightarrow n^{2}+11 n-390=0 \Longleftrightarrow\left[\begin{array}{l}
n=15 \\
n=-26
\end{array} \Longleftrightarrow n=15(\text { vì n là số tự nhiên })\right.\\
&\text { Công thức } \mathrm{SHTQ}: T_{k+1}=C_{15}^{k} \cdot\left(2 x^{3}\right)^{15-k} \cdot\left(-\frac{3}{x^{2}}\right)^{k}=C_{15}^{k} \cdot 2^{15-k} \cdot(-3)^{k} \cdot x^{45-5 k}\\
&\text { Để số hạng không chứa } x \Longleftrightarrow 45-5 k=0 \Longleftrightarrow k=9 \text { . }\\
&\text { Vậy số hạng không chứa } \mathrm{x}: T_{10}=C_{15}^{9} .2^{6} \cdot(-3)^{9}=-6304858560 \text { . }
\end{aligned}

Bài 4. $\left\{\begin{array}{l}
u_{1}+u_{3}+u_{5}=15(1) \\
\frac{1}{u_{1}}+\frac{1}{u_{3}}+\frac{1}{u_{5}}=\frac{59}{45}(2) \end{array} \right.$
$(1) \Longleftrightarrow 3 u_{3}=15 \Longleftrightarrow u_{3}=5 $
$(2) \Longleftrightarrow \frac{1}{u_{1}}+\frac{1}{5}+\frac{1}{u_{5}}=\frac{59}{45} \Longleftrightarrow \frac{1}{u_{1}}+\frac{1}{u_{5}}=\frac{10}{9} $

$\Longleftrightarrow 9\left(u_{1}+u_{5}\right)=10 u_{1} u_{5} $

$\Longleftrightarrow 9.2 u_{3}= 10\left(u_{3}-2 d\right)\left(u_{3}+2 d\right)$

$\Longleftrightarrow 90=10\left(u_{3}^{2}-4 d^{2}\right)=25-4 d^{2}=9 $

$\Longleftrightarrow d^{2}=4$

$\Longleftrightarrow d=2(\text{vì} d>0) $
$u_{3}=5 \Longleftrightarrow u_{1}+2 d=5 \Longleftrightarrow u_{1}=5-2 d=1$.
và $u_{1}=1,d=2$

Bài 5. 

Gọi $M^{\prime}\left(x^{\prime} ; y^{\prime}\right)$ là ảnh của $\mathrm{M}$ qua phép đối xứng tâm $\mathrm{I} \Longleftrightarrow \mathrm{I}$ là trung điểm của $\mathrm{MM}^{\prime} \Longleftrightarrow$
$$
\left\{\begin{array}{l}
x_{I}=\frac{x_{M}+x_{M^{\prime}}}{2} \\
y_{I}=\frac{y_{M}+y_{M^{\prime}}}{2}
\end{array} \Longleftrightarrow\left\{\begin{array}{l}
4=x+x^{\prime} \\
-10=y+y^{\prime}
\end{array} \Longleftrightarrow\left\{\begin{array}{l}
x=4-x^{\prime} \\
y=-10-y^{\prime}
\end{array}\right.\right.\right.
$$
Ta có: $3 x-2 y+3=0 \Longleftrightarrow 3\left(4-x^{\prime}\right)-2\left(-10-y^{\prime}\right)+3=0 \Longleftrightarrow 12-3 x^{\prime}+20+2 y^{\prime}+3=0 \Longleftrightarrow$
$3 x^{\prime}-2 y^{\prime}-35=0$
Vậy M’ thuộc dường thẳng d’:3x-2y-35=0.
Vậy ảnh của đường thẳng d qua phép đối xứng tâm I là đường thẳng $\mathrm{d}^{\prime}: 3 \mathrm{x}-2 \mathrm{y}-35=0 .$

Bài 6. 

a) Ta có: $C \in(S A C) \cap(B C E)(1)$.
Trong $(S B D)$ gọi $\mathrm{K}$ là giao diểm của $\mathrm{SO}$ và $\mathrm{BE}$ mà $S O \subset(S A C), B E \subset(B C E)=K \in$
$(S A C) \cap(B C E)(2)$
$(1)(2) \Longrightarrow C K=(S A C) \cap(B C E)$
Trong $(S A C)$ gọi $\mathrm{F}$ là giao điểm của $\mathrm{SA}$ và $\mathrm{CK}$ mà $\mathrm{CK} \subset(B C E)=F=\operatorname{SAn}(B C E) .$ $\mathrm{Vi} A D \| B C=\frac{O C}{O A}=\frac{O B}{O D}=\frac{B C}{A D}=\frac{1}{2} \Longleftrightarrow \frac{C O}{C A}=\frac{B O}{B D}=\frac{1}{3}$
Xét $\triangle S O D$ : Áp dụng định lý Menelaus với 3 điểm $\mathrm{B}, \mathrm{K}, \mathrm{E}$ thẩng hàng ta có:
$\frac{C O}{C A} \cdot \frac{K S}{K O} \cdot \frac{F A}{F S}=1 \Longleftrightarrow \frac{F A}{F S}=1 \Longleftrightarrow \mathrm{F}$ là trung điẻm $\mathrm{SA}$
b) Trong (SAB), goi P là giao điểm của $S G_{1}$ và AB. Vì $G_{1}$ là trọng tâm của $\triangle S A B=P$
là trung điểm của AB.

Trong (SCD), gọi P là giao điểm của $S G_{2}$ và CD. Vì $G_{2}$ là trọng tàm của $\triangle S C D=\mathrm{Q}$
là trung điểm của CD. Xét $\triangle S P Q$ ta có: $\frac{S G_{1}}{S P}=\frac{2}{3}=\frac{S G_{2}}{S Q}=G_{1} G_{2} \| P Q(3)$

Xét hình thang ABCD ta có: PQ là đường trung bình của hình thang ABCD (do P,Q làn
lượt là trung điểm của $\mathrm{AB}, \mathrm{CD} \Longrightarrow P Q \| A D(4)$
$$
\text { Tì }(3)(4)=G_{1} G_{2}\left\|A D, \operatorname{mà} \mathrm{AD} \subset(\mathrm{SAD})=G_{1} G_{2}\right\|(S A D)
$$
c) Ta có: $G_{1} G_{2} \| A D$ mà $A D\left\|B C=G_{1} G_{2}\right\| B C=G_{1} G_{2} \|(S B C)(5)$
Trong (SAB), gọi H là giao điểm của $A G_{1}$ và $\mathrm{SB}$. Vì $G_{1}$ là trọng tần của $\triangle S A B=\mathrm{H}$
là trung điểm của $\mathrm{SB}$. Xét $\triangle H A C$ ta có: $\frac{A O}{A C}=\frac{2}{3}=\frac{A G_{1}}{A H}=O G_{1}\left\|C H \operatorname{mà} C H \subset(S B C)=O G_{1}\right\|(S B C)(6)$
Tì $(5)(6)=\left(O G_{1} G_{2}\right) \|(S B C)$
d) Ta có: $M \in(P) \cap(A B C D) \operatorname{mà}(P)\left\|B C=(P) \cap(A B C D)=x M x^{\prime}\right\| B C$.
Trong (ABCD), gọi N là giao diểm của xMx’ và CD.
Ta có: $N \in(P) \cap(S C D) \operatorname{mà}(P)\left\|S D=(P) \cap(S C D)=y N y^{\prime}\right\| S D$
Trong (SCD) gọi I là giao diểm của yNy’ và SC.
Ta có: $I \in(P) \cap(S B C) \operatorname{mà}(P)\left\|B C \Longrightarrow(P) \cap(S B C)=t I t^{\prime}\right\| B C .$
Trong (SBC), gọi J là giao điểm của tIt’ và SB. $((P) \cap(A B C D)=M N$
$\Longrightarrow$ thiệt diê
Ta có: $M N\|I J\| A D=M N I J$ là hình thang.

[/userview]

Đáp án đề thi học kì 1 môn toán lớp 10 trường Phổ thông Năng khiếu năm 2016

Bài 1. Tìm m để phương trình $\dfrac{(x-1)(x-3m)}{\sqrt{x-2}+1}=0$ vô nghiệm

Bài 2. Gọi $(P)$ là đồ thị của hàm số: $y= x^2 + bx + c \, \, (b,c \in \mathbb{R} )$. Biết các điểm $A(1;-4)$, $B(2;-3)$, thuộc $(P)$. \
Tìm tọa độ giao điểm của $(P)$ và $(P’)$, với $(P’)$ là đồ thị của hàm số $y= (2x-1)^2 -4$

Bài 3. Cho hệ phương trình: $\left\{ \begin{array}{l}
x+\dfrac{1}{m} \sqrt{y} =4 \\
\dfrac{1}{m} x + \sqrt{y} = \dfrac{2}{m} + 2
\end{array} \right.$, với m là tham số và $m \ne 0$.

Định m để hệ phương trình có nghiệm duy nhất.

Bài 4. Giải các phương trình sau:

a) $\sqrt{2x+1}+\sqrt{x-3}=4$
b) $x+ \dfrac{3x}{\sqrt{x^2-9}}=\dfrac{35}{4}$

Bài 5. Chứng minh đẳng thức: $\tan^2 a – \tan^2 b = \dfrac{\sin(a+b).\sin(a-b)}{\cos^2a.\cos^2b}$

Bài 6. Cho tam giác $ABC$ có các đỉnh $A(-1;3)$, $B(-3;-3)$, $C(2;2)$. Chứng minh tam giác $ABC$ là tam giác vuông và tìm trực tâm tam giác $ABC$.

Bài 7.  Cho hình bình hành $ABCD$ với $AB=6a$, $AD=3a$, $\angle ABC =60^0$. Gọi $M,N$ thỏa: $\overrightarrow{MA}+2 \overrightarrow{MB}=\overrightarrow{0}$, $3 \overrightarrow{ND}+2 \overrightarrow{NC}=\overrightarrow{0}$.
a) Tính $\overrightarrow{AM}. \overrightarrow{AD}$.
b) Tính độ dài cạnh $AN$ theo $a$.
c) Gọi $G$ là trọng tâm tam giác $AMN$. Tìm $x$ và $y$ thỏa: $\overrightarrow{BG}= x \overrightarrow{BA} + y \overrightarrow{BD}$.

Hết

Đáp án

[userview]

ptnk10hk12016

[/userview]

Đáp án đề thi học kì 1 môn Toán 11 trường Phổ thông Năng khiếu

ĐỀ THI VÀ ĐÁP ÁN HK1 TOÁN LỚP 11 TRƯỜNG PTNK

Bài 1. Giải các phương trình
a) $\dfrac{\sin x + \sin 3x – 1}{2\cos x – 1} = 1$.
b) $\dfrac{1}{\sin x} + \dfrac{1}{\cos x} = 4\sqrt{2}\cos 2x$.

Bài 2.
a) Một bình chứa các quả cầu có kích thước khác nhau gồm 6 quả cầu đỏ, 10 quả cầu xanh và 14 quả cầu vàng. Chọn ngẫu nhiên 5 quả cầu. Tính xác suất để 5 quả cầu chọn được có đủ 3 màu, trong đó số quả cầu màu vàng và màu xanh bằng nhau.
b) Từ các số 0, 1, 2, 3, 4, 5, 6 hỏi có thể lập được bao nhiêu số tự nhiên chẵn có 6 chữ số phân biệt sao cho số đó chia hết cho 3.

Bài 3.
a) Tìm hệ số của $x^3$ trong khai triển thu gọn biểu thức $(2\sqrt{x} – \dfrac{3}{x})^{15}$\
b) Tìm số nguyên dương $x$ thỏa mãn đẳng thức $C_{x+2}^{x-1} + C_{x+2}^x = \dfrac{10}{3}A_x^2$.

Bài 4. Trong mặt phẳng tọa độ $Oxy$ cho đường thẳng $(d): x – y – 1 = 0$ và vectơ $\vec{u} = (-2;1)$. Tìm ảnh $(d’)$ của đường thẳng $(d)$ qua phép tịnh tiến theo $\vec{u}$.

Bài 5. Cho hình chóp $S.ABCD$ có đáy là hình thang, $AD // BC$ và $AD = 2BC$. Gọi $O$ là giao điểm của $AC$ và $BD$ và $M$ là trung điểm $SD$.
a) Tìm giao tuyến của mặt phẳng $(SAB)$ và $(SCD)$; $(SAD)$ và $(SBC)$.
b) Chứng minh $CM // (SAB)$. Tìm giao tuyến của $(SAB)$ và $(AMC)$.
c) Tìm giao điểm $I$ của $SC$ và $(ABM)$. Chứng minh $OI // (SAD)$.

Hết 

Đáp án  ĐỀ-THI-HỌC-KÌ-I-2015-2016-ĐÁP-ÁN

 

Đề thi thử vào lớp 10 – Không chuyên PTNK

Thời gian làm bài 120 phút.

Bài 1.  (1,5 điểm) Cho biểu thức
$$A = \left( {\frac{1}{{\sqrt a + \sqrt b }} + \frac{{3\sqrt {ab} }}{{a\sqrt a + b\sqrt b }}} \right).\left[ {\left( {\frac{1}{{\sqrt a – \sqrt b }} – \frac{{3\sqrt {ab} }}{{a\sqrt a – b\sqrt b }}} \right):\frac{{a – b}}{{a + \sqrt {ab} + b}}} \right]$$
a) Rút gọn $A$.
b) Chứng minh $A < \dfrac{2}{a+b}$.

%————————————–%

Bài 2. (2 điểm) 
a) Giải phương trình $\sqrt{x+3}+\sqrt{x-1}=1+\sqrt{2x+1}$
b) Giải hệ phương trình $\left\{ \begin{matrix} x+y + xy = 8 \hfill \cr \sqrt{x+2}+\sqrt{y+2}=4 \hfill \cr \end{matrix} \right.$

%————————————–%

Bài 3. (1,5 điểm) Cho phương trình $(m-1)x^2 – 2(m+1)x + m = 0 $ ($m$ là tham số )
a)  Tìm $m$ để phương trình có hai nghiệm trái dấu.
b) Tìm $m$ để phương trình có hai nghiệm phân biệt $x_1, x_2$ thỏa

$$m(x_1-1)^2 = (x_2+1)^2-1$$

%————————————–%

Bài 4. (2 điểm) 

a) Hai kho hàng I và II chứa một số sản phẩm. Nếu lấy đi ở mỗi kho hàng 200 sản phẩm thì số sản phẩm còn lại của kho I bằng $\dfrac{1}{2}$ số sản phẩm của kho II. Nếu chuyển $20 \% $ số sản phẩm kho I qua kho II thì số sản phẩm kho I bằng $40 \% $ số sản phẩm kho II. Tính số sản phẩm của mỗi kho hàng.
b)  Để thi vào trường chuyên một số học sinh lớp 9A có đi học thêm hai môn toán và văn tại trung tâm Star-education. Biết rằng số học sinh học cả hai môn toán văn bằng tích số học sinh chỉ học môn toán và số học sinh chỉ học môn văn. Số học sinh học thêm môn toán là 45, số học sinh học thêm môn văn là 48. Tính số học sinh lớp 9A biết rằng số học sinh không đi học thêm là ước của số học sinh đi học thêm và tổng số hs trong lớp không quá 100 em.

%————————————–%

Bài 5. (3 điểm) Cho đường tròn $(O)$ đường kính $AB = 2R$, $C$ thuộc $(O)$ sao cho $AC = R$. Gọi $H$ là hình chiếu
của $C$ trên $AB$, đường tròn tâm $I$ đường kính $CH$ cắt $BC$ tại $E$ và $AC$ tại $D$.
a) Chứng minh $ADEB$ nội tiếp. Tính diện tích tứ giác $ADEB$.
b) Vẽ tiếp tuyến $BF$ đến $(I)$ với $F$ là tiếp điểm và khác $H$, $HF$ cắt $IB$ tại $J$ và cắt $AC$ tại $G$. Chứng minh $CEJI$ nội tiếp. Tính $\angle CJE$.
c) Tính các góc của tam giác $ABG$.

Hết

Lời giải

Bài 1.

a) $A= \left( \dfrac{1}{\sqrt{a}+\sqrt{b}}+\dfrac{3\sqrt{ab}}{a\sqrt{a}+b\sqrt{b}} \right) . \left[ \left( \dfrac{1}{\sqrt{a}-\sqrt{b}}-\dfrac{3\sqrt{ab}}{a\sqrt{a}-b\sqrt{b}} \right) : \dfrac{a-b}{a+\sqrt{ab}+b} \right] \\
= \dfrac{a-\sqrt{ab}+b+3\sqrt{ab}}{\left( \sqrt{a}+ \sqrt{b} \right) \left( a-\sqrt{ab}+b \right) } \cdot \dfrac{a+\sqrt{ab}+b-3\sqrt{ab}}{\left( \sqrt{a}-\sqrt{b} \right) \left( a+\sqrt{ab}+b \right) } \cdot \dfrac{a+\sqrt{ab}+b}{a-b}\\
= \dfrac{\sqrt{a}+\sqrt{b}}{a-\sqrt{ab}+b} \cdot \dfrac{\sqrt{a}-\sqrt{b}}{a+\sqrt{ab}+b} \cdot \dfrac{a+\sqrt{ab}+b}{a-b} \\
= \dfrac{a-b}{a-\sqrt{ab}+b} \cdot \dfrac{1}{a-b} \\
= \dfrac{1}{a-\sqrt{ab}+b}$.

b) $A < \dfrac{2}{a+b} \Leftrightarrow a+b < 2(a+b-\sqrt{ab}) \Leftrightarrow (\sqrt{a}-\sqrt{b})^2 > 0$.

Đúng vì $a \neq b$.

Bài 2.

a) Điều kiện : $x \geq 1$.\\
Phương trình tương đương với : \\
$x+3 + x-1 +2\sqrt{(x+3)(x-1)} = 1+2x+1 + 2\sqrt{2x+1} \\
\Leftrightarrow x^2+2x-3 = 2x + 1 \\
\Leftrightarrow \left[ \begin{array}{l}
x = 2 \;\; (n)\\
x = – 2 \;\; (l)
\end{array} \right. $

b) Đặt $u = \sqrt{x+2}, v = \sqrt{y+2}$ ta có $u, v \geq o$ và $x = u^2 – 2, y = v^2 – 2$. Ta có hệ: \\
$\left\{ \begin{array}{l} u + v = 4\;\; (*) \\
u^2v^2 – u^2 – v^2 = 8\;\; (**)
\end{array} \right.$\\
Từ (**) ta có $u^2v^2 – (u+v)^2 + 2uv – 8 = 0 \Rightarrow u^2v^2 + 2uv – 24 = 0 \\ \Rightarrow uv = 4 \; (n), uv = – 6 \; (l)$. \\
Với $u + v = 4, uv = 4$ ta có $u = 2, v = 2$. Giải ra $x = 2, y = 2$. \\
Vậy hệ phương trình có nghiệm $(x;y)$ là $(2;2)$.

Bài 3.

a) Điều kiện để phương trình có hai nghiệm trái dấu \\
$\left\{ \begin{array}{l}
m-1 \ne 0 \\
\Delta ‘ =(m+1)^2-m(m-1) >0 \\
P = m (m-1)<0
\end{array} \right. \Leftrightarrow
\left\{ \begin{array}{l}
m \ne 1 \\
3m+1 >0 \\
0<m<1
\end{array} \right.
\Leftrightarrow 0<m<1$

b) Điều kiện để phương trình có hai nghiệm phân biệt \\
$\left\{ \begin{array}{l}
m – 1 \neq 0\\
\Delta ‘ = (m+1)^2-m(m-1) > 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
m \ne 1 \\
m > -\dfrac{1}{3}
\end{array} \right. $
$x_1$ là nghiệm của phương trình nên \\ $(m-1)x_1^2 – 2(m+1)x_1 + m = 0 \Leftrightarrow m(x_1 -1)^2 = x_1^2+2x_1$.
Do đó

$m(x_1-1)^2 = (x_2+1)^2 – 1 \\
\Leftrightarrow \left( x_1 + 1 \right)^2 = \left( x_2 + 1 \right)^2 \\
\Leftrightarrow \left( x_1 – x_2 \right) \left( x_1 + x_2 +2 \right) =0 \\
\Leftrightarrow x_1 + x_2 = -2 \;\; \left( \text{vì } x_1 \ne x_2 \right) \\
\Leftrightarrow \dfrac{2(m+1)}{m-1} = – 2 \Leftrightarrow m = 0 (n)$.

Bài 4.

a) Gọi $x, y$ lần lượt là số hàng kho I, II. Dựa vào đề bài ta có hệ phương trình:
$\left\{\begin{array}{l}
x – 200 = \dfrac{1}{2} ( y – 200) \\
\dfrac{4}{5}x = \dfrac{2}{5} (y + \dfrac{1}{5}x) \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x=\dfrac{1}{2}y+100 \\
18x=10y
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x=1000 \\
y=1800
\end{array} \right. $
Vậy số hàng kho I là 1000 sản phẩm và số hàng kho II là 1800 sản phẩm.

b) Gọi $x, y$ là số học sinh chỉ học môn toán và chỉ học môn văn. Suy ra số học sinh học cả hai môn là $xy$.

Khi đó ta có hệ: $xy + x = 45 (1) xy+y=48(2)$.

Khi đó $y = x+3$, thế vào (1): $x^2+4x-45 = 0$.

Giải ra được $x = 5$ (Vì  x > 0). Suy ra $y = 8$.

Số học sinh học thêm toán là: 50,

Số học sinh học thêm là 53. Suy ra số học sinh không đi học thêm là 1.

Số học sinh của lớp là: 54.

Bài 5.

a) Ta có $CD\cdot CA = CH^2$ và $CE\cdot CB = CH^2$. Suy ra $CD\cdot CA = CE\cdot CB$, suy ra $\triangle CDE \backsim \triangle CBA$, suy ra $\angle CDE = \angle CBA$, suy ra tứ giác $ADEB$ nội tiếp.
Ta có $S_{ADEB} = S_{ABC} – S_{ADE}$. Mà $AC = R, BC = R\sqrt{3}$, suy ra $S_{ABC}=R^2 \dfrac{\sqrt{3}}{2}$.
$DE = \dfrac{CH^2}{AC} = \dfrac{3R}{4}, CE = \dfrac{CH^2}{CB}= \dfrac{R\sqrt{3}}{4}$.
Suy ra $S_{ADE} = \dfrac{3R^2\sqrt{3}}{32}$.
Do đó $S_{ADEB} = \dfrac{13R^2\sqrt{3}}{32}$.
b) Ta có $BI \bot HF$ tại $J$. Ta có $BI\cdot BJ = BH^2$. Và tam giác $CHB$ vuông tại $H$ có $HE$ là đường cao nên $BE.BC = BH^2$.
Do đó $BI\cdot BJ = BH\cdot BE$, suy ra tứ giác $CIJE$ nội tiếp. Suy ra $\angle CJE = \angle CIE = 60^\circ$.
c) Ta có $\angle GCB = \angle GJB = 90^\circ$, suy ra $CJBG$ nội tiếp. Suy ra $\angle CGB = \angle CJI$. Mà $\angle CJI = \angle CEI = 60^\circ $, suy ra $\angle CGB = 60^\circ $. Mà $\angle GAB = 60^\circ $ nên $\angle GBA = 60^\circ $.
\end{enumerate}

Đề ôn thi vào lớp 10 Chuyên Toán.

Thời gian làm bài 150 phút.

Bài 1. (1, 5 điểm) Cho phương trình $(\sqrt{x} – 1)(x^2 – (m^2+1)x + 1) = 0$
a) Giải phương trình khi $m = -2$.
b) Tìm $m$ để phương trình có 3 nghiệm phân biệt $x_1<x_2<x_3$ và thỏa $x_1^2 + 4x_2^2+x_3^2 = 27$.

Bài 2. (2 điểm) Cho các số dương $a, b, c$ thỏa $a+ b+ c = abc$.
a) Tìm $a, b, c$ nếu $a, b, c$ là các số nguyên dương.
b) Chứng minh $ab+ac+bc \geq 9$ và $ab+ac+bc\geq 3 + \sqrt{1+a^2}+\sqrt{1+b^2}+\sqrt{1+c^2}$.

Bài 3.  (1, 5 điểm) Số nguyên dương $n$ được gọi là số đẹp nếu tồn tại các số nguyên dương $x, y, z$ không nhất thiết phải khác nhau sao cho: $$n = \left[ {x;y} \right] + \left[ {y;z} \right] + \left[ {z;x} \right]$$ với $\left[ {a;b} \right]$ là bội chung nhỏ nhất của hai số $a, b$
a) Chứng minh rằng $n=2021$ là số đẹp.
b) Chứng minh rằng mọi số lẻ khác 1 đều là số đẹp.
c) Chứng minh rằng $n=2^{2021}$ không phải là số đẹp.

Bài 4. (3 điểm) Cho đoạn thẳng $BC$ cố định và điểm $A$ thay đổi sao cho $\angle BAC = \alpha < 60^\circ$ không đổi và $AB, AC >BC$. Trên $BC$ lấy các điểm $M, N$ sao cho $BM = MN = NC$. Đường tròn ngoại tiếp các tam giác $ABN$ và $ACM$ cắt nhau tại $D$ và cắt các cạnh $AC, AB$ lần lượt tại $E, F$.

a) Tìm vị trí của $A$ sao cho $AE \cdot AC + AF \cdot AB$ lớn nhất.

b) Chứng minh rằng $\dfrac{DB}{DC} = \dfrac{AC}{AB}$.

c) Gọi $I$ là tâm đường tròn ngoại tiếp tam giác $AEF$. Chứng minh $I$ luôn thuộc một đường cố định.

Bài 5. (2 điểm) Một giải đấu bóng đá gồm 8 đội đá với nhau. Mỗi lượt, 8 đội chia làm 4 cặp đấu, thắng được 3 điểm, hòa 1 điểm và thua 0 điểm.
a) Giải đấu diễn ra hai lượt.
i)  Chứng minh rằng có 2 đội có điểm bằng nhau.
ii) Chứng minh rằng có thể tìm được 4 đội $A, B, C, D$ đôi một chưa đấu với nhau.
b) Kết thúc giải người ta thấy rằng không có trận nào kết thúc với tỉ số hòa. Chứng minh rằng có thể tồn tại 5 đội $A, B, C, D, E$ xếp thành một hàng sao cho đội đứng trước thắng đội đứng sau.

HẾT

Lời giải

Bài 1. 

a) Khi $m = -2$ ta có phương trình $(\sqrt{x}-1)(x^2-5x+1) = 0$.

Giải phương trình ta có nghiệm $x = 1, x = \dfrac{5+\sqrt{21}}{2}, x= \dfrac{5-\sqrt{21}}{2}$.

b) Điều kiện $x \geq 0$. Ta có $x = 1$ là một nghiệm của phương trình.

Phương trình (1) có ba nghiệm phân biệt khi và chỉ khi phương trình

$x^2-(m^2+1)x + 1 = 0$. (2) có hai nghiệm phân biệt không âm và khác 1.

  • $\Delta (m^2+1)^2 – 4 = (m^2-1)(m^2+3) > 0$.
  • $1^2 -(m^2+1)1 + 1 \neq 0 \Leftrightarrow m \neq \pm 1$.

Khi đó phương trình có hai nghiệm là $a<b$ thỏa $a+b = m^2+1 > 0, ab = 1$.

Do đó $a, b > 0$ và có tích bằng 1, nên một số nhỏ hơn 1, 1 số lớn hơn 1.

Từ đó ta có $x_2 = 1$, $x_1  =a, x_3 = b$. Khi đó

$x_1^2+4x_2^2 + x_3^2 = 27$

$(a+b)^2 – 2ab = 23$

$m^2 = 25$

$m = \pm 5$. (Nhận)

Bài 2.

a) Do vai trò $a, b, c$ như nhau nên giả sử $a \geq b geq c > 0$. Khi đó

$a + b+ c = abc \Leftrightarrow \dfrac{1}{ab} + \dfrac{1}{bc} + \dfrac{1}{ac} = 1 \leq \dfrac{3}{c^2}$.

Suy ra $c = 1$. Khi đó $ab = a+b +1 \Leftrightarrow (a-1)(b-1) = 2$. Giải ra được $a = 3, b=2$.

Vậy phương trình có nghiệm $(3;2;1)$ và các hoán vị.

b)

Áp dụng bdt $(x+y+z)(\dfrac{1}{x} + \dfrac{1}{y}+ \dfrac{1}{z}) \geq 9$ và từ $\dfrac{1}{ab} + \dfrac{1}{bc} + \dfrac{1}{ac} = 1$.

Suy ra $ab+bc+ac \geq 9$.

Ta có bdt $3(x^2+y^2+z^2) \geq (x+y+z)^2 \geq 3(xy+yz+xz)$. (Tự chứng minh)

Ta có $P = (ab+bc+ac-3)^2 = (ab+bc+ac)^2 – 6(ab+bc+ac)+9$.

Mà $(ab+bc+ac)^2 \geq 3abc(a+b+c)$ và $abc = a+b+c$.

Suy ra $(ab+bc+ac)^2 \geq 3(a+b+c)^2$.

Do đó $P \geq 3(a^2+b^2+c^2) + 9 \geq (\sqrt{1+a^2} + \sqrt{1+b^2}+\sqrt{1+c^2})^2$.

Từ đó

$ab+bc+ac-3 \geq \sqrt{1+a^2} + \sqrt{1+b^2}+\sqrt{1+c^2}$

$ab+bc+ac \geq 3+\sqrt{1+a^2} + \sqrt{1+b^2}+\sqrt{1+c^2}$.

Bài 3. 

a) $ 2021 = [1;1] + [1010;1] + [1010;1]$.

b) Nếu $ n = 2k + 1$ và $k \geq 1$. Chọn $x = y =1,z=k$ ta có $n = [1;1] + [k;1] + [k;1]$.

c) Chú ý các nhận xét sau:

  • Mọi số nguyên dương đều biểu diễn với dạng $p\cdot 2^n$ trong đó $p$ là số lẻ.
  • Bội chung nhỏ nhất của $p\cdot 2^n$ và $q\cdot 2^m$ với $n>m$ là $r\cdot 2^n$ với $r=[p;q]$ lẻ.

Giả sử $n =2^{2021}$ là số đẹp, tức là tồn tại $x, y, z$ nguyên dương sao cho $2^{2021} = [x;y] + [y;z] + [z;x]$.

Do $2^{2021}$ là số chẳn nên chỉ có hai trường hợp xảy ra, hoặc cả ba số $\left[ {x;y} \right],\left[ {y;z} \right],\left[ {z;x} \right]$ đều là số chẳn, hoặc trong ba số này có hai số lẻ và một số chẳn.

Nếu 3 số $x, y, z$ lẻ thì $[x;y] + [y;z] + [z;x]$ lẻ vô lý.

Nếu 1 số lẻ, hai số chẵn cũng tương tự.

Trường hợp 2 số chẵn. Giả sử $x, y$ chẵn. Ta xét các trường hợp sau:

  • Nếu $z$ lẻ. Khi đó ta có: $\left[ {x;y} \right] = {2^a}{m_1}$ với $m_1$ là số lẻ, $\left[ {y;z} \right] = {2^b}{m_2}$, với $m_2$ là số lẻ, $\left[ {z;x} \right] = {2^a}{m_3}$, với $m_2$ là số lẻ. Dễ thấy $a, b < 2021$.
    • Từ đó: ${2^a}{m_1} + {2^b}{m_2} + {2^a}{m_3} = {2^{2021}} \Leftrightarrow {2^b}\left( {{2^{a – b}}{m_1} + {m_2} + {2^{a – b}}{m_3}} \right) = {2^{2021}} \Leftrightarrow {2^{a – b}}{m_1} + {m_2} + {2^{a – b}}{m_3} = {2^{2021 – b}}$. Do vế trái của đẳng thức là một số lẻ, vế phải là một số chẳn. Từ đó ta có trường hợp này không thể xảy ra.
  • Nếu $z$ là số chẵn. Như vậy, $x, y, z$ đều là số chẳn, đặt: $z=2^{c}t_{3}$, với ($t_{3}$ là số tự nhiên lẻ) không mất tính tổng quát, giả sử: $2021 > a \ge b \ge c \ge 0$. Vậy: $\left[ {x;y} \right] = {2^a}{m_1}$, $\left[ {y;z} \right] = {2^b}{m_2}$, $\left[ {z;x} \right] = {2^a}{m_3}$ với $m_1, m_2, m_3$ là ba số tự nhiên lẻ.
    • Từ đó: ${2^a}{m_1} + {2^b}{m_2} + {2^a}{m_3} = {2^{2021}} \Leftrightarrow {2^b}\left( {{2^{a – b}}{m_1} + {m_2} + {2^{a – b}}{m_3}} \right) = {2^{2021}} \Leftrightarrow {2^{a – b}}{m_1} + {m_2} + {2^{a – b}}{m_3} = {2^{2021 – b}}$. Do vế trái của đẳng thức là một số lẻ, vế phải là một số chẳn. Từ đó ta có trường hợp này không thể xảy ra.

Bài 4. 

a) Ta có $BF\cdot BA = BM \cdot BC = \dfrac{1}{3}BC^2$ và $CE \cdot CA = \dfrac{1}{3}BC^2$.

Do $AB, AC > BC$ nên $F, E$ nằm giữa $AB$ và $AC$.

Khi đó $X = AF \cdot AB + AE \cdot AC = AB^2-BF \cdot BC + AC^2-CE \cdot CA = AB^2+AC^2-\dfrac{2}{3}BC^2$.

Do đó $X$ lớn nhất khi và chỉ khi $AB^2+AC^2$ lớn nhất.

Ta có $BC^2=BH^2+CH^2 = (AB\sin \alpha)^2+(AC – AB \cos \alpha)^2$

$= AB^2+AC^2-2AB\cdot AC \cos \alpha$

$\geq (AB^2+AC^2) – (AB^2+AC^2)\cos \alpha$.

$\geq (AB^2+AC^2)(1-\cos \alpha)$

Suy ra $AB^2+AC^2$ lớn nhất bằng $\dfrac{BC^2}{1-\cos\alpha}$ khi $AB = AC$.

Vậy $AF \cdot AB + AE \cdot AC $ lớn nhất khi và chỉ khi $AB = AC$.

b) Ta có $\angle DBF  = \angle DEC, \angle DFB = \angle DCE$.

Suy ra $\triangle DBF = \triangle DCE$, do đó $\dfrac{DB}{DC} = \dfrac{BF}{CE}$ (1)

Mà $BF \cdot AB = CE \cdot AC = \dfrac{1}{3}BC^2$.

Suy ra $\dfrac{BF}{CE} = \dfrac{AC}{AB}$. (2)

Từ (1) và (2) ta có $\dfrac{DB}{DC} = \dfrac{AC}{AB}$.

c) Gọi $K$ là giao điểm thứ hai của $(AEF)$ và $(ABC)$. Khi đó

$\triangle KFB \backsim \triangle KEC$, suy ra $\dfrac{KB}{KC} = \dfrac{BF}{CE}$.

Mà $\dfrac{BF}{CE} = \dfrac{AC}{AB}$. Suy ra $\dfrac{KB}{KC} = \dfrac{AC}{AB}$.

Do đó $\triangle KBC \backsim \triangle ACB$, suy ra $KB = AC, KC = AB$.

từ đó $AKCB$ là hình thang cân, nên trung trực của $AK$ và $BC$ trùng nhau.

Do đó tâm $I$ của đường tròn ngoại tiếp tam giác $AEF$ thuộc trung trực của $AK$ hay thuộc trung trực $BC$ cố định.

Bài 5.

a) Nếu mỗi đội đá nhau được 2 trận.

  • Thì số điểm mội đội có thể nhận là $0, 1, 2, 3, 4, 6$. Do đó theo nguyên lý Dirichlet cho ít nhất 2 đội có cùng số điểm.
  • Gọi 8 đội là $A, B, C, D, E, F, G, H$, sau hai vòng mỗi đội đá đúng hai trận.
    • Không có ba đội nào đôi một đá với nhau, vì giả sử $A, B, C$ đôi một đá với nhau, thì vòng 1, $A$ đá với $B$ thì $C$ không đá với ai, nên phải cần ít nhất 3 vòng để điều này xảy ra.
    • Giả sử $A$ đá với $B, C$ thì $BC$ không đá với nhau nên $B, C$ đá với đội khác.
      • Nếu $B, C$ đá cùng một đội $D$. Khi đó nhóm $E, F, G, H$ cũng có hai đội chưa đá với nhau và cũng không đá với nhóm $A, B, C, D$. Giả sử là $E, F$ chưa đá với nhau. Khi đó 4 đội $A, D, E, F$ đôi một chưa đá với nhau trận nào.
      • Nếu $B, C$ đá với hai đội khác nhau là $D, E$. Lý luận tương tự ta chỉ suy ra được là $E, D$ cùng đấu với $F, G$ và $G,F$ đấu với $H$. Khi đó $A – B  – D – F – H – G – E – C – A$. Chọn 4 đội $A, D, H, E$ thỏa đề bài.

b)  Xét đội $A$ thắng nhiều nhất trong đó thắng $B, C$, xét đội $B$ và $C$ thì nếu $B$ thắng $C$ ta có $A – B – C$ là dãy mà đội trước thắng đội sau, ngược lại ta có dãy $A – C – B$.

Vậy giả sử ta có $A$ thắng $B$,$B$ thắng $C$, ta kí hiệu $A -> B -> C$.

Xét tới đội $D$ nào đó. Có các trường hợp sau:

  • $D -> A$ hoặc $C -> D$. Khi đó ta có $D ->A->B->C$ hoặc $A-> B -> C-> D$.
  • Nếu không có điều này, thì $A ->D$ và $D->C$. Khi đó $B, D$.
    • Nếu $D->B$ thì ta có $A->D->B->C$.
    • Nếu $B ->D$ thì ta có $A -> B ->D ->C$.

Trong các trường hợp ta đều có dãy 4 người mà người này thắng người kia. Vậy ta đã có $A-> B-> C->D$.

Xét $E$, tương tự như $D$.

  • Nếu $E$ thắng $A$ hoặc $D$ thắng $E$ thì bài toán được chứng minh.
  • Ngược lại, $A$ thắng $E$ và $E$ thắng $D$. Khi đó ta xét mối quan hệ giữa $E$ và $B,C$.
    • Nếu $E$ thắng $B$. Khi đó ta có $A-E-B-C-D$.
    • Nếu $E$ thua $B, C$, khi đó $A-B-C-E-D$.
    • Nếu $E$ thua $B$ và thắng $C$, khi đó $A-B-E-C-D$.

Vậy lúc nào cũng tìm được 5 đội xếp thành một hàng mà đội trước thắng đội sau.

 

Đề thi thử vào lớp 10 PTNK – Đề toán chung – Lần 2

ĐỀ THI THỬ VÀO LỚP 10 PTN – NĂM 2020

Môn: Toán chung

THỜI GIAN LÀM BÀI: 120 PHÚT

Bài 1. (1.5 điểm)

a) Cho $a > 0, b \geq 0$ và $a \neq b$.

Đặt $A = \dfrac{\sqrt{a}}{a+b-2\sqrt{ab}} – \dfrac{\sqrt{b}}{a-b} ; \ B = a^2\sqrt{a}+b^2\sqrt{b}-a^2\sqrt{b}-b^2\sqrt{a}$.

Biết $AB = \dfrac{9}{2}ab$. Tính $\dfrac{b}{a}$.

b) Cho $x = \sqrt{2} + \sqrt{3}$. Chứng minh $x^4-10x^2+1 = 0$.

Bài 2. (2 điểm) Giải các phương trình và hệ phương trình sau:
a) $x+\dfrac{2x-6}{\sqrt{x-3}} = 6$
b) $\left\{\begin{array}{c} x(|x|+y) = 5|x|\\x^2+y^2+3xy=55 \end{array} \right.$

Bài 3. (1.5 điểm) Cho phương trình $\dfrac{(x-2)(x^2 – 4x – m)}{\sqrt{x}} = 0$.
a) Giải phương trình khi $m = 1$.
b) Tìm $m$ để phương trình có ba nghiệm phân biệt $x_1, x_2, x_3$.
c) Với điều kiện câu b, giả sử $x_1 < x_2 < x_3$.Tìm $m$ để $x_1^2 + 2x_2^2 + x_3^2 = 18$.

Bài 4. (2 điểm)

a) Thầy Vũ có một mảnh vườn hình thoi, độ dài đường chéo nhỏ bằng độ dài cạnh và bằng 30m. Người ta làm một con đường song song với đường chéo nhỏ ngang qua ngang mảnh đất và diện tích còn lại của mảnh đất là hai tam giác đều như hình vẽ có cạnh là 20m. Hỏi diện tích đất được đền bù so với phần còn lại thì nhiều hơn hay ít hơn? Giá mỗi mét vuông đất được đền bù là 1 triệu đồng và giá mỗi mét vuông đất còn lại là 10 triệu đồng và thầy Vũ muốn bán luôn để mua một căn chung cư 4 tỷ đồng thì có đủ tiền không? Tại sao?

b) Bình và An cùng chạy một đoạn đường dài 10 km. Họ xuất phát cùng một nơi, chạy lên ngọn đồi dài 5 km và trở lại điểm xuất phát bằng cùng một tuyến đường. An chạy trước Bình 10 phút và chạy lên đồi với vận tốc 15 km/h rồi xuống đồi với vận tốc 20 km/h. Còn Bình lên đồi với vận tốc 16 km/h rồi xuống đồi với vận tốc 22 km/h. Hỏi lúc họ gặp nhau theo hướng ngược lại thì họ cách đỉnh đồi bao xa?

Bài 5. (3 điểm) Cho tam giác $ABC$ có $\angle ABC = \angle ACB = 30^\circ$ nội tiếp đường tròn tâm $O$ bán kính $R$. Tiếp tuyến tại $A$ và $B$ của $O$ cắt nhau tại $D$. $CD$ cắt $OA$ tại $E$ và cắt $(O)$ tại $F$ khác $C$.

a) Tính $AB, AD$ theo $R$.

b) Tính $CD$ và chứng minh $OBFE$ nội tiếp.

c) $OA$ cắt $BD$ tại $K$. Tính góc $\angle DFK$ và chứng minh $KF$ qua trung điểm cạnh $AB$.

HẾT

ĐÁP ÁN -> PTNK_KC_2020_MOCK2

Bài làm gửi về email:

  • hocthemstar20192020@gmail.com
  • Bản scan -> pdf (không để các file hình rời rạc)
  • Ghi đầy đủ họ tên lớp, trường.
  • Đáp án sẽ post sau một thời gian.
  • Bạn nào nộp bài trễ vẫn được nhận nhé.

Đề thi thử Tuyển sinh 10 TPHCM

ĐỀ THI THỬ TUYỂN SINH 10 LẦN 2

Môn: Toán (Không chuyên)

Thời gian: 120 phút

Bài 1. (1 điểm) Cho parabol $(P):y=kx^2$ $(k\in \mathbb{R})$ và đường thẳng $(d):y=ax-6$ $(a \in \mathbb{R})$

a) Tìm $k$ và $a$ biết $(P)$ và $(d)$ cùng đi qua điểm $A$ có tọa độ $(2;4)$.

Vẽ $(P)$ và $(d)$ trên cùng một hệ trục tọa độ.

b) Tìm tọa độ giao điểm $B$ còn lại của $(P)$ và $(d)$ bằng phép tính.

Bài 2. (1 điểm) Tính giá trị của các biểu thức sau:

a) $\left( 1+ \dfrac{3+\sqrt{3}}{\sqrt{3}+1} \right) \cdot \left( 1- \dfrac{3-\sqrt{3}}{\sqrt{3}-1} \right) $

b) $\dfrac{\sqrt{2+\sqrt{3}}}{2} : \left( \dfrac{\sqrt{2+\sqrt{3}}}{2} -\dfrac{2}{\sqrt{6}}+ \dfrac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}} \right) $

Bài 3. (1 điểm) Cho phương trình $x^2-2(m+1)x+m^2+1 =0$ (1)

a) Tìm $m$ để phương trình $(1)$ có nghiệm kép. Tìm nghiệm của $(1)$ lúc đó.

b) Tìm $m$ để phương trình $(1)$ luôn có hai nghiệm phân biệt $x_1$, $x_2$.

Với $m=2$, không giải phương trình, tính giá trị biểu thức: $P=\dfrac{x_1}{x_2} + \dfrac{x_2}{x_1}$

Bài 4. (1 điểm) Công ty đồ chơi Superview Odoriko vừa cho ra đời một đồ chơi tàu điện điều khiển từ xa. Trong điều kiện phòng thí nghiệm, quãng đường $s$ (cm) đi được của đoàn tàu đồ chơi là một hàm số theo thời gian $t$ (giây), hàm số đó là $s=5t+11$. Trong điều kiện thực tế, hàm số biểu diễn $s$ theo $t$ là một hàm số bậc nhất và người ta thấy rằng nếu đồ chơi di chuyển được 15 cm thì mất 3 giây và có thể đi được quãng đường 64 cm trong 10 giây.

a) Trong điều kiện thí nghiệm, sau bao nhiêu giây thì tàu đồ chơi này di chuyển được quãng đường là $66 \, cm$?

b) Ba bé Bình mua đồ chơi này về cho bé chơi, ba ngồi cách bé $3 \,m$. Hỏi cần bao nhiêu giây đề chiếc tàu đồ chơi này di chuyển từ chỗ bé đến ba?

Bài 5. (1 điểm) Một bè $A$ ở giữa hồ nước, anh Phúc muốn ra chiếc bè này thì cần phải dùng hai chiếc thuyền $B$ hoặc $C$ đang ở bờ. Biết rằng 2 chiếc thuyền $B$ và $C$ cách nhau 450 mét. Biết rằng góc nhìn từ $B$ và $C$ đến chiếc bè $A$ theo thứ tự vào khoảng $40^\circ$ và $35^\circ$. Lượng dầu của thuyền $B$ chạy được khoảng 250 mét và lượng dầu của thuyền $C$ chạy được khoảng 300 mét. Vậy anh Phúc nên lấy thuyền nào để đến bè $A$?

Bài 6. (1 điểm) Một cửa hàng giày dép bán đồng giá 675 000 đồng/đôi. Nhưng vì ảnh hưởng của dịch cúm Covid 19 nên khách đã đến mua ít lại. Chủ cửa hàng đã giảm giá hai lần và mỗi lần là $x\%$ so với giá tại thời điểm giảm nên đã có giá mới là 546 750 đồng.

a) Hãy tìm $x$.

b) Biết rằng giá nhập về một đôi giày là 565 000 đồng và cửa hàng đã bán được 100 đôi sau khi giảm lần đầu và 150 đôi sau khi giảm lần thứ hai. Vậy cửa hàng này đã lời hay lỗ là bao nhiêu tiền?

Bài 7. (1 điểm) Để tạo một mô hình kim tự tháp có hình chóp tứ giác đều (là hình có đáy là hình vuông và các mặt bên là các tam giác cân có chung đỉnh), bạn An đã cắt tấm bìa ra thành hình bên và dán đỉnh lại. Hãy tính diện tích toàn phần của hình chóp và thể tích hình chóp được tạo thành. Biết rằng đáy hình vuông có cạnh là 5 cm, chiều cao của các tam giác cân hạ từ đỉnh cân là 6 cm, thể tích hình chóp là $V=\dfrac{1}{3}Sh$ với $S$ là diện tích đáy hình vuông và $h$ là khoảng cách từ đỉnh $S$ đến đáy $ABCD$ và bằng $SH$ với $H$ là giao điểm của $AC$ và $BD$.

Bài 8. (3 điểm) Cho tam giác $ABC$ nhọn có $AB<AC$ và nội tiếp đường tròn $\left( O;\, R\right) $. Vẽ đường kính $AD$. Tiếp tuyến tại $D$ của $(O)$ cắt $AC$ tại $E$ và $BC$ tại $F$.

a) Chứng minh $AC\cdot AE=4R^2$ và $FB\cdot FC=FD^2$.

b) Vẽ $DH\bot OF$ với $H$ thuộc $OF$. Chứng minh $OBCH$ nội tiếp và $\angle BHC=2\angle BAC$.

c) Chứng minh đường tròn ngoại tiếp các tam giác $AOH$ và $FEC$ cùng cắt nhau tại một điểm $P$ thuộc $(O)$ và $A$, $P$, $F$ thẳng hàng.

Đề thi học sinh giỏi Star Education: Lớp 8

Đề thi kiểm tra chất lượng lớp 8 Chuyên toán. 

Thời gian làm bài: 150 phút

Nộp bài vào: hocthemstar20192020@gmail.com

Đề bài

Bài 1. (2 điểm) Cho các số $ a,b,c $ khác 0 thỏa $ \dfrac{a+b-c}{ab}-\dfrac{b+c-a}{bc}-\dfrac{a+c-b}{ac}=0. $
Chứng minh rằng trong các số $a, b, c$ có một số bằng tổng hai số còn lại.

Bài 2. (3 điểm) Giải các phương trình và bất phương trình sau:

a) $(x+1)^3 + (3x- 4)^3 +(3-4x)^3 = 0$.

b) $ x^2+\dfrac{x^2}{(x+1)^2}=3 $.

c) $\dfrac{3x+4}{x-1} \leq 2$.

Bài 3.  (4 điểm) Giải các bài toán sau:

a) Cho $a, b$ không âm và thỏa $a+b = 2$. Chứng minh $ab \leq 1$ và $a^2b^2(a^2+b^2) \leq 2$.

b) Cho $a> 0$. Tìm giá trị nhỏ nhất của $A = a^2  -6(a+\dfrac{4}{a}) + \dfrac{16}{a^2} + 2020$.

Bài 4. (3 điểm) Cho $n$ là số tự nhiên.

a) Chứng minh rằng nếu $n$ lẻ thì $ n^n-n $ chia hết cho 24.

b) Chứng minh phân số $ \dfrac{21n+17}{14n+3} $ không là số nguyên với mọi $n$.

c) Tìm tất cả các giá trị của $n$ để $2^{2n} + 2^n + 1$ chia hết cho 7.

Bài 5. (5 điểm) Cho tam giác $ABC$ nhọn có $BC = 2a$ cố định, $A$ thay đổi sao cho $\angle BAC = 60^\circ$. Các đường cao $BD, CE$ cắt nhau tại $H$. Gọi $M$ là trung điểm của $BC$.

a) (2 điểm) Chứng minh tam giác $MDE$ đều và tính diện tích tam giác theo $a$.

b) (2 điểm) Đặt $x = AB, y = AC$. Chứng minh $AD = \dfrac{1}{2}x$ và $x^2 + y^2 – xy = 4a^2$. Tính diện tích lớn nhất của tam giác $ABC$ theo $a$.

c) (1 điểm) Vẽ $HK \bot AM$, $K$ thuộc $AM$. Tính góc $\angle DKE$.

Bài 6. (3 điểm) Có 68 bạn tham gia một kì thi toán của trung tâm STAR EDU, đề bài gồm 6 câu hỏi, được đánh số từ 1 đến 6. Nếu làm đúng câu số $n$ thì được $n$ điểm, ngược lại thì bị trừ $n$ điểm.

a) Chứng minh rằng có ít nhất hai ngườicó kết quả làm bài trùng nhau.

b) Chứng minh rằng có ít nhất bốn người có số điểm bằng nhau.

Hết

Đáp án

Bài 1. Qui đồng ta có $c(a+b-c) – a(b+c-a) – b(a+c-b) = 0$

$a^2+b^2-c^2-2ab =0$

$(a-b)^2-c^2=0$

$(a-b-c)(a-b+c)=0$

$a=b+c$ hoặc $b=a+c$, tao có điều cần chứng minh.

Bài 2.

a) Đặt $a = x+1, b = 3x-4, c = 3-4x$ thì $a+b+c=0$

Ta có $a^3+b^3+c^3=3abc$

Phương trình đương đương $x+1 = 0$ hoặc $3x-4= 0$ hoặc $3-4x = 0$.

Giải ra được tập nghiệm $S = \{-1, \dfrac{4}{3}, \dfrac{3}{4} \}$.

b) Ta có $x^2 + \dfrac{x^2}{(x+1)^2} – \dfrac{2x^2}{x+1} + \dfrac{2x^2}{x+1}-3=0$

$(x-\dfrac{x}{x+1})^2 +\dfrac{2x^2}{x+1} – 3 = 0$

$(\dfrac{x^2}{x+1})^2+\dfrac{2x^2}{x+1}-3=0$.

Đặt $t = \dfrac{x^2}{x+1}$. Ta có $t^2 +2t – 3 = 0 \Leftrightarrow t = 1, t = -3$.

Khi $t = 1$ ta có $x^2 -x-1 = 0$ , giải ra $x = \dfrac{1+\sqrt{5}}{2}, x = \dfrac{1-\sqrt{5}}{2}$.

Khi $t = -3$ ta có $x^2+3x+3 = 0$ (vô nghiệm).

c) $\dfrac{3x+4}{x-1} \leq 2$

$\dfrac{3x+4}{x-1}-2 \leq 0$

$\dfrac{x+6}{x-1} \leq 0$

$x+6 \leq 0, x-1 > 0$ hoặc $ x+6 \geq 0, x-1< 0$

$x \leq -6, x > 1$ (vô nghiệm) hoặc $ -6\leq x < 1$.

Kết luận: $-6 \leq x < 1$.

Bài 3.

a) $ab \leq \dfrac{(a+b)^2}{4} = 1$. Khi đó $a^2b^2 \leq ab$.

$a^2b^2(a^2+b^2) \leq ab(4-2ab) = -2(ab-1)^2+2 \leq 2$.

b) Đặt $t = a + \dfrac{4}{a}$ ta có $t \geq 4$ vì $a + \dfrac{4}{a}-4 = \dfrac{(a-2)^2}{4a} \geq 0$.

Và $t^2 = a^2+\dfrac{16}{a^2} + 8$.

Khi đó ta có $A = a^2  -6(a+\dfrac{4}{a}) + \dfrac{16}{a^2} + 2020=t^2-6t+2012 = (t-2)(t-4) + 2004 \geq 2004$.

Đẳng thức xảy ra khi $t = 4$ hay $a=2$.

Vậy giá trị nhỏ nhất của $A$ là $2004$ khi $a = 2$.

Bài 4. 

a) Đặt $n=2k+1$ ta có $A = n^n-n = (2k+1)^{2k+1} – (2k+1)$

$(2k+1)((2k+1)^{2k}-1)$

Ta có $(4k(k+1)+1)^k-1 \vdots 4k(k+1)+1 – 1  \vdots 8$

Vậy $A \vdots 8$.

$n^n – n$ chia hết cho $n$ và $n-1$, nếu $n= 3k, 3k+1$ thì $A$ chia hết cho 3.

Xét $n = 3q+2 $ với $q$ lẻ (vì $n$ lẻ) thì

$3q+2 \equiv 2 (\mod 3) \Rightarrow (3q+2)^{3q+2} \equiv 2^{3q+2} (\mod n)$

Mà $2 \equiv -1 (\mod 3) và $3q+2$ lẻ nên $2^{3q+2} \equiv -1 (\mod 3$.

Do đó $A \equiv – 1 – 3q-2 \equiv 0 (\mod 3)$

Hay $A$ chia hết cho 3.

Mà $(3,8)=1$. Do đó $A$ chia hết cho 24.

b) Đặt $A = \dfrac{21n+17}{14n+3}$.

Nếu $n = 0$ thì $A = \dfrac{17}{3}$ không là số nguyên.

Nếu $n > 0$ ta chứng minh $A < 4$ thật vật $\dfrac{21n+17}{14n+3} – 4 = \dfrac{5-35n}{14n+3} < 0$

Suy ra $A < 4$, dễ thấy $A > 1$, do đó $1 < A< 4$.

Nếu $A = 2$ ta có $21n + 17 = 2(14n+3)$ hay $7n = 11$ (vô lý)

Nếu $A = 3$ ta có $21n+17 = 3(14n+3)$ hay $21n = 8$ (vô lý)

Vậy $A$ không là số nguyên với mọi $n$.

c) Ta có $2^3 \equiv 1 (\mod 7)$, suy ra $2^{3k} \equiv 1 (\mod 7)$.

$4^3 \equiv 1 (\mod 7)$, suy ra $4^{3k} \equiv 1 (\mod 7)$.

Nếu $n = 3k$ ta có $2^{2n} + 2^n + 1  =4^{3k} + 2^{3k} + 1 \equiv 3 (\mod 7)$.

Nếu $n = 3k + 1$ ta có $2^{2n} + 2^n + 1 = 4.4^{3k} + 2.2^{3k} + 1 \equiv 0 (\mod 7)$.

Nếu $n = 3k+2$ ta có $2^{2n} + 2^n + 1 = 16 \cdot 4^{3k} + 4 \cdot 2^{3k} + 1 =0 (\mod 7)$.

Vậy với $n = 3k$ hoặc $n =3k+1$ thì $2^{2n} + 2^{n} + 1$ chia hết cho 7.

 

Bài 5. 

a) Tam giác $BEC, BDC$ vuông tại $D, E$ và $M$ là trung điểm cạnh huyền nên $MD = \dfrac{1}{2}BC = ME = MB = MC$. Suy ra $MDE$ cân tại $M$.

$\angle EMC + \angle DMB = 2\angle B + 2 \angle C = 240^\circ$, suy ra $\angle DME = 60^\circ$.

Do đó tam giác $DME$ đều, cạnh $MD = \dfrac{1}{2}BC = a$. Diện tích bằng $S  = \dfrac{a^2\sqrt{3}}{4}$.

b) Tam giác $ABD$ vuông tại $D$ có $\angle  A = 60^\circ$, suy ra $AD = \dfrac{1}{2}AB = \dfrac{1}{2}x$, suy ra $\angle CD = y -\dfrac{1}{x}$ và $BD = \dfrac{3}{2}x$.

Khi đó $BD^2 + CD^2 = BC^2$, hay $x^2+y^2-xy = 4a^2$.

$S_{ABC} = \dfrac{1}{2}BD \cdot AC = \dfrac{\sqrt{3}}{4} x \cdot y$.

Mà $xy \leq x^2+y^2-xy = 4a^2$, suy ra $S_{ABC} \leq a^2\sqrt{3}$.

Diện tích tam giác $ABC$ lớn nhất bằng $a^2\sqrt{3}$ khi $AB = AC$ hay tam giác $ABC$ đều.

Bài 6.

a) Điểm của mỗi học sinh có dạng $\pm 1 \pm 2 \pm3 \pm4 \pm 5 \pm 6$, có tất cả $2^6 = 64$ trường hợp có thể xảy ra. Do đó theo nguyên lý Diriclet thì có ít nhất 2 trường hợp trùng nhau, hay có ít nhất 2 thí sinh làm bài trùng nhau.
b) Số điểm cao nhất là $21$, thấp nhất là $-21$. Hơn nữa một người không thể có số điểm chẵn. Do đó số điểm của một thí sinh thuộc tập $A = \{-21, -19, \cdots, 19, 21\}$, có 22 phần tử.
Có 68 thí sinh tham gia nên theo nguyên lý Dirichlet thì có ít nhất 4 thí sinh có số điểm bằng nhau.