Category Archives: Lớp 9

Định lý Viete -Biện luận nghiệm

Cho phương trình bậc hai $ax^2+bx+c = 0$ ($a\neq 0$) (1)

Ta đã biết nếu phương trình (1) có nghiệm $x_1, x_2$ ($\Delta \geq 0$) thì:

$S = x_1 + x_2 = \dfrac{-b}{a}$ và $P = x_1x_2 = \dfrac{c}{a}$.

Đây chính là nội dung của định lý Viete trong chương trình đại số lớp 9.

Từ định lý trên ta có một số hệ quả sau:

Hệ quả 1. Phương trình (1) có hai nghiệm dương phân biệt $x_1 > x_2 > 0$ khi và chỉ khi

$\left\{ \begin{array}{cc} \Delta > 0 \\\\ S=x_1+x_2 = \dfrac{-b}{a} > 0 \\\\ P = x_1x_2 =\dfrac{c}{a} > 0 \end{array} \right.$

Hệ quả 2. Phương trình (1) có hai nghiệm âm phân biệt $x_1 < x_2 < 0$ khi và chỉ khi:

   $\left\{ \begin{array}{cc} \Delta > 0 \\\\ S=x_1+x_2 = \dfrac{-b}{a} < 0 \\\\ P = x_1x_2 =\dfrac{c}{a} > 0 \end{array} \right.$

Hệ quả 3. Phương trình có hai nghiệm trái dấu $x_1 < 0 < x_2$ khi và chỉ khi $ac < 0$.

Trên đây là những hệ quả cơ bản và quan trọng, sau đây ta xét một vài ví dụ áp dụng.

Ví dụ 1. Tìm $m$ để phương trình $x^2 – 2(m+1)x +m =0$ có hai nghiệm phân biệt dương.

Lời giải

$\Delta’ = (m+1)^2 – m = m^2 +m + 1 = (m + \dfrac{1}{2})^2 + \dfrac{3}{4} > 0  \forall m$.

Phương trình luôn có hai nghiệm phân biệt.

Khi đó phương trình có hai nghiệm dương khi và chỉ khi

$x_1 + x_2 = 2(m+1) >0$ và $x_1x_2 = m > 0$ $\Leftrightarrow $ $m > 0$.

Kết luận: $m > 0$.

Ví dụ 2. Tìm $m$ để phương trình $x^2 – 2(m-1)x + m^2 = 0$ có hai nghiệm phân biệt âm.

Lời giải

$\Delta’ = (m-1)^2 – m^2 = 1-2m$.

Phương trình có hai nghiệm phân biệt khi và chỉ khi $\Delta’ > 0 \Leftrightarrow 1-2m > 0 \Leftrightarrow m < \dfrac{1}{2}$.

Hai nghiệm âm khi và chỉ khi:

$x_1 + x_2 =2(m-1)< 0, x_1x_2 =m^2> 0 \Leftrightarrow  m< 1, m\neq 0$.

Kết hợp các điều kiện ta có: $m < \dfrac{1}{2}, m \neq 0$.

Ví dụ 3. Tìm $m$ để phương trình $x^2 – 3mx +2m-5 = 0$

a) Có hai nghiệm trái dấu.

b) Một nghiệm bằng 0 và một nghiệm dương.

Lời giải

a) Phương trình có hai nghiệm trái dấu khi và chỉ khi $1 \cdot (2m-5) <  0 \Leftrightarrow m < \dfrac{5}{2}$.

b) Phương trình có nghiệm bằng 0, suy ra $2m-5 = 0 \Leftrightarrow m = \dfrac{5}{2}$.

Khi đó nghiệm còn lại là $\dfrac{15}{2}$.

Kết luận: $m = \dfrac{5}{2}$.

Trên đây là các ví dụ cơ bản, tiếp theo ta làm một số phương trình bậc hai có điều kiện.

Ví dụ 4. Tìm $m$ để phương trình $\dfrac{x^2-2mx+m^2-6}{\sqrt{x}} = 0(1)$

có hai nghiệm phân biệt.

Lời giải

Điều kiện $x \geq 0$. Với điều kiện trên ta có (1) tương đương với phương trình:

$x^2-2mx +m^2-6 = 0$. (2)

Phương trình (1) có hai nghiệm phân biệt khi và chỉ khi phương trình (2) có hai nghiệm phân biệt dương.

$\Delta’ = m^2 – (m^2-6) = 6 > 0$, nên (2) luôn có 2 nghiệm.

Phương trình (2) có hai nghiệm dương khi và chỉ khi $S= 2m > 0, P = m^2-6 > 0$, giải ra được $m > \sqrt{6}$.

Kết luận. $m> \sqrt{6}$.

Phương trình (1) trong ví dụ 4 là kiểu phương trình bậc hai có điều kiện, việc biện luận nghiệm của phương trình dựa vào điều kiện của phương trình, khá đa dạng và rối rắm, tuy nhiên sử dụng suy luận ta có thể đưa về các dạng cơ bản, từ đó giải được bài toán. Để làm dạng toán này các em phải biết suy luận, tính toán cẩn thận.

Ta có thể làm tiếp các ví dụ sau:

Ví dụ 5. Cho phương trình $\dfrac{x^2 -2mx +m^2-3m+6}{x-3}=0$. Tìm $m$ để phương trình có:
a) Có 2 nghiệm phân biệt.

b) Có 1 nghiệm.

Lời giải

Điều kiện $x \neq 3$. Phương trình tương đương với: $x^2-2mx+m^2-3m+9=0$. (2)

a) Phương trình (1) có hai nghiệm phân biệt khi và chỉ khi (2) có hai nghiệm phân biệt khác 3.

$\Delta’ = m^2-(m^2-3m+9) > 0, 3^2 -2m(3) +m^2-3m+9 \neq 0$

Giải ra được $m>3, m \neq 6$.

b) (1) có một nghiệm khi và chỉ khi (2)

  • Có nghiệm kép khác 3.
  • Có hai nghiệm phân biệt, trong đó có một nghiệm bằng 3.

TH1: (2) có nghiệm kép khi và chỉ khi $m = 3$, khi đó nghiệm kép bằng 3. (loại)

TH2: (2) có nghiệm bằng 3, suy ra $m=3, m=6$. Thử lại nhận $m=6$.

Kết luận. $m=6$.

Bài tập rèn luyện.

Bài 1. Cho phương trình $x^2 – 6x -m = 0$.
Bài 2.  Tìm $m$ để phương trình có hai nghiệm trái dấu.
a) Tìm $m$ để phương trình có hai nghiệm phân biệt dương.
b) Tìm $m$ để phương trình $\dfrac{x^2-6x-m}{x-3}=0$ có 2 nghiệm phân biệt.
Bài 3. Cho phương trình $\dfrac{(3x^2-2x+m)}{\sqrt{x}}=0$.
a) Tìm $m$ để phương trình có hai nghiệm phân biệt.
b) Tìm $m$ để phương trình có đúng 1 nghiệm.
Bài 4. Cho phương trình $(x+1)(x^2-2x-m) = 0$. Tìm $m$ để phương trình có:
a) nghiệm phân biệt.
b) 2 nghiệm phân biệt.
c) 1 nghiệm.
Bài 5. Cho phương trình $(\sqrt{x}-2)(-x^2 – 3mx+m^2) = 0$.
a) Giải phương trình khi $m=1$.
b) Chứng minh phương trình không có thể có 3 nghiệm phân biệt.
Bài 6.  Cho phương trình $\sqrt{x}(x^2-2mx +m-1) = 0$. Tìm $m$ để phương trình:
a) Giải phương trình khi $m = 2$.
b) Có 3 nghiệm phân biệt.

Phương trình nghiệm nguyên – P2

Tương tự như phân tích thành tổng, phương pháp tiếp theo là Biến đổi thành tích. Phương pháp này dựa trên tính chất: Mỗi số nguyên dương được phân tích hữu hạn lần thành tích của hai hay nhiều số khác nhau.

Ví dụ 1. Giải phương trình nghiệm nguyên $$2xy + 3x + 4y = 9$$

Lời giải
  • Ta biến đổi thành $(x+2)(2y+3) = 15$.
  • Do đó $x+2 \in \{-15, -5, -3, -1, 1, 3, 5, 15\}$.
  • Giải ra được các nghiệm $(x;y)$ là: $(-17;-2), (-7;-3), (-5;-4), (-3;-9), (-1;6), \\(1;1), (3;0), (13;-1)$.

Ví dụ 2. Tìm nghiệm tự nhiên của phương trình $(xy-7)^2 = x^2 + y^2$.

Lời giải
  • $(xy-6)^2-(x+y)^2==-13$
  • $(xy-x-y-6)(xy+x+y-6) = -13$.
  • TH1:$xy – x-y-6 = -13, xy+x+y-6 = 1$.
  • TH2:$xy-x-y-6 = -1, xy+x+y-6 = 13$.
  • Giải ra nghiệm $(x;y)$ là $(3;4), (4;3), (7;0), (0;7)$.

Ví dụ 3. Giải nghiệm nguyên dương của phương trình $$x(y^2-p) + y(x^2-p) = 5p$$ trong đó $p$ là số nguyên tố.

Lời giải
  •  Biến đổi pt thành $(x+y)(xy-p) = 5p$.
  • TH1: $x+y = 5, xy – p = p$, giải ra được $(x;y,p)$ là $(1;4;2),(4;1;2), (2;3;3), (3;2;3)$.
  • TH2: $x+y = p, xy-p=5$, ta có $xy – x-y = 5 \Leftrightarrow (x-1)(y-1) = 6$.
    $(x;y;p)$ là $(3;4;7), (4;3;7)$.
  • H3: $x+y=5p, xy-p = 1$, ta có $5xy -x-y = 5 \Leftrightarrow (5x-1)(5y-1) = 26$. (Vô nghiệm).

Ví dụ 4. Giải phương trình trong tập các số nguyên dương $$x + x^2 + x^3 = y+y^2$$.

Lời giải
  • $x^3 = (y-x)(y+x+1)$.
  • Khi đó nếu $p$ là ước nguyên tổ của $y-x, y+x+1$ thì $p = 1$(vô lí). Do đó $(y-x, y+x+1) = 1$.
  • $y-x = a^3, y+x+1 = b^3$ và $ab=x$.
  • $b^3-a^3 = 2ab+1$, vì $b \geq a+1$, suy ra $b^3-a^3 = (b-a)(a^2+b^2+1) > 2ab+1$ phương trình vô nghiệm.

Bài tập rèn luyện.

Bài 1. Giải các phương trình sau trong tập nguyên dương:
a) $ 2x^2+3xy-2y^2=7 $.
b) $ x^3-xy=6x-5y-8 $
c) $ x^3-y^3=91 $.
Bài 2. Giải phương trình nghiệm nguyên $$\dfrac{1}{x}+\dfrac{1}{y} = \dfrac{1}{2020}$$
Bài 3. Tìm các số nguyên $x$, $y$ sao cho:
a) $3^x-y^3=1$;
b) $1+x+x^2+x^3=2^y$;
c) $1+x+x^2+x^3=2003^y$.
Bài 4. Tìm các số nguyên tố $x$, $y$, $z$ thỏa mãn: $x^y+1=z$
Bài 5. Tìm các số nguyên dương $x, y,z$ thỏa $y$ nguyên tố và $y, 3$ không là ước của $z$ thỏa $x^3-y^3=z^2$.

Phương trình nghiệm nguyên – P1

Tiếp theo chuyên mục số học dành cho các em lớp 8, 9 thi học sinh giỏi và thi vào 10, hôm nay là bài giảng về phương trình nghiệm nguyên.

Phương trình nghiệm nguyên là một trong những phần hay và khó nhất của số học, nhiều phương trình có vẻ rất đơn giản nhưng lại rất khó để giải, đó là một trong những điều thú vị cuốn hút nhiều học sinh đam mê toán học. Trong bài này chúng tôi xin nêu ra một vài phương pháp giúp các em bước đầu tiếp cận với việc giải phương trình nghiệm nguyên.

Phương pháp biến đổi thành tổng. Phương pháp này dựa trên tính chất: Mỗi số nguyên dương đều được biểu diễn thành tổng của hai hay nhiều số nguyên dương khác trong hữu hạn các trường hợp. Vì thế ta có thể xét những trường hợp này để cho ra cách giải, ngoài ra ta có thể đánh giá để đưa về ít trường hợp để xét hơn, giúp lời giải ngắn gọn hơn.

Ví dụ 1. Giải các phương trình sau trong tập số nguyên

a) $x^2 + 3y^2 = 13$.

b) $2^x + y^4 = 85$.

c) $x^2 + y^2 + x + y – xy = 0$.

Lời giải

a) Ta biểu diễn 13 thành tổng của một số chính phương và một số khác:

$13 = 0^2 +13 = 1^2 + 12= 2^2 + 9 = 3^2 + 4$.

Trong các cách biểu diễn trên thì chỉ có $1^2 +12 = 1^2 + 3\cdot 2^2$ thỏa đề bài. Khi đó $x = \mp 1, y = \mp 2$.

Phương trình có 4 nghiệm $(-1;-2), (-1,2), (1,-2), (1,2)$.

b) Cũng có thể giải như trên, nhưng ta thêm một chút đánh giá cho lời giải gọn hơn, có thể đánh giá theo $x, y$.

Ta có $y^4 =85 – 2^x < 84 \Rightarrow |y| \leq 3$.

  • Nếu $|y| = 0, 2^x = 85$ (loại).
  • Nếu $|y|=1, 2^x = 84$ (loại).
  • Nếu $|y| = 2, 2^x = 69$ (loại).
  • Nếu $|y| = 3, 2^x = 4, x = 2$.

Từ đó phương trình có nghiệm là $(2,-3), (2,3)$.

Ví dụ 2. Giải phương trình nghiệm nguyên $x^2 – 6xy + 14y^2-10y – 16 = 0$

Lời giải

Phương trình tương đương với $$(x-3y)^2 + 5(y-1)^2=21$$
Khi đó $5(y-1)^2 \leq 21 \Rightarrow (y-1)^2 <5$.

  • Nếu $(y-1)^2 = 0 \Rightarrow y = 1, (x-3)^2 = 21$(vô lý)
  • Nếu $(y-1)^2 = 1 \Rightarrow (x-3y)^2 = 16$ giải ra được $(x;y)$ là $(4;0), (-4;0), (12;2), (2;2)$.
  • Nếu $(y-1)^2 = 4 \Rightarrow (x-3y)^2 = 1$, giải ra được $(x;y)$ là $(10;3), (8;3), (-2;-1), (-4;-1)$.
    Vậy phương trình có 8 nghiệm.

Ví dụ 3. Giải phương trình nghiệm nguyên $2x^2- 2xy + 5y^2 = 41$.

Lời giải
  •  $(x-y)^2 + x^2 + 4y^2 = 41$.
  • $4y^2 < 41$ do đó $y \in \{0, 1, 2, 3, -1, -2, -3\}$
  • $(-1;-3), (-2;-3), (1;3)$ và $(2;3)$.

Bài tập rèn luyện.

Bài 1. Giải các phương trình sau trong tập số nguyên:
a)  $19x^2+28y^2=2001$.
b) $3x^2 + y^2 – 4y = 24$.
c) $2^x + 5y^2 = 38$.
d) $x^2 – 6xy+13y^2 = 100$.
Bài 2. Giải các phương trình trong tập số nguyên:
a) $2x^2 + 6y^2 + 7xy – x- y = 25$.
b) $x^2 -xy+y^2 = x+y$

(còn nữa)

Phương pháp chứng minh phản chứng – P1

Ta dùng tương đương logic sau $A \Rightarrow B \Leftrightarrow \overline{B} \Rightarrow \overline{A}$ để thiết lập phương pháp chứng minh Phản chứng.

Để chứng minh mệnh đề $A \Rightarrow B$ đúng, ta có thể thực hiện các bước sau (Phương pháp phản chứng)

  • Giả sử mệnh đề $B$ sai.
  • Chứng minh $A$ sai, hoặc một điều vô lý.

Ví dụ 1. (Nguyên lý Dirichlet) Có $nk + 1$ viên bi, bỏ vào trong $k$ cái hộp. Chứng minh rằng có ít nhất một hộp có ít nhất là là $n+1$ viên bi.

Lời giải

Giả sử tất cả các hộp chỉ chứa số lượng bị không vượt quá $n$ viên, khi đó tổng số viên bi không vượt quá $k \cdot n$, mâu thuẫn với số bi là $kn + 1$.
Vậy phải có một hộp chứa nhiều hơn $n$ viên bi.

Ví dụ 2. Cho $n$ là số tự nhiên $n>3$. Chứng minh rằng $2^n+1$ không chia hết cho $2^m-1$ với mọi số tự nhiên $m$ sao cho $2 < m \leq n$.

Lời giải

Giả sử tồn tại $m,n$ sao cho $2^n+1$ chia hết cho $2^m-1$ với $2 < m < n$.
Ta có $2^{n-m}(2^m-1) \vdots 2^m-1$, suy ra $2^n -2^{n-m} \vdots 2^m-1$, mà $2^n+1 \vdots 2^m-1$ suy ra $2^{n-m} +1$ chia hết cho $2^m-1$.
Lý luận tương tự ta có $2^{n-km} + 1$ chia hết cho $2^m-1$.\\ Giả sử $n = km + q, 0\leq q <m$. Chọn $k$ như trên ta có $2^q +1$ chia hết cho $2^m-1$. Mà $q < m$ nên $2^q + 1 =2^m-1$,giải ra $q = 1, m=2$ (vô lý).

Ví dụ 3. Cho tập $B = {1, 2, 3, …, 16}$. Người ta ghi các số của tập B thành một vòng tròn (mỗi số ghi một lần). Hỏi có cách ghi để tổng thỏa:
a) Tổng của hai số kế nhau bất kì lớn hơn hoặc bằng 17 được không? Tại sao?
b) Tổng của ba số kế nhau bất kì lớn hơn 24 được không? Tại sao?

Lời giải

a) Giả sử có cách ghi thỏa đề bài xét hai số đứng kề số 1, gọi là $a, b$ như sau $a1b$, khi đó $a+1 \geq 17, b+1 \geq 17$, suy ra $a = b= 16$ vô lí. Do đó không có cách ghi thỏa đề bài.
b) Giả sử có cách ghi thỏa đề bài: 3 số liên tiếp bất kì có tổng lớn hơn 24. Khi đó bỏ số 16 ra, còn lại 15 số chia làm 5 nhóm rời nhau thì tổng lớn hơn $24 \times 5 = 120$, trong khi đó $1 + 2 + \cdots + 15 = 120$ vô lí.

Ví dụ 4.  Có tồn tại hay không một cách điền các số $0,1, 2, 3, \cdots , 9$ vào các đỉnh của một đa giác 10 đỉnh sao cho hiệu hai số ở hai đỉnh kề nhau chỉ có thể nhận một trong các giá trị sau:$-5, -4, -3, 3, 4, 5$.

Lời giải

Giả sử có một cách ghi thỏa đề bài. Khi đó
ta thấy rằng các số $0, 1, 2, 8, 9$ không thể đứng cạnh nhau đôi một. Hơn nữa có đúng 10 số, vậy các số còn lại sẽ đứng xen kẽ giữa các số này.
Khi đó xét số 7, ta thấy số 7 chỉ có thể đứng bên cạnh số 2 trong các số $\{0, 1, 2, 8, 9\}$, mâu thuẫn.
Vậy không tồn tại cách ghi thỏa đề bài.

Ví dụ 5.  Điền các số 1,2,3,…,121 vào một bảng ô vuông kích thước $11 \times 11$ sao cho mỗi ô chứa một số. Tồn tại hay không một cách điền sao cho hai số tự nhiên liên tiếp sẽ được điền vào hai ô có chung một cạnh và các tất cả các số chính phương thì nằm trong cùng một cột?

Lời giải
  • Giả sử tồn tại một cách điền số vào các ô thỏa yêu cầu đặt ra. Khi đó bảng ô vuông được chia thành hai phần ngăn cách nhau bởi cột điền các số chính phương. Một phần chứa $11n$ ô vuông $1 \times 1$, và phần còn lại chứa $110-11n$ ô vuông $1 \times 1$ , với $0 \le n \le 5.$
  • Để ý rằng các số tự nhiên nằm giữa hai số chính phương liên tiếp $a^2$ và $(a+1)^2$ sẽ cùng nằm về một phần và dó đó các số tự nhiên nằm giữa $(a+1)^2$ và $(a+2)^2$ sẽ nằm ở phần còn lại.
  • Số lượng các số tự nhiên nằm giữa 1 và 4, 4 và 9, 9 và 16,…,100 và 121 lần lượt là 2,4,6,8,…,20. Do đó một phần sẽ chứa 2+6+10+14+18=50 số, phần còn lại chứa 4+8+12+16+20=60 số. Cả 50 và 60 đều không chia hết cho 11, mâu thuẫn. Vậy không tồn tại cách điền số thỏa yêu cầu đề bài.

Ví dụ 6.  Cho $F ={E_1, E_2, …, E_k }$ là một họ các tập con có $r$ phần tử của tập $X$. Nếu giao của $r+1$ tập bất kì của $F$ là khác rỗng, chứng minh rằng giao của tất cả các tập thuộc $F$ là khác rỗng.

Lời giải
  • Giả sử ngược lại, giao tất cả các tập thuộc $F$ bằng rỗng.
    Xét tập $E_1 = \{x_1, \cdots, x_r\}$.
  • Do giao tất cả các tập thuộc $F$ là rỗng, nên với $x_k$ tồn tại một tập $E_{i_k}$ mà $x \notin E_{i_k}, \forall k = \overline{1,r}$.
  • Khi đó xét giao của họ gồm $r+1$ tập $E_1, E_{i_1}, \cdot, E_{i_r}$ thì bằng rỗng, mâu thuẫn.
    Vậy giao của tất cả các tập thuộc $F$ là khác rỗng.

Ví dụ 7.  Cho $A$ và $B$ là các tập phân biệt và hợp của $A$ và $B$ là tập các số tự nhiên. Chứng minh rằng với mọi số tự nhiên $n$ tồn tại các số phân biệt $a,b > n$ sao cho ${a,b,a + b } \subset A$ hoặc ${a,b,a+b} \subset B$.

Lời giải
  • Nếu $A$ hoặc $B$ là tập hợp hữu hạn phần tử thì chỉ cần chọn $a, b$ lớn hơn phần tử lớn nhất của $A$ hoặc $B$ ta có điều cần chứng minh.
  • Nếu $A, B$ là tập vô hạn, giả sử tồn tại $n$ sao cho với mọi $a, b$ thì $a, b, a+b$ không cùng thuộc $A$ hoặc $B$. (1)
  • Ta chọn các số $x, y, z \in A$ sao cho $x < y < z$ và $z-y, y-x > n$.
  • Do (1) nên các số $y-x, z-y,z-x \in B$, suy ra $z-y+y-x = z-x \in A$ (mâu thuẫn).
    Vậy điều giả sử là sai, tức là ta có điều cần chứng minh.

Ví dụ 8.  Trong mặt phẳng tọa độ thì một điểm mà hoành độ và tung độ đều là các số nguyên được gọi là điểm nguyên. Chứng minh rằng không tồn tại tam giác đều nào mà các đỉnh đều là điểm nguyên.

Lời giải
  • Giả sử tồn tại tam giác đều có các đỉnh là các điểm nguyên.
    Xét hình chữ nhật có các đỉnh là các điểm nguyên, sao cho đỉnh của tam giác đều thuộc cạnh của hình chữ nhật. Khi đó dễ dàng suy ra diện tích tam giác đều là số hữu tỷ.
  • Mặt khác diện tích tam giác đều $S = \dfrac{a^2\sqrt{3}}{4}$ là số vô tỷ, vì $a$ là số nguyên, $\sqrt{3}$ là số vô tỷ.

Ví dụ 9.  Cho $A$ là tập con có 19 phần tử của tập ${1, 2, \cdots, 106}$ sao cho không có hai phần tử nào có hiệu bằng $6, 9, 12, 15, 18$. Chứng minh rằng có 2 phần tử thuộc $A$ có hiệu bằng 3.

Lời giải
  • Xét các phần tử thuộc $A$ theo mod 3 thì có ít nhất 7 phần tử có cùng 0, 1, 2 mod 3. Xét tập B có 7 hoặc nhiều hơn phần tử có cùng số dư khi chia cho 3. Khi đó hiệu 2 số bất kì là số chia hết cho 3.
  • Giả sử không có hai số có hiệu bằng 3, khi đó hiệu hai số sẽ từ 21 trở đi. Giả sử $a_1 < a_2 < a_3 < a_4 < a_5 < a_6 < a_7 \in B$. Ta có $a_2 – a_1 \geq 21, \cdots, a_7 – a_6 \geq 21$, suy ra $a_7 \geq 1 + 21\times 6 = 127$ mâu thuẫn.
  • Vậy có 2 số có hiệu bằng 3.

Ví dụ 10. Một hình vuông $n \times n$ ô được tô bởi hai màu đen trắng, sao cho trong 4 ô góc thì 3 ô được tô màu đen, 1 ô được tô màu trắng. Chứng minh rằng trong hình vuông có ô vuông $2 \times 2 $ mà có số ô màu đen là số lẻ.

Lời giải
  • Giả sử ngược lại, không có hình vuông $2 \times 2$ nào mà số ô đen là lẻ mà đều là số chẵn.
  • Lấy tổng các ô đen của các hình vuông $2\times 2$, khi đó ta được một số chẵn các ô đen.
  • Mặt khác, mỗi ô vuông trên cạnh (khác ô góc) được tính 2 lần (vì có 2 hình vuông $2 \times 2$ chứa nó, các ô vuông bên trong được tính 4 lần, các ô góc được tính 1 lần, do đó số ô đen là một số lẻ. Mâu thuẫn.
  • Vậy có ít nhất một hình vuông $2 \times 2$ ô đen là một số lẻ.

 

Bài tập rèn luyện

Bài 1. Giải các bài toán sau bằng phương pháp phản chứng
a) Chứng minh rằng $\sqrt{2}$ là một số vô tỷ.
b) Chứng minh rằng tổng của một số hữu tỷ và một số vô tỷ là số vô tỷ.
c) Chứng minh tích của một số hữu tỷ và một số vô tỷ là số vô tỷ.
d) Tổng, tích hai số vô tỷ có luôn là số vô tỷ không? Tại sao?
e) Cho 15 số thỏa mãn tổng của 8 số bất kì lớn nhơn tổng của 7 số còn lại. Chứng minh tất cả các số đã cho đều dương.
f) Từ 8 số nguyên dương không lớn hơn 20, chứng minh rằng có thể chọn ra 3 số $x, y, z$ là độ dài 3 cạnh của một tam giác.

Bài 2. Có thể chia tập $X = {1, 2, …, 17}$ thành hai tập rời nhau sao cho tích các phần tử thuộc tập này bằng tổng các phần tử thuộc tập kia?
Bài 3. Có tồn tại hay không cách chia tập hợp $X = {1, 2, …, 2017}$ thành các tập hợp sao cho trong mỗi tập đó thì phần tử lớn nhất bằng tổng các phần tử còn lại.

Bài 4. Một tập hợp có ít nhất 3 số nguyên dương phân biệt được gọi là \textbf{tập đều} nếu có ít nhất một số lẻ và khi bỏ đi một phần tử bất kì thì các số còn lại có thể chia thành hai tập hợp mà tổng các số trong hai tập hợp đó bằng nhau.
a) Chứng minh không có tập đều nào có 3 phần tử.
b) Chứng minh số phần tử của tập đều luôn là một số lẻ.
c) Có tồn tại hay không một tập đều có 5 phần tử? Tại sao?

Đồ thị hàm số bậc hai

Đồ thị của hàm số $y=ax^2$ $\left( a\ne 0\right) $

Đồ thị của hàm số $y=ax^2$ $\left( a\ne 0\right) $ là một đường cong đi qua gốc tọa độ và nhận trục $Oy$ làm trục đối xứng. Đường cong đó được gọi là một parabol với đỉnh $O$.

Nếu $a>0$ thì đồ thị nằm phía trên trục hoành, $O$ là điểm thấp nhất của đồ thị.

Nếu $a<0$ thì đồ thị nằm phía dưới trục hoành, $O$ là điểm cao nhất của đồ thị.

Cách vẽ đồ thị của hàm số $y=ax^2$ $\left( a\ne 0\right) $

Ví dụ 1: Vẽ đồ thị của hàm số $y=2x^2$

Bảng giá trị:

Vẽ đồ thị:

Ví dụ 2: Tìm $a$ biết đồ thị $\left( P\right): y=ax^2$ đi qua điểm $A\left( -2; -\dfrac{1}{4}\right) $. Từ đó chứng minh $B\left( 4;-1\right) $ thuộc đồ thị $\left( P\right) $.

Giải

Ta có: $A\in \left( P\right) \Leftrightarrow -\dfrac{1}{4}=a.\left( -2\right) ^2 \Leftrightarrow a=-\dfrac{1}{16}$

Vậy $\left( P\right): y=-\dfrac{1}{16}x^2$.

Ta có: $y_B=-1=-\dfrac{1}{16}.4^2=-\dfrac{1}{16}.{x_B}^2$

Suy ra $B\in \left( P\right) $.

Ví dụ 3: Cho parabol $\left( P\right) : y=x^2$. Tìm điểm $M$ trên $\left( P\right) $ sao cho hoành độ bằng $4$ lần tung độ.

Giải

Điểm $M$ có hoành độ bằng $4$ lần tung độ nên $M\left( 4y_M; y_M\right) $

Ta có: $M\in \left( P\right) \Leftrightarrow y_M=\left( 4y_M\right) ^2\Leftrightarrow y_M=0$ hoặc $y_M=\dfrac{1}{16}$.

Vậy $M\left( 0;0\right) $ hoặc $M\left( \dfrac{1}{4};\dfrac{1}{16}\right) $.

Ví dụ 4: Cho parabol $\left( P\right) : y=2x^2$ và đường thẳng $d: y=3x+2$. Tìm tọa độ giao điểm của $\left( P\right) $ và $d$.

Giải

Phương trình hoành độ giao điểm của $\left( P\right) $ và $d$ là:

$2x^2=3x+2\Leftrightarrow 2x^2-3x-2=0\Leftrightarrow x=2$ hoặc $x=-\dfrac{1}{2}$

Với $x=2\Rightarrow y=8$

Với $x=-\dfrac{1}{2}\Rightarrow y=\dfrac{1}{2}$

Vậy tọa độ giao điểm là $A\left( 2;8\right) $ và $B\left( -\dfrac{1}{2};\dfrac{1}{2}\right) $.

Bài tập:

Bài 1: Vẽ đồ thị của các hàm số sau:

a) $y=-2x^2$

b) $y=\dfrac{x^2}{2}$

c) $y=-\dfrac{x^2}{3}$

Bài 2: Tìm $a$ biết đồ thị $\left( P\right) : y=ax^2$ đi qua:

a) $A\left( 1;2\right) $

b) $B\left( -1;4\right) $

c) $C\left( 2; -8\right) $

Bài 3: Cho hàm số: $y=\dfrac{1}{4}x^2$

a) Vẽ đồ thị $\left( P\right) $ của hàm số.

b) Các điểm nào sau đây thuộc đồ thị $\left( P\right) $: $A\left( -2;1\right) ; B\left( 1;1\right) ; C\left( -1;\dfrac{1}{4}\right) $?

Bài 4: Trên mặt phẳng tọa độ cho parabol $\left( P\right) : y=ax^2$.

a) Biết $\left( P\right) $ đi qua điểm $M\left( 2;-1\right) $, tìm hệ số $a$. Vẽ parabol $\left( P\right) $ vừa tìm được.

b) Tìm tung độ của điểm thuộc parabol có hoành độ $x=-2$.

c) Tìm các điểm thuộc parabol có tung độ $y=-9$.

Bài 5: Cho parabol $\left( P\right): y=mx^2$ và đường thẳng $\left( D\right) : y=2x-1$.

a) Tìm $m$ để $\left( P\right) $ đi qua điểm $A\left( 2;8\right) $.

b) Tìm $m$ để $\left( P\right) $ tiếp xúc với $\left( D\right) $.

Bài 6: Một vật chuyển động với vận tốc được tính theo thời gian bởi công thức $v=2t^2$ với $t\ge 0$. Một vật khác chuyển động cùng lúc với vận tốc được tính theo thời gian là $v=3t+2$.

a) Vẽ đồ thị hàm số biểu diễn vận tộc của hai vật trên cùng một hệ trục tọa độ.

b) Tìm thời điểm hai vật có vận tốc bằng nhau.

 

 

Hàm số bậc hai $y=ax^2$ $\left( a\ne 0\right) $

Hàm số $y=ax^2$ $\left( a\ne 0\right) $

Ví dụ 1: Một số loại gạch lát nền hình vuông có nhiều kích cỡ khác nhau.

Nếu gọi $x$ $\left( cm\right) $ là chiều dài cạch của một miếng gạch thì diện tích của một miếng gạch là $S=x^2$.

Công thức $S=x^2$ là một hàm số bậc hai có dạng $y=ax^2$ với $a=1$.

Ví dụ 2:

a) Xác định hệ số $a$ của các hàm số sau: $y=3x^2$, $y=-2x^2$, $y=\dfrac{2}{3} x^2$.

b) Tính giá trị tương ứng của $y$ trong bảng sau:

Giải

a) Hàm số $y=3x^2$ có hệ số $a=3$.

Hàm số $y=-2x^2$ có hệ số $a=-2$.

Hàm số $y=\dfrac{2}{3}x^2$ có hệ số $a=\dfrac{2}{3}$.

b)

Tính chất: Hàm số $y=ax^2$ $\left( a\ne 0\right) $ xác định với mọi $x$ thuộc $\mathbb{R}$.

  • Nếu $a>0$ thì hàm số đồng biến khi $x>0$, nghịch biến khi $x<0$.
  • Nếu $a<0$ thì hàm số đồng biến khi $x<0$, nghịch biến khi $x>0$.

Ví dụ 3: 

a) Hàm số $y=3x^2$ xác định với mọi $x \in \mathbb{R}$ có $a=3>0$ nên hàm số đồng biến khi $x>0$ và nghịch biến khi $x<0$.

b) Hàm số $y=-2x^2$ xác định với mọi $x\in \mathbb{R}$ có $a=-2<0$ nên hàm số đồng biến khi $x<0$ và nghịch biến khi $x>0$.

Nhận xét:

  • Nếu $a>0$ thì $y>0$ với mọi $x\ne 0$; $y=0$ khi $x=0$. Giá trị nhỏ nhất của hàm số là $y=0$.
  • Nếu $a<0$ thì $y<0$ với mọi $x\ne 0$; $y=0$ khi $x=0$. Giá trị lớn nhất của hàm số là $y=0$.

Bài tập:

Bài 1: Cho hàm số $y=f(x)=-5x^2$.

a) Xác định hệ số $a$. Tìm điều kiện của $x$ để hàm số đồng biến, nghịch biến.

b) Tính $f\left( -2\right) $, $f\left( \dfrac{2}{5}\right) $, $f\left( \sqrt{3}\right) $.

c) Tìm $x$ khi $f\left( x\right) =-1$, $f\left( x\right) =0$, $f\left( x\right) =3$.

Bài 2: Diện tích $S$ $\left( m^2\right) $ của một hình tròn sẽ phụ thuộc vào bán kính $r$ $\left( m\right) $ của hình tròn đó.

a) Lập hàm số của $S$ theo $r$. Xác định hệ số $a$.

b) Diện tích hình tròn sẽ thay đổi như thế nào nếu bán kính giảm đi 2 lần? Bán kính tăng lên 3 lần?

Bài 3: Một vật rơi từ độ cao $144$ $m$ xuống mặt đất. Biết rằng quãng đường chuyển động $s$ $\left( m\right) $ của vật phụ thuộc vào thời gian $t$ (giây) thông qua công thức: $s=4t^2$.

a) Tính quãng đường vật đi được sau $3$ giây. Lúc đó vật còn cách mặt đất bao nhiêu mét?

b) Sau bao lâu thì vật chạm đất?

c) Tính quãng đường đi được trong giây thứ $3$.

Bài 4: Lực $F\left( N\right) $ của gió khi thổi vuông góc vào cánh buồm tỉ lệ thuận với bình phương vận tốc của gió $v$ $\left( m/s\right) $ theo công thức $F=kv^2$ ($k$ là một hằng số).

a) Tìm hằng số $k$ biết vận tốc của gió là $v=5$ $\left( m/s\right) $ thì lực tác dụng vào cánh buồm là $F=100N$.

b) Nếu vận tốc của gió là $v=20$ $\left( m/s\right) $ thì lực của gió tác động vào cánh buồm là bao nhiêu?

c) Cánh buồm của chiếc thuyền chỉ có thể chịu được lực tối đa là $F=2116N$. Hỏi thuyền có thể ra khởi khi vận tốc gió là $v=90$ $\left( km/h\right) $ hay không? Nếu không thì thuyền có thể ra khơi khi vận tốc của gió tối đa là bao nhiêu?

Bài 5: Khi thả một viên đá xuống một chiếc giếng, quãng đường viên đá rơi được trong thời gian $t$ (giây) sẽ được tính theo công thức $D=4,9t^2$ $\left( m\right) $.

a) Tính quãng đường viên đá rơi được trong $1$ giây, $2$ giây, $3$ giây.

b) Hãy tính độ sâu của cái giếng nếu viên đá chạm đáy giếng sau $4,3$ giây.

c) Nếu cái giếng sâu $100$ $m$, hãy tính thời gian từ lúc viên đá rơi cho tới khi viên đá chạm đáy giếng.

Căn bậc ba

1. Khái niện căn bậc ba

Định nghĩa: Căn bậc ba của một số $a$ là một số $x$ sao cho $x^3=a$

Ví dụ 1: $2$ là căn bậc ba của $8$ vì $2^3=8$.

$-5$ là căn bậc ba của $-125$ vì $(-5)^3=-27$.

Ta công nhận kết quả sau: Mỗi số $a$ đều có duy nhất một căn bậc ba.

Kí hiệu căn bậc ba của số $a$ là: $\sqrt[3]{a}$,   số $3$ gọi là chỉ số của căn.

Ví dụ 2: Tìm căn bậc ba của mỗi số sau:

a) $27$;

b) $-216$;

c) $0$

d) $\dfrac {-1}{64}$

Giải

a) $\sqrt [3] {27}=\sqrt [3]{3^3}=3$

b) $\sqrt [3]{-216}=\sqrt [3]{(-6)^3}=-6$

c) $\sqrt [3]{0}=\sqrt [3]{0^3}=0$

d) $\sqrt [3]{\dfrac {-1}{64}}=\sqrt [3]{\left( \dfrac {-1}{4}\right)^3}=\dfrac {-1}{4}$

2. Tính chất

Ta có các tính chất sau của căn bậc ba:

a) $a<b \Leftrightarrow \sqrt[3]{a} <\sqrt[3]{b}$

b) $\sqrt [3]{ab}=\sqrt[3]{a}\sqrt[3]{b}$

c) Với $b\ne 0$, ta có $\sqrt [3]{\dfrac {a}{b}}=\dfrac {\sqrt [3]{a}}{\sqrt [3]{b}}$

Ví dụ 3: Tính các căn bậc ba sau:

a) $\sqrt[3]{27.64}$

b) $\sqrt[3]{\dfrac{125}{8}}$

Lời giải:

a) $\sqrt[3]{27.64}=\sqrt[3]{27}.\sqrt[3]{64}=3.4=12$

b) $\sqrt[3]{\dfrac{125}{8}}=\dfrac{\sqrt[3]{125}}{\sqrt[3]{8}}=\dfrac{5}{2}$

Ví dụ 4: So sánh các số sau:

a) $3$ và $\sqrt[3]{26}$

b) $-4$ và $\sqrt[3]{-63}$

Lời giải:

a) Ta có: $3=\sqrt[3]{27}$ mà $27>26$ do đó $\sqrt[3]{27}>\sqrt[3]{26}$

Vậy $3>\sqrt[3]{26}$

b) Ta có: $-4=\sqrt[3]{-64}$ mà $-64<-63$ dó đó $\sqrt[3]{-64}<\sqrt[3]{-63}$

Vậy $-4<\sqrt[3]{-63}$

Bài tập

Bài 1: Tính các căn bậc ba sau:

a) $\sqrt[3]{343}$

b) $\sqrt[3]{\dfrac{-64}{27}}$

c) $\sqrt[3]{0,216}$

d) $\sqrt[3]{-1331}$

Bài 2:  TÍnh:

a) $\sqrt[3]{64}-\sqrt[3]{512}+3\sqrt[3]{27}$

b) $\sqrt[3]{4}.\sqrt[3]{54}-\dfrac{2}{5}\dfrac{\sqrt[3]{375}}{\sqrt[3]{3}}$

c) $\sqrt[3]{40x^3y}-x\sqrt[3]{135y}$

d) $\sqrt{12-6\sqrt 3}-\sqrt[3]{26-15\sqrt 3}$

Bài 3: So sánh các số sau:

a) $3$ và $\sqrt[3]{\dfrac{4096}{125}}$

b) $4\sqrt[3]{5}$ và $5\sqrt[3]{3}$

Bài 4: Tính giá trị các biểu thức sau:

a) $A=\dfrac{x}{4}-\sqrt[3]{\dfrac{x^2}{3}}$ với $x=-3$

b) $B=2x-\sqrt[3]{24x^2}-\sqrt[3]{16y}$ với $x=3$ và $y=-4$

Bài 5: Tìm $x$ biết:

a) $\sqrt[3]{7x+36}=4$

b) $2+\sqrt[3]{2x-3}=0$