Đề thi học kì 2 môn toán lớp 10 trường Bùi Thị Xuân năm 2020-2021

PHẦN ĐẠI SỐ (6 điểm)

Bài 1. Giải các bất phương trình sau:

a) $|2x+8| <x^2$

b) $1-2x-\sqrt{3x^2-4x+1} \ge 0$

Giải

a) $|2x+8| <x^2 \Leftrightarrow \left\{ \begin{array}{l} x^2 -2x -8>0\\ x^2 + 2x +8 >0 \end{array}\right. $ $\left[ \begin{array}{l} x<-2\\ x>4 \end{array}\right. $

b) $1-2x – \sqrt{3x^2 -4x +1} \ge 0 \Leftrightarrow \sqrt{3x^2 -4x +1} \le 1-2x$

$\Leftrightarrow \left\{ \begin{array}{l} 3x^2 -4x +1\ge 0\\ 1-2x \ge 0\\ x^2 +1\ge 0 \end{array}\right. $ $\Leftrightarrow \left\{ \begin{array}{l} \left[ \begin{array}{l} x\le \dfrac{1}{3}\\ x\ge 1 \end{array} \right. \\ x\le \dfrac{1}{2} \end{array}\right. $ $\Leftrightarrow x\le \dfrac{1}{3}$

Bài 2. Biết $\cos x = -\dfrac{3}{5}$ và $\dfrac{\pi}{2}<x<\pi$. Tính $\sin x$, $\sin 2x$, $\cos \left( x+\dfrac{2\pi}{3}\right) $.

Giải

Ta có: $\sin ^2 x = 1- \cos ^2 x = \dfrac{16}{25} \Rightarrow \sin x = \dfrac{4}{5}$ ($\dfrac{\pi}{2}<x<\pi$)

Ta có: $\sin 2x = 2\sin x \cos x = -\dfrac{24}{25}$

Ta có: $\cos \left( x+ \dfrac{2\pi}{3}\right) = \cos x \cdot \cos \dfrac{2\pi}{3} – \sin x \cdot \sin \dfrac{2\pi}{3} = \dfrac{3-4\sqrt{3}}{10}$

Bài 3. Cho $A$, $B$, $C$ là ba góc của tam giác. Chứng minh rằng

$$\tan \dfrac{A}{2} \cdot \tan \dfrac{B}{2} + \tan \dfrac{B}{2} \cdot \tan \dfrac{C}{2} + \tan \dfrac{C}{2} \cdot \tan \dfrac{A}{2} =1$$

Giải

$VT = \tan \dfrac{A}{2} \cdot \tan \dfrac{B}{2} + \tan \dfrac{B}{2} \cdot \tan \dfrac{C}{2} + \tan \dfrac{C}{2} \cdot \tan \dfrac{A}{2}$

$=\tan \dfrac{B}{2} \cdot \left( \tan \dfrac{A}{2} + \tan \dfrac{C}{2}\right) + \tan \dfrac{C}{2} \cdot \tan \dfrac{A}{2}$

$=\tan \dfrac{B}{2} \cdot \tan \dfrac{A+C}{2} \cdot \left( 1-\tan \dfrac{C}{2} \cdot \tan \dfrac{A}{2}\right) + \tan \dfrac{C}{2} \cdot \tan \dfrac{A}{2}$

$=1-\tan \dfrac{C}{2} \cdot \tan \dfrac{A}{2} + \tan \dfrac{C}{2} \cdot \tan \dfrac{A}{2}=1=VP$ (với $\tan \dfrac{A+C}{2} = \cot \dfrac{B}{2}$ )

Bài 4. Chứng minh biểu thức không phụ thuộc vào $x$:

$$A=\tan (\pi +x) \cdot \tan \left( \dfrac{\pi}{2} -x\right) – \cos ^2 x + \cos \left( x+ \dfrac{\pi}{6}\right) \cdot \cos \left( x-\dfrac{\pi}{6}\right) $$

Giải

$A=\tan (\pi +x) \cdot \tan \left( \dfrac{\pi}{2} -x\right) – \cos ^2 x + \cos \left( x+ \dfrac{\pi}{6}\right) \cdot \cos \left( x-\dfrac{\pi}{6}\right) $

$= \tan x \cdot \cot x – \cos ^2 x + \dfrac{1}{2} \left( \cos 2x + \cos \dfrac{pi}{3}\right) $

$= 1- \cos ^2 x + \cos ^2 x – \dfrac{1}{2} + \dfrac{1}{4} = \dfrac{3}{4}$

Bài 5. Chứng minh rằng

$$\left( \dfrac{\sin 2x – 2\sin x}{\sin 2x + 2\sin x}\right) \cdot \left( \dfrac{\sin ^4 x – \cos ^4 x + \cos ^2 x}{2\left( \cos x-1\right) }\right)= \sin ^2 \dfrac{x}{2}$$

Giải

$VT = \left( \dfrac{\sin 2x – 2\sin x}{\sin 2x + 2\sin x}\right) \cdot \left( \dfrac{\sin ^4 x – \cos ^4 x + \cos ^2 x}{2\left( \cos x-1\right) }\right)$

$=\dfrac{2\sin x \left( \cos x -1\right) }{2\sin x \left( \cos x +1\right) }\cdot \dfrac{\left( \sin ^2 x + \cos ^2 x\right) \left( \sin ^2 x – \cos ^2 x\right) + \cos ^2 x}{2\left( \cos x -1\right) }$

$=\dfrac{\sin ^2 x}{2\left( \cos x +1\right) }=\dfrac{\left( 1-\cos x\right) \left( 1+ \cos x\right) }{2\left( \cos x +1\right) }= \dfrac{1-\cos x}{2} = \sin ^2 \dfrac{x}{2} = VP$

PHẦN HÌNH HỌC (4 điểm)

Bài 6. Trong mặt phẳng với hệ tọa độ $Oxy$, cho tam giác $ABC$ có đỉnh $C(-5;-6)$ và đường cao $AH: x+2y +1=0$, đường trung tuyến $BM: 8x-y+4=0$. Tìm tọa độ các đỉnh $B$, $A$.

Giải

Ta có: $BC \bot AH \Rightarrow BC: 2x -y +c =0$

$C\in BC \Rightarrow c=4 \Rightarrow BC: 2x-y+4=0$

Ta có: $\left\{ \begin{array}{l} B\in BC\\ B\in BM \end{array}\right. $ $\Leftrightarrow \left\{ \begin{array}{l} 2x_B – y_B =-4\\ 8x_B – y_B =-4 \end{array}\right. $ $\Leftrightarrow \left\{ \begin{array}{l} x_B = 0\\ y_B =4 \end{array}\right. $ $\Rightarrow B(0;4)$

Ta có: $M\in BM \Rightarrow M(a;8a+4)$

$M$ là trung điểm $AC\Rightarrow A(2a+5; 16a+14)$

Ta có: $A\in AH \Rightarrow 2a+5 + 2(16a+14) + 2=0 \Leftrightarrow a=-1\Rightarrow A(3;-2)$

Bài 7. Trong mặt phẳng với hệ tọa độ $Oxy$, cho đường tròn $(C): x^2 + y^2 +2x -2y +1=0$. Viết phương trình tiếp tuyến $\Delta $ của đường tròn $(C)$ biết rằng đường thẳng $\Delta$ vuông góc với đường thẳng $d: 2x+y+2=0$.

Giải

$(C): x^2 + y^2 + 2x -2y +1 =0 \Rightarrow $ Tâm $I(-1;1)$, bán kính $R=1$

Ta có: $\Delta \bot d \Rightarrow d: x-2y +c =0$

Ta có: $d_{(I,\Delta)}=1 \Leftrightarrow \dfrac{|c-3|}{\sqrt{5}} =1 \Leftrightarrow |c-3| =\sqrt{5} \Leftrightarrow \left[ \begin{array}{l} c=\sqrt{5}+3\\ c=-\sqrt{5}+3 \end{array}\right. $

Với $c=\sqrt{5}+3 \Rightarrow \Delta: x-2y + \sqrt{5}+3 =0$

Với $c=-\sqrt{5}+3 \Rightarrow \Delta: x-2y -\sqrt{5}+3=0$

Bài 8. Trong mặt phẳng với hệ tọa độ $Oxy$, cho đường thẳng $d: 2x-y-5=0$ và hai điểm $A(1;2)$, $B(4;1)$. Viết phương trình đường tròn $(T)$ có tâm thuộc đường thẳng $d$ và đi qua $A$, $B$.

Giải

Gọi $I$ là tâm đường tròn $\Rightarrow I\in d \Rightarrow I(a;2a-5)$

Ta có: $AI^2 = BI^2 \Rightarrow (a-1)^2 + (2a-7)^2 = (a-4)^2 + (2a-6)^2 \Rightarrow a=1$

Suy ra $I(1;-3)$ nên $R=5$

Vậy $(T): (x-1)^2 + (y+3)^2 =25$

Bài 9. Trong mặt phẳng với hệ tọa độ $Oxy$, cho elip $(E): \dfrac{x^2}{25} + y^2 =1$. Tìm tọa độ tiêu điểm, tính tâm sai và độ dài các trục của $(E)$.

Giải

$(E): \dfrac{x^2}{25}+y^2 =1 \Rightarrow a=5$ và $b=1$

Khi đó: $c=\sqrt{a^2 -b^2} =2\sqrt{6}$

Tọa độ tiêu điểm: $F_1(-2\sqrt{6}; 0)$; $F_2(2\sqrt{6}; 0)$

Tâm sai: $e=\dfrac{c}{a} = \dfrac{2\sqrt{6}}{5}$

Độ dài trục lớn: $2a=10$

Độ dài trục bé: $2b=2$

— HẾT —

Đề thi học kì 2 môn toán lớp 11 trường PTNK năm 2020-2021

Bài 1: (1 điểm) Tính các giới hạn sau:

a) $\lim\limits_{x\rightarrow {+\infty}} \dfrac{4x+\sqrt{x^2-x}}{x+3}$.

b) $\lim\limits_{x\rightarrow 1} \dfrac{x-\sqrt{x^2+x-1}}{3x-x^2-2}$

Giải

a) $\lim\limits_{x\rightarrow {+\infty}} \dfrac{4x+\sqrt{x^2-x}}{x+3}$

$= \lim\limits_{x\rightarrow {+\infty}} \dfrac{x\left( 4+\sqrt{1-\dfrac{1}{x}}\right) }{x\left( 1+\dfrac{3}{x}\right) }$

$=\lim\limits_{x\rightarrow {+\infty}} \dfrac{ 4+\sqrt{1-\dfrac{1}{x}} }{ 1+\dfrac{3}{x} } =5$

b) $\lim\limits_{x\rightarrow 1} \dfrac{x-\sqrt{x^2+x-1}}{3x-x^2-2}$

$=\lim\limits_{x\rightarrow 1} \dfrac{\left( x-\sqrt{x^2+x-1}\right) \left( x+\sqrt{x^2+x-1}\right)}{\left( 1-x\right) \left( x-2\right) \left( x+\sqrt{x^2+x-1}\right)}$

$=\lim\limits_{x\rightarrow 1} \dfrac{1-x}{\left( 1-x\right) \left( x-2\right) \left( x+\sqrt{x^2+x-1}\right)}$

$=\lim\limits_{x\rightarrow 1} \dfrac{1}{\left( x-2\right) \left( x+\sqrt{x^2+x-1}\right)} =-\dfrac{1}{2}$

Bài 2: (1,5 điểm) Tính đạo hàm của các hàm số sau:

a) $y= \dfrac{x^2-x+5}{x+1} + \sqrt{2x-x^2}$

b) $y=\tan (1+x^2) + \cos ^5 (1-2x)$.

Giải

a) $y’=\left( \dfrac{x^2-x+5}{x+1} + \sqrt{2x-x^2}\right) ‘$

$= \dfrac{(x^2 -x +5)'(x+1)-(x^2 -x+5)(x+1)’}{(x+1)^2} + \dfrac{(2x-x^2)’}{2\sqrt{2x-x^2}}$

$=\dfrac{(2x-1)(x+1)-(x^2-x+5)}{(x+1)^2} + \dfrac{1-x}{\sqrt{2x-x^2}}$

$=\dfrac{x^2+2x-6}{(x+1)^2} + \dfrac{1-x}{\sqrt{2x-x^2}}$.

b) $y’=\left( \tan (1+x^2) + \cos ^5 (1-2x)\right) ‘$

$=(1+x^2)’ \left( 1+\tan ^2 (1+x^2)\right) + 5(1-2x)’ \cdot \cos ^4 (1-2x)$

$= 2x + 2x\tan ^2 (1+x^2) -10\cos ^4 (1-2x)$.

Bài 3: (1 điểm) Chứng minh phương trình $2(m^2 -2)x^5 – 4m^2x^4 + 2(m^2 -x^2) + 4x +1 =0$ có ít nhất hai nghiệm trái dấu với mọi số thực $m$.

Giải

Đặt $f(x) = 2(m^2 -2)x^5 -4m^2x^4 + 2(m^2 -x^2) + 4x +1$

Ta có: $f(-1) = -4m^2 -5 <0$, $f(0) = 2m^2 +1 >0$ $\Rightarrow f(-1)\cdot f(0) <0$

Suy ra phương trình $f(x) =0$ có ít nhất 1 nghiệm âm trong khoảng $(-1;0)$

Lại có: $f(1) = -1<0\Rightarrow f(0)\cdot f(1)<0$

Suy ra phương trình $f(x)=0$ có ít nhất 1 nghiệm dương trong khoảng $(0;1)$

Vậy phương trình có ít nhất hai nghiệm trái dấu với mọi $m$.

Bài 4: (1 điểm) Tìm $a$ để hàm số $y=f(x)=\left\{ \begin{array}{l} \dfrac{\sqrt{2x^2+1}+ x-5}{x^2-4}; \, x\ne \pm 2\\ ax^2 + \dfrac{19}{12}; \, x=\pm 2 \end{array}\right. $ liên tục tại $x_0=2$.

Giải

Ta có: $f(2) = 4a+\dfrac{19}{12}$

Lại có: $\lim\limits_{x\rightarrow 2} \dfrac{\sqrt{2x^2+1}+ x-5}{x^2-4} = \lim\limits_{x\rightarrow 2} \dfrac{2x^2+1- (x-5)^2}{(x-2)(x+2)(\sqrt{2x^2+1}-x+5)}$

$=\lim\limits_{x\rightarrow 2} \dfrac{x+12}{(x+2)(\sqrt{2x^2+1}-x+5)} = \dfrac{7}{12}$

Hàm số liên tục tại $x_0 =2 \Leftrightarrow 4a + \dfrac{19}{12} = \dfrac{7}{12} \Leftrightarrow a=-\dfrac{1}{4}$

Bài 5: (1,5 điểm) Cho $(C)$ là đồ thị của hàm số $y=3x^4 -3x^2 +2$.

a) Viết phương trình tiếp tuyến của $(C)$ tại điểm có hoành độ bằng $-1$.

b) Viết phương trình tiếp tuyến của $(C)$ biết tiếp tuyến có hệ số góc $k=6$.

Giải

a) Ta có: $f'(x) = 12x^3 -6x \Rightarrow f'(-1) = -6$, $f(-1) = 2$

Phương trình tiếp tuyến của $(C)$ tại $x_0=-1$: $y=-6(x+1) +2 = -6x -4$

b) Gọi phương trình tiếp tuyến cần tìm là $y=f'(x_0) (x-x_0) + f(x_0)$

Ta có: $f'(x_0) =6 \Leftrightarrow 12x_0^3 -6x_0 =6 \Leftrightarrow x_0=1 \Rightarrow f(x_0) = 2$

Vậy phương trình tiếp tuyến cần tìm là: $y=6(x-1) + 2 = 6x-4$

Bài 6: (4 điểm) Cho hình chóp $S.ABC$ có $SA \bot (ABC)$. Tam giác $ABC$ cân tại $B$, $BA = BC =a$; $\angle ABC =120^\circ $, $SA=a\sqrt{3}$. $D$ là điểm đối xứng với $B$ qua trung điểm $I$ của $AC$.

a) Tính góc tạo bởi $SC$ và mặt phẳng $(ABC)$.

b) Chứng minh $BD \bot (SAC)$. Tính góc tạo bởi hai mặt phẳng $(SBD)$ và $(ABC)$.

c) Tính khoảng cách từ $D$ đến $(SBC)$.

d) Gọi $M$, $N$ lần lượt là trung điểm $BA$, $BC$. Tính khoảng cách giữa hai đường thẳng $MN$ và $SC$.

Giải

a) Hình chiếu của $C$ lên $(ABC)$ là $C$

Hình chiếu của $S$ lên $(ABC)$ là $A$

$\Rightarrow \widehat{\left( SC, (ABC)\right) } = \widehat{(SC, AC)} = \angle SCA$

Tứ giác $ABCD$ có $I$ là trung điểm $AC$, $BD$ và $AB=BC$

Suy ra tứ giác $ABCD$ là hình thoi

Suy ra $\triangle BIC$ vuông tại $I$ và $\angle IBC = \dfrac{\angle ABC}{2} =60^\circ $

Suy ra $IC = BC \cdot \sin \angle IBC =\dfrac{a\sqrt{3}}{2} \Rightarrow AC =a\sqrt{3}$

Ta có: $\tan \angle SCA = \dfrac{SA}{AC} = 1 \Rightarrow \angle SCA =45^\circ $.

b)

  • Ta có: $BD \bot AC$, $BD \bot SA\Rightarrow BD \bot (SAC)$
  • Ta có: $BD\bot (SAC) \Rightarrow BD \bot SI$

Ta có: $\left\{ \begin{array}{l} (SBD) \cap (ABC) = BD\\ AI\bot BD, SI \bot BD \end{array}\right.$

$\Rightarrow \widehat{((SBD), (ABC))} = \widehat{(SI, AI)}= \angle SIA$

Ta có: $\tan \angle SIA = \dfrac{SA}{AI} = 2 \Rightarrow \angle SIA \approx 63^\circ $

c) Gọi $H$ là hình chiếu của $A$ trên $BC$, $K$ là hình chiếu của $A$ trên $SH$.

Ta có: $BC \bot AH$, $BC \bot SA \Rightarrow BC \bot (SAH)$

Ta có: $AK \bot SH$, $AK \bot BC\Rightarrow AK \bot (SBC)$

Do $AD // (SBC) \Rightarrow d_{(D, (SBC))} = d_{(A, (SBC))}=AK$

$\triangle AHC$ vuông tại $H$ có $\angle ACH =30^\circ \Rightarrow AH = AC \cdot \sin 30^\circ =\dfrac{a\sqrt{3}}{2}$

$\triangle SAH$ vuông tại $A$ có $AK$ là đường cao

$\Rightarrow \dfrac{1}{AK^2} = \dfrac{1}{SA^2} + \dfrac{1}{AH^2}\Rightarrow AK=\dfrac{a\sqrt{15}}{5}$

d) Gọi $J$ là giao điểm của $MN$ và $BD$ suy ra $J$ là trung điểm của $BI$

Ta có: $JI \bot AC$, $JI \bot SA \Rightarrow JI \bot (SAC)$

Ta có: $MN //AC \Rightarrow MN //(SAC) \Rightarrow d_{(MN,SC)} = d_{(MN, (SAC))} = JI = \dfrac{BD}{4} = \dfrac{a}{4}$.

 

 

— HẾT —

Đề thi học kì 2 môn toán lớp 10 trường PTNK năm 2020-2021

Bài 1: (2 điểm) Giải bất phương trình:

a) $\dfrac{-x-4}{x^2-7x+12} >0$

b) $\sqrt{x^2+4} \ge x+2$

Giải

a) $\dfrac{-x-4}{x^2-7x+12} >0 \Leftrightarrow \dfrac{x+4}{(x-3)(x-4)} <0 \Leftrightarrow x \in \left( – \infty ; -4 \right) \cup \left( 3;4 \right) $

Vậy $S=\left( – \infty ; -4 \right) \cup \left( 3;4 \right) $

b) $\sqrt{x^2+4} \ge x+2 \Leftrightarrow \left[ \begin{array}{l} x \le -2 \\ \left\{ \begin{array}{l} x >-2 \\ x^2+4 \ge x^2 +4x+4 \end{array} \right. \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x \le -2 \\ \left\{ \begin{array}{l} x >-2 \\ x \le 0 \end{array} \right. \end{array} \right. \Leftrightarrow x \le 0 $

Vậy $S= \left( – \infty ; 0 \right] $

Bài 2: (1 điểm)  Tìm $m$ để bất phương trình: $2mx^2 – 2(m-4)x+m-4 \ge 0$ vô nghiệm.

Giải
  • $m=0 \Rightarrow 8x -4 \ge 0 \Leftrightarrow x \ge \dfrac{1}{2}$ (loại)
  • $m \ne 0$

Đặt $f(x)= 2mx^2 – 2(m-4)x+m-4 $

Để $f(x) \ge 0$ vô nghiệm thì $f(x)\le 0$ với mọi $x \in \mathbb{R}$, khi và chỉ khi:

$\left\{ \begin{array}{l} m<0 \\ \Delta ‘= {\left( {m – 4} \right)^2} – 2m\left( {m – 4} \right) <0 \end{array} \right. \Leftrightarrow m<-4$

Bài 3: (1,5 điểm) Cho hệ bất phương trình: $\left\{ \begin{array}{l} \dfrac{x}{x-1}\le 0 \\ \left( m^2 +1 \right) x > 2mx + m^2 +1 \end{array} \right. \quad (I) $

a) Giải hệ bất phương trình $(I)$ khi $m=-1$.

b) Tìm $m$ để hệ bất phương trình có nghiệm.

Giải

a) Thay $m=-1$ vào $(I)$ ta được: $\left\{ \begin{array}{l} \dfrac{x}{x-1}\le 0\\ 2x>-2x + 2 \end{array}\right. $ $\Leftrightarrow \left\{ \begin{array}{l} 0\le x<1\\ x>\dfrac{1}{2} \end{array}\right. $ $\Leftrightarrow \dfrac{1}{2}<x<1$.

b) $(I) \Leftrightarrow \left\{ \begin{array}{l} 0\le x<1\\ (m-1)^2x>m^2+1 \ \ (1) \end{array}\right. $

  • TH1: $m=1$ thì hệ bất phương trình vô nghiệm.
  • TH2: $m\ne 1$, khi đó $(1)\Leftrightarrow x>\dfrac{m^2+1}{(m-1)^2}$

Hệ bất phương trình có nghiệm khi và chỉ khi $\dfrac{m^2+1}{(m-1)^2} <1\Leftrightarrow m<0$

Vậy $m<0$ thì hệ bất phương trình $(I)$ có nghiệm.

Bài 4: (1 điểm) Chứng minh rằng:

a) $\sin ^2 x + \sin ^2 \left( \dfrac{\pi}{3}-x \right) = 1 – \dfrac{1}{2}\cos\left( 2x – \dfrac{\pi}{3}\right) $

b) $ \sin ^2 x + \sin ^2 \left( \dfrac{\pi}{3}-x \right) + \sin x \cdot \sin \left( \dfrac{\pi}{3}-x \right) = \dfrac{3}{4}$

Giải

a) $VT= \sin ^2 x + \sin ^2 \left( \dfrac{\pi}{3}-x\right) = \dfrac{1}{2} – \dfrac{1}{2}\cos 2x + \dfrac{1}{2} – \dfrac{1}{2} \cos \left( \dfrac{2\pi}{3} -2x\right) $

$=1-\dfrac{1}{2} \left[ \cos 2x + \cos \left( \dfrac{2\pi}{3} -2x\right) \right] = 1-\dfrac{1}{2} \cdot 2 \cdot \cos \dfrac{\pi}{3} \cdot \cos \left(2x- \dfrac{\pi}{3}\right) $

$=1-\dfrac{1}{2}\cos \left( 2x-\dfrac{\pi}{3}\right)= VP $.

b) $VT = \sin ^2 x + \sin ^2 \left( \dfrac{\pi}{3}-x\right) + \sin x \cdot \sin \left( \dfrac{\pi}{3} -x\right) $

$= 1-\dfrac{1}{2} \cos \left( 2x-\dfrac{\pi}{3}\right) – \dfrac{1}{2} \left[ \cos \dfrac{\pi}{3} – \cos \left( 2x – \dfrac{\pi}{3}\right) \right] = \dfrac{3}{4}=VP$

Bài 5: (0,5 điểm) Cho hai số thực $a$, $b$ thỏa $2a + 3b=7$. Tìm giá trị lớn nhất của $M=(a+1)(b+1)$.

Giải
  • Cách 1: $2a + 3b =7 \Leftrightarrow a=\dfrac{7}{2} -\dfrac{3}{2}b$

Thay $a=\dfrac{7}{2} -\dfrac{3}{2}b$ vào $M$, ta được:

$M=\left( \dfrac{9}{2} – \dfrac{3}{2}b \right) (b+1) = -\dfrac{3}{2}b^2 + 3b + \dfrac{9}{2} = -\dfrac{3}{2}\left( b-1\right) ^2 +6\le 6$

Vậy giá trị nhỏ nhất của $M$ là $6$ khi và chỉ khi $b=1$ và $a=2$.

  • Cách 2: $6M = (2a+2)(3b+3) \le \dfrac{\left( 2a+2 + 3b +3\right) ^2}{4} =36 \Rightarrow M\le 6$

Vậy giá trị lớn nhất của $M$ là $6$ khi và chỉ khi $a=2$ và $b=1$.

Bài 6: (3 điểm) Trong mặt phẳng tọa độ $Oxy$ cho $2$ điểm $A(1;3)$, $B(2;1)$ và đường thẳng $(d): \left\{ \begin{array}{l} x=t \\ y=10+5t \end{array} \right. \quad (t \in \mathbb{R})$

a) Tìm tọa độ giao điểm của $AB$ với đường thẳng $(d)$. Viết phương trình đường thẳng $(d’)$ qua $A$ và song song với $(d)$.

b) Tìm $a \in \mathbb{R}$ sao cho khoảng cách từ $A$ đến đường thẳng $(\Delta )$ bằng $1$, biết

$( \Delta ): x+ (a-1)y-3a=0$

c) Viết phương trình đường tròn $(C)$ có tâm $A$ tiếp xúc với trục $Ox$. Tìm tọa độ giao điểm của đường tròn $(C)$ với trục $Oy$.

Giải

a)

  • Phương trình đường thẳng $AB: 2x + y -5=0$

Gọi $M(a; 10+5a)$ là giao điểm của $AB$ và $(d)$

Ta có: $M\in AB \Leftrightarrow 2a + 10 + 5a -5=0 \Leftrightarrow a=-\dfrac{5}{7}$

Vậy tọa độ giao điểm của $AB$ và $(d)$ là $M\left( -\dfrac{5}{7}; \dfrac{45}{7}\right) $

  • Đường thẳng $(d’)$ đi qua $A(1;3)$ và song song với $(d)$, khi đó:

$(d’): \left\{ \begin{array}{l}x=1+t’\\ y=3+5t’ \end{array}\right. $ $(t’\in \mathbb{R})$

b) Ta có: $d_{(A, (d’))} =1$

$ \Leftrightarrow \dfrac{|1 + (a-1)\cdot 3 -3a|}{\sqrt{1+(a-1)^2}} =1$

$\Leftrightarrow 1+ (a-1)^2 = 4 \Leftrightarrow \left[ \begin{array}{l} a=1+\sqrt{3}\\ a=1-\sqrt{3} \end{array}\right. $

c)

  • Ta có: $d_{(A, Ox)} = 3 = R$

Phương trình đường tròn $(C)$ tâm $A$, bán kính $R=3$ là:

$(C) : (x-1)^2 + (y-3)^2 =9$

  • Gọi $N(0,y)$ là giao điểm của $(C)$ và $Oy$.

Ta có: $N\in (C) \Leftrightarrow 1 + (y-3)^2 =9 \Leftrightarrow \left[ \begin{array}{l} y=3+2\sqrt{2}\\ y=3-2\sqrt{2} \end{array}\right. $

Vậy tọa độ giao điểm là $N_1(0; 3+2\sqrt{2})$ và $N_2(0; 3-2\sqrt{2})$.

Bài 7: (1 điểm) Trong mặt phẳng $Oxy$, cho Elip $(E): \dfrac{x^2}{25} + \dfrac{y^2}{9} =1$

a) Tính chu vi hình chữ nhật cơ sở của $(E)$.

b) Điểm $H(m;n)$ thuộc $(E)$ thỏa $F_1H=9F_2H^2$ với $F_1$, $F_2$ là hai tiêu điểm của $(E)$ và $x_{F_1} < 0$. Tìm $m$, $n$.

Giải

a) Ta có: $a=5$, $b=3$

Chu vi hình chữ nhật cơ sở là: $2(2a+2b) = 32$.

b) Ta có: $c^2 = a^2 – b^2 =16 \Rightarrow c=4 \Rightarrow e=\dfrac{4}{5}$

$F_1H = a+e\cdot m = 5+\dfrac{4}{5}m$, $F_2H = a-e\cdot m = 5-\dfrac{4}{5}m $

Ta có: $F_1H = 9F_2H^2 \Leftrightarrow 5+\dfrac{4}{5}m = 9\left( 5-\dfrac{4}{5}m\right) ^2$

$\Leftrightarrow \dfrac{144}{25}m^2 – \dfrac{364}{5}m + 220=0 \Leftrightarrow \left[ \begin{array}{l} m=5 \Rightarrow n=0\\ m=\dfrac{275}{36} \ (l) \end{array}\right. $

Vậy $H(5;0)$.

— HẾT —

Phương trình nghiệm nguyên – Phương pháp sử dụng tính chất chia hết

1. Sử dụng tính chẵn, lẻ

Ví dụ 1: Tìm nghiệm nguyên của phương trình: $x^2 -2y^2 =5$ $(1)$.

Giải

Vì $x$, $y$ nguyên nên từ phương trình $(1)$ suy ra $x$ là số lẻ.

Thay $x=2k+1\ (k\in \mathbb{Z})$ vào $(1)$ ta được

$4k^2 +4k +1 -2y^2 =5 \Leftrightarrow 2(k^2 + k -1) = y^2 \Rightarrow y$ là số chẵn.

Đặt $y=2t\ (t\in \mathbb{Z})$ ta có $2(k^2 +k -1) = 4t^2 \Leftrightarrow k(k+1) = 2t^2 +1$ $(*)$

Vì $k(k+1)$ là số chẵn mà $2t^2 +1$ là số lẻ nên phương trình $(*)$ vô nghiệm.

Vậy phương trình $(1)$ vô nghiệm

Ví dụ 2: Tìm nghiệm nguyên của phương trình $(2x+5y+1)(2^{|x|} + x^2 +x +y) =105$ $(2)$.

(Trích đề thi HSG lớp 9 TP. Hà Tĩnh năm 2006 – 2007)

Giải

Ở bài này ta thấy vế trái là tích của hai số nguyên mà vế phải là số lẻ nên nó phải là tích của hai số nguyên lẻ nên ta có thể sử dụng tính chất chẵn lẻ như sau:

Vì $105$ là số lẻ nên $2x + 5y +1$, $2^{|x|} + x^2 +x +y$ là các số lẻ. Suy ra $y$ là số chẵn , mà $x^2 +x = x(x+1)$ là số chẵn nên $2^{|x|}$ là số lẻ suy ra $x=0$

Thay $x=0$ vào $(2)$ ta được $(5y+1)(y+1) = 105 \Leftrightarrow 5y^2 + 6y -104 =0\Leftrightarrow y=4$ (vì $y$ là số chẵn). Do đó $y=4$. Vậy phương trình có nghiệm nguyên là $(0;4)$.

Ví dụ 3: Giải phương trình nghiệm nguyên $|19x + 15y| + 1975 = |19y + 5x| + 2016^x$ $(3)$.

Giải

Biến đổi phương trình $(3)$ ta được:

$1975 – 2016^x = (|19y + 5x| + 19y + 5x) – (|19x + 5y| + 19x + 5y) + 14(x-y)$.

Vì $|a| +a$ là số chẵn với mọi giá trị nguyên của $a$ nên vế phải là số chẵn do đó $1975 – 2016^x$ phải là số chẵn suy ra $2016^x$ là số lẻ suy ra $x=0$.

Thay $x=0$ vào phương trình $(3)$ ta được $|5y| + 1975 = |19y| +1 \Leftrightarrow 14|y| = 1974 \Leftrightarrow y=141$ hoặc $y=-141$.

Vậy phương trình có hai nghiệm nguyên $(x;y)$ là $(0;141)$ và $(0;-141)$.

Ví dụ 4: Tìm nghiệm nguyên của phương trình $x + x^2 + x^3 = 4y^2 +4$ $(4)$.

Giải

Ta có: $(4) \Leftrightarrow 1+x+x^2 +x^3= 4y^2 +4y +1\Leftrightarrow (x+1)(x^2+1) = (2y+1)^2$ $(*)$

Dễ thấy $(2y +1)^2$ lẻ suy ra $x+1$ và $x^2 +1$ là hai số lẻ. Giả sử $(x+1, x^2 +1) = d$ suy ra $d$ lẻ.

Mặt khác $x+1 \ \vdots \ d \Rightarrow 1-x^2 \  \vdots \ d$, kết hợp với $x^2 +1 \  \vdots \ d$ ta có $1-x^2 + 1+x^2\   \vdots \ d \Rightarrow 2\  \vdots \  d\Rightarrow d=1$ (vì $d$ lẻ)

Vì $(x+1)(x^2 +1)$ là số chính phương (theo $(*)$) và $(x+1,x^2+1)=1$ nên $x+1$ và $x^2 +1$ đều là số chính phương.

Dễ thấy $x^2$ và $x^2 +1$ là 2 số tự nhiên liên tiếp mà đều là số chính phương nên $x=0$.

Khi đó theo $(4)$ thì $y=0$ hoặc $y=-1$.

Vậy nghiệm của phương trình là $(0;0)$ hoặc $(0;-1)$

Ví dụ 5: Chứng tỏ phương trình: $x^4 + y^4 + z^4 + t^4 + k^4 =2015$ không có nghiệm nguyên.

Giải

Nếu $x$ là số chẵn thì $x^4 \  \vdots \ 16$.

Nếu $x$ là số lẻ thì $x^2 : 8$ dư $1$ nên $x^4 = (8k+1)^2 : 16$ dư $1$.

Như vậy mỗi số $x^4$, $y^4$, $z^4$, $t^4$, $k^4$ chia cho $16$ dư $1$ hoặc $0$ nên $x^4+y^4+z^4+t^4+k^4$ chia cho $16$ có số dư không lớn hơn $5$ còn vế phải $2015$ chia cho $16$ dư $15$.

Vậy phương trình không có nghiệm nguyên.

2. Sử dụng tính chất chia hết

Ví dụ 6: Chứng minh rằng không tồn tại các số nguyên $x$; $y$; $z$ thỏa mãn

$$x^{3}+y^{3}+z^{3}=x+y+z+2017\ (6)$$

Giải

$(6) \Leftrightarrow\left(x^{3}-x\right)+\left(y^{3}-y\right)+\left(z^{3}-z\right)=2017$ . Vì $x^{3}-x=(x-1) x(x+1)$  là tích của $3$ số nguyên liên tiếp nên chia hết cho $6$, tương tự $y^3 -y$, $z^3 -z$ cũng chia hết cho $6$ nên vế trái chia hết cho $6$ mà $2017$ không chia hết cho $6$ nên phương trình $(6)$ vô nghiệm.

Vậy không tồn tại các số nguyên $x$; $y$; $z$ thỏa mãn $x^{3}+y^{3}+z^{3}=x+y+z+2017$

Ví dụ 7: Tìm nghiệm nguyên của phương trình: $x^2y -5x^2 -xy -x +y -1=0$ $(7)$

(Trích đề thi HSG lớp $9$ huyện Can Lộc, Hà Tĩnh)

Giải

Đây là phương trình $2$ ẩn mà bậc đối với $y$ là bậc nhất nên ta dễ dàng biểu thị $y$ theo $x$ và ta có cách giải như sau:

$(7) \Leftrightarrow y=\dfrac{5 x^{2}+x+1}{x^{2}-x+1}\left( \text{do } x^{2}-x+1>0\right) \Rightarrow y=5+\dfrac{6 x-4}{x^{2}-x+1}$

Ta có $y \in \mathbb{Z}   \Leftrightarrow(6 x-4)\ \vdots \ \left(x^{2}-x+1\right) $

$\Leftrightarrow 2(3 x-2) \vdots\left(x^{2}-x+1\right) $

$\Leftrightarrow\left[\begin{array}{l} 2 \ \vdots \ \left(x^{2}-x+1\right) \\ 3 x-2 \ \vdots \ \left(x^{2}-x+1\right) \end{array}\right.$

(vì $x^{2}-x+1=x(x-1)+1$ là số lẻ).

  • TH1: $2:\left(x^{2}-x+1\right)$
    $\Leftrightarrow x^{2}-x+1=\pm 1$ (vì $.x^{2}-x+1$ lẻ)

$\Leftrightarrow x=0 ; x=1$ (thỏa mãn $x$ nguyên).

$+$ Với $x=0 \Rightarrow y=1$
$+$ Với $x=1 \Rightarrow y=7$

  • TH2: $(3 x-2):\left(x^{2}-x+1\right)\ (*)$
    $\Rightarrow x(3 x-2)\ \vdots \ \left(x^{2}-x+1\right)$
    $\Rightarrow\left(3 x^{2}-2 x\right)\ \vdots \ \left(x^{2}-x+1\right)$
    $\Rightarrow\left(3 x^{2}-3 x+3+x-3\right)\ \vdots \ \left(x^{2}-x+1\right)$
    $\Rightarrow(x-3) \vdots\left(x^{2}-x+1\right)$
    $\Rightarrow(3 x-9) \vdots\left(x^{2}-x+1\right) \ (**)$

Từ $(*)$ và $(**)$ ta được $7 \vdots\left(x^{2}-x+1\right)\Rightarrow x^2 -x+1$ bằng một trong các giá trị $-7$; $7$; $1$; $-1$.

Từ đây ta được các nghiệm: $(3;7)$, $(0;1)$, $(1;7)$.

Thử lại ta thấy phương trình $(7)$ có các nghiệm nguyên $(x;y)$ là $(3;7)$, $(0;1)$, $(1;7)$.

Ví dụ 8: Tồn tại hay không một số nguyên $n$ thỏa mãn $n^3 + 2015n=2014^{2016} +1$?

Giải

Giả sử tồn tại số nguyên $n$ thỏa mãn phương trình $n^3 + 2015n=2014^{2016} +1$, suy ra:

$$n^3 -n +2016n = 2014^{2016}+1$$

$\Leftrightarrow (n-1)n(n+1)+2016n=2014^{2016}+1$

Do $(n-1)n(n+1)$ là tích của ba số nguyên liên tiếp  nên chia hết cho $3$ và $2016\, \vdots \, 3$ nên $n^3-n+2016n \, \vdots \, 3$ hay $n^3 + 2015\, \vdots \, 3$.

Mặt khác $2014$ chia $3$ dư $1$ nên $2014^{2016}$ chia $3$ dư $1\Rightarrow 2014^{2016}$ chia $3$ dư $1\Rightarrow 2014^{2016}+1$ chia $3$ dư $2$

Từ đó ta thấy điều mâu thuẫn. Vậy không tồn tại số nguyên $n$ thỏa mãn phương trình.

Ví dụ 9: Tồn tại hay không hai số nguyên dương $a$ và $b$ thỏa mãn $a^3 + b^3 =2013$?

Giải

Giả sử tồn tại hai số nguyên dương $a$ và $b$ thỏa mãn $a^3 + b^3 =2013$.

Ta có: $(a+b)^{3}=a^{3}+b^{3}+3 a b(a+b)$
Vì $a^{3}+b^{3}=2013\, \vdots\, 3 \Rightarrow a^{3}+b^{3}+3 a b(a+b)\, \vdots\, 3$
$\Leftrightarrow(a+b)^{3}\, \vdots\, 3 \Rightarrow a+b \, \vdots\, 3 \Rightarrow(a+b)^{3}\, \vdots\, 9$
$\Rightarrow 2013=a^{3}+b^{3}=(a+b)^{3}-3 a b(a+b)\, \vdots \, 9$ (vô lý).
Vậy không tồn tại hai số nguyên dương $a$ và $b$ thỏa mãn $a^3 + b^3 =2013$,

Ví dụ 10: Giải phương trình nghiệm nguyên $x^2(x-y)=5(y-1)$ $(10)$

Giải

Ta có $(10) \Leftrightarrow x^{2}(x-y)=5(y-x)+5(x-1) \Leftrightarrow\left(x^{2}+5\right)(x-y)=5(x-1) .$
Suy ra $5(x-1)\,  \vdots\, \left(x^{2}+5\right) \Rightarrow 5\left(x^{2}+5\right)-5 x(x-1)-5(x-1)\,  \vdots\, \left(x^{2}+5\right)$ hay $30\,  \vdots\,\left(x^{2}+5\right)$
$\Rightarrow\left(x^{2}+5\right) \in\{5 ; 6 ; 10 ; 15 ; 30\}$ và $x$ là số nguyên
$\Rightarrow x \in\{0 ; \pm 1 ; \pm 5\}$.

Thử lại ta được nghiệm nguyên của phương trình là $(0 ; 1); (1 ; 1); (-5 ;-4)$.

Ví dụ 11: Chứng minh phương trình: $x^2 -2^y =2015$ $(11)$ không có nghiệm nguyên.

Giải

$(11) \Leftrightarrow x^{2}=2015+2^y$.
Ta sẽ chứng minh $A=2015+2^{y}$ không phải là số chinh phương với mọi số nguyên $y$.

Thật vậy thay $y$ bằng $0 ; 1; 2$ thì $A$ lần lượt nhận các giá trị là $2016 ; 2017; 2019$ đều không phải là số chính phương. Với $y \geq 3$ thi $2^{y}$ chia hết cho $8$ , còn $2015$ chia $8$ dư $7$ nên $A$ chia $8$ dư $7$ mà số chính phương lẻ chia $8$ chỉ có thể dư $1$ do đó $A$ không phải là số chính phương.

Vậy phương trình  $(11)$ không có nghiệm nguyên.

Ví dụ 12: Tìm các số nguyên dương $a$, $b$ sao cho

$\dfrac{4}{a}+\sqrt[3]{4-b}=\sqrt[3]{4+4 \sqrt{b+b}}+\sqrt[3]{4-4 \sqrt{b}+b}$ $(12)$

Giải

Đặt $\sqrt[3]{2+\sqrt{b}}=x ; \sqrt[3]{2-\sqrt{b}}=y$.

Vì $b>0$ nên $x>0$. Ta có $xy = \sqrt[3]{2+\sqrt{b}} \cdot \sqrt[3]{2-\sqrt{b}}=\sqrt[3]{4-b}$; $x^3 + y^3 =4$

Do đó phương trình $(12)$ trở thành:
$\dfrac{x^{3}+y^{3}}{a}+x y=x^{2}+y^{2} \Leftrightarrow \dfrac{x^{2}+y^{3}}{a}=x^{2}+y^{2}-x y$
$\Leftrightarrow \dfrac{(x+y)\left(x^{2}+y^{2}-x y\right)}{a}=x^{2}+y^{2}-x y$
mà $x^{2}+y^{2}-x y=\dfrac{3}{4} x^{2}+\left(\dfrac{x}{2}-y\right)^{2}>0$

suy ra $x+y=a \Rightarrow \sqrt[3]{2+\sqrt{b}}+\sqrt[3]{2-\sqrt{b}}=a$ $(*)$
$\Rightarrow 4+3 \sqrt[3]{4-b} \cdot a=a^{3}$ $(**)$
$\Leftrightarrow 4-b=\left(\dfrac{a^{3}-4}{3 a}\right)^{3}$
Vì $b$ là số nguyên nên $a^{3}-4\, \vdots \, 3 a \Rightarrow a^{3}-4 \, \vdots \, a$ $\Rightarrow 4 \vdots a \Rightarrow a \in\{1 ; 2 ; 4\}$
Với $a=1 \Rightarrow b=5$.

Với $a=2$ hoặc $a=4$ thì $b$ không phải là số nguyên dưong.

Thử lại: Với $a=1$; $b=5$ ta có $(**)$ đúng tức là
$x^{3}+y^{3}+3 x y a=a^{3} \Leftrightarrow a^{3}-x^{3}-y^{3}-3 x y a=0$
$\Leftrightarrow(a-x-y)\left[(a+x)^{2}+(a+y)^{2}+(x-y)^{2}\right]=0 .$
Do $x>0 ; a>0$ nên $x+a>0 \Rightarrow(a+x)^{2}+(a+y)^{2}+(x-y)^{2}>0 \Rightarrow a-x-y=0$ hay $a=x+y$,
tức là $(*)$ đúng.

Vậy $(a, b)=(1 ; 5)$ là cặp số nguyên dương duy nhất thỏa mãn phương trình $(12)$.

Ví dụ 13: Tìm số tự nhiên $n$ thỏa mãn $361\left(n^{3}+5 n+1\right)=85\left(n^{4}+6 n^{2}+n+5\right)$  $(13)$

Giải
Ta có $(13) \Leftrightarrow \dfrac{n^{3}+5 n+1}{n^{4}+6 n^{2}+n+5}=\dfrac{85}{361}$.
Ta sẽ chứng minh $\dfrac{n^{3}+5 n+1}{n^{4}+6 n^{2}+n+5}$ la phân số tối giản với mọi giá trị $n \in \mathbb{N}$.
Thật vậy, đặt $d=\left(n^{3}+5 n+1 ; n^{4}+6 n^{2}+n+5\right)$.
Suy ra $n^{4}+6 n^{2}+n+5-n\left(n^{3}+5 n+1\right)\,  \vdots \, d$ hay $n^{2}+5\, \vdots\,  d$.

Từ đó $\left(n^{3}+5 n+1\right)-n\left(n^{2}+5\right)$ \,  \vdots \, d hay $1\,\vdots \, d \Rightarrow d=1$.

Vậy phân số $\dfrac{n^{3}+5 n+1}{n^{4}+6 n^{2}+n+5}$ là phân số tối giản.

Mặt khác phân số $\dfrac{85}{361}$ cũng là phân số tối giản mà dạng tối giản của một phân số là duy nhất nên ta có

$\left\{\begin{array}{l}n^{3}+5 n+1=85 \\ n^{4}+6 n^{2}+n+5=361\end{array}\right.$
$\Rightarrow\left(n^{4}+6 n^{2}+n+5\right)-n\left(n^{3}+5 n+1\right)=361-85 n$
$\Leftrightarrow n^{2}+85 n-356=0 \Leftrightarrow(n-4)(n+89)=0$
Vi $n \in \mathbb{N}$ nên $n=4$.

Vậy số tự nhiên cần tìm là $n=4$.

Ví dụ 14: Tìm tất cả các số nguyên dương $m$, $n$ thỏa mãn $3^{m}=n^{2}+2 n-8$ $(14)$

Giải
Ta có $(14) \Leftrightarrow 3^{m}=(n+4)(n-2)$.

Đặt $n+4=3^{x} ; n-2=3^y$ với $x, y$ là số tự nhiên và $x+y=m$, khi đó $3^{x}-3^{y}=6$ hay $3^{y}\left(3^{x-y}-1\right)=6$.

Vì $3^y$ chỉ có ước là lũy thừa của $3$; $3^{x-y}-1$ không chia hết cho $3$ và $6=3.2$ nên $3^{y}=3$ và $3^{x-y}-1=2$ hay $y=1$ và $x=2$.

Từ đó $m=x+y=3$ và $n=3^{y}+2=5$.

Ví dụ 15: Tìm các số nguyên dương $x$, $y$ thỏa $ x^{2}-y !=2015$

Giải
Nếu $y>5$ thì $y !\, \vdots \, 9 \Rightarrow y !+2015$ chia $9$ dư $8$ mà $x^{2}$ chia $9$ chi có thể nhận các số dư là $0 ; 1 ; 4 ; 7$ nên trong trường hợp này không tồn tại nghiệm.

Xét $y$ lần lượt bằng $0 ; 1 ; 2 ; 3 ; 4 ; 5$ đều không có giá trị $x$ thỏa mãn.
Vậy phương trình $(15)$ vô nghiệm.

Ví dụ 16: Tìm tất cả các số tự nhiên $m;n$ để $P=3^{3m^2+6n-61}+4$ là số nguyên tố.
(Trích đề thi HSG TP. Hà Tĩnh, năm hoc $2015-2016$)

Giải
Nhận xét:  Để tìm các số tự nhiên $m, n$ sao cho $P$ là số nguyên tố thì ta có thể chứng minh $P$ chia hết cho
một số nguyên tố $n$ nào đó và khi đó $P=n$

Đặt $3m^2+6n-61=3k+2\ (k\in \mathbb{N})$.

Ta có $P=3^{3 k-2}+4=9.27^{k}+4$

Vì $27\equiv 1 (\bmod 13)$ nên $27^{k}\equiv 1 (\bmod 13)\Rightarrow 9.27^{k} \equiv 9 (\bmod 13) \Rightarrow 9.27^{k}+4 \equiv 13(\bmod 13)$
hay $P\, \vdots\, 13$, mà $P$ là số nguyên tố nên $P=13$, điều này xảy ra khi và chỉ khi $k=0 .$

Suy ra $3 m^{2}+6 n-61=2 \Leftrightarrow m^{2}+2 n=21$
Vì $m ; n$ là các số tự nhiên nên chỉ có 2 cặp số $(m ; n)$ thỏa mãn là $(1 ; 10)$ và $(3 ; 6)$.

Ví dụ 17: Tìm nghiệm nguyên của phương trình $x^{11}+y^{11}=11 z$ $(17)$

Giải
$(17)$ có nghiệm nguyên khi $x^{11}+y^{11}\, \vdots \, 11$.

Vì $11$ là số nguyên tố, theo định lý nhỏ Fermat ta có: $x^{11}- x\, \vdots\, 11$ và $y^{11}-y\, \vdots\, 11 .$

Ta viết $(17)$ dưới dạng: $\left(x^{11}-x\right)+\left(y^{11}-y\right)+(x+y)=11 z$ suy ra $x+y\,  \vdots\,  11$.

Đặt $x+y=11 k ; x=t$ $(k, t \in \mathbb{Z}) .$ Ta có công thức nghiệm: $x=t$, $y=11 k-t$ và $\left[t^{11}+(11 k-t)^{11}\right] \, \vdots\, 11$.

Bài tập rèn luyện.

Bài 1. Giải các phương trình sau trong tập nguyên dương:
a) $ 2x^2+3xy-2y^2=7 $.
b) $ x^3-xy=6x-5y-8 $
c) $ x^3-y^3=91 $.

Bài 2. Tìm các số nguyên $x$, $y$ sao cho:

a) $3^x-y^3=1$;
b) $1+x+x^2+x^3=2^y$;
c) $1+x+x^2+x^3=2003^y$.

Bài 3. Tìm các số nguyên tố $x$, $y$, $z$ thỏa mãn: $x^y+1=z$

Bài 4. Tìm các số nguyên dương $x, y,z$ thỏa $y$ nguyên tố và $y, 3$ không là ước của $z$ thỏa $x^3-y^3=z^2$.

Bài 5. Chứng tỏ rằng các phương trình sau không có nghiệm nguyên

a) $2x^2 +y^2 =1999$.

b) $7x^2 -5y^2 =3$.

c) $x^4 + y^4 + (x+y)^4=4004$.

Bài 6. Tìm nghiệm nguyên của mỗi phương trình sau:

a) $17x^2 +26y^2 = 846$.

b) $3x^2 -3xy =7x -y -21$.

c) $x^3 + 3367 =2^y$.

d) $2^x -3^y =7$.

e) $x! + y! =10z+9$.

f) $|x-y|+|y-z|+|z-x|=2017$.

g) $x^3 +y^3 +z^4 =2003$.

Bài 7. Tồn tại hay không $4$ số nguyên liên tiếp $a$, $b$, $c$, $d$ thỏa mãn $a^3 + b^2 +c+d=491$.

Bài 8. Cho đa thức $f(x)$ có các hệ số nguyên. Biết rằng $f(1)\cdot f(2)=45$. Chứng tỏ đa thức $f(x)$ không có nghiệm nguyên.

Một số bài toán số học hay ôn thi vào 10 Chuyên Toán

Trong khi thì HSG TPHCM vừa qua có một điều đáng tiếc nhất là câu số học không có trong đề thi, làm nhiều thí sinh khá hụt hẫng nhưng cũng làm nhiều thí sinh vui mừng, vì số học luôn là câu hỏi hóc búa của mỗi kì thi. Có lẽ BTC cuộc thi muốn dành sự quan tâm cho các câu hỏi thực tế nên phần số học bị bỏ qua.

Khác với kì thi HSG, kì thi tuyển sinh vào 10 thì đề thi luôn có đủ cả các phần: đại số, số học, hình học và tổ hợp. Số học cũng như tổ hợp, luôn là phần khiến nhiều thí sinh gặp khó khăn, trong bài viết nhỏ này, tôi xin giới thiệu lại một số bài toán số học đã được cho trong các kì thi tuyển sinh của trường Phổ thông Năng khiếu, nơi tôi làm việc hơn 10 năm qua. Các bạn thí sinh chuẩn bị thi vào trường nên xem kĩ lời giải và cố gắng học thật tốt phần này, điều đó sẽ giúp rất nhiều cơ hội trúng tuyển vào lớp chuyên toán.

Số học THCS thì nội dung quay xung quanh các phép chia hết, phương trình nghiệm nguyên, số nguyên tố, số chính phương,…Việc đầu tiên là nắm chắc các tính chất của phép chia hết, tính chất cơ bản nhất của số nguyên tố hay số chính phương. Bài toán chia hết cũng xuất hiện nhiều lần trong đề thi, sau đây là một bài khá đơn giản nhưng hay:

Bài 1. (PTNK 2011 – Chuyên Toán) Cho các số nguyên $a, b, c$ sao cho $2a+b,2b+c, 2c+a$ đều là các số chính phương ().
a) Biết rằng có ít nhất một trong 3 số chính phương trên chia hết cho 3. Chứng minh rằng $(a-b)(b-c)(c-a)$ chia hết cho 27.
b) Tồn tại hay không các số $a, b, c$ thỏa điều kiện (
) mà $(a-b)(b-c)(c-a)$ không chia hết cho 27?

Nhận xét. Đây là một bài toán chia hết, liên quan đến các số chính phương, để ý thấy chủ yếu là chia hết cho 3. Ta phải nghĩ đến một số chính phương chia 3 xảy ra những trường hợp nào, từ đó thiết lập các tính chất đã biết:

  • Một số chính phương khi chia cho 3 dư 0 hoặc 1.
  • $a^2 + b^2 $ chia hết cho 3 khi và chỉ khi $a, b$ đồng thời chia hết cho 3.
  • Việc chứng minh tích chia hết cho 27, thì nghĩ đến việc ta cần chứng minh $a, b, c$ có cùng số dư khi chia cho 3, đó là trường hợp đơn giản nhất. Sau đây là lời giải

a) Giả sử $2a + b = m^2, 2b+c = n^2, 2c + a = p^2$.
Cộng ba đẳng thức lại, ta được $3(a+b+c) = m^2 + n^2 + p^2$. Suy ra $m^2+n^2+p^2$ chia hết cho 3.
Ta thấy bình phương của một số nguyên khi chia cho 3 dư 1 hoặc 0. Do đó nếu 1 trong 3 số, chẳng hạn $m$ chia hết cho 3 thì $n^2+p^2$ chia hết cho 3 và như thế $n^2$ và $p^2$ cũng chia hết cho 3.
Hơn nữa $2a+b = 3a +(b-a)$ chia hết cho 3, suy ra $a-b$ chia hết cho 3. Tương tự thì $b-c, c-a$ chia hết cho 3. Suy ra $(a-b)(b-c)(c-a)$ chia hết cho 27.
b) Tồn tại. Chẳng hạn có thể lấy $a=2, b=0,c=1$.

Sau đây cũng là bài toán chia hết, nhưng ở mức độ khó hơn hẳn, đòi hỏi học sinh phải có suy luận tốt và nắm chắc được nhiều kiến thức.
Bài 2. (PTNK 2016 – CT) Cho $x, y$ là hai số nguyên dương mà $x^2 + y^2 + 10$ chia hết cho $xy$.

a) Chứng minh rằng $x, y$ là hai số lẻ và nguyên tố cùng nhau.
b) Chứng minh $k = \dfrac{x^2+y^2+10}{xy}$ chia hết cho 4 và $k \geq 12$.

Nhận xét. Bài toán này cũng giống bài toán trên, là liên quan đến các số chính phương $x^2, y^2$. Việc chứng minh chẵn lẻ liên quan đến số dư khi chia cho 4 của một số chính phương.

Câu a) chỉ là bài toán xét trường hợp khá dễ nhìn, khi phản chứng là giả sử $x, y$ không cùng là số lẻ, từ đó khi xét tính chẵn lẻ của $x^2 + y^2 + 10$ và $xy$ sẽ giải quyết được vấn đề. \ Việc chứng minh nguyên tố cùng nhau thì cách tiếp cận quen thuộc nhất là gọi ước chung lớn nhất và chứng minh nó bằng 1.
Câu b) khó hơn khi có hai ý, ý đầu có thể áp dụng tiếp câu a, nhưng ý sau việc chứng minh $k \geq 12$ có thể đánh lừa nhiều học sinh trong khi việc đơn giản chỉ là chứng minh $k$ chia hết cho 3 là giải quyết được bài toán, mà chứng minh $k$ chia hết cho $3$ cũng là việc xét số dư của tử và mẫu thức khi chia cho 3. Sau đây là lời giải chi tiết.

Lời giải.
a) Giả sử trong hai số $x, y$ có một số chẵn, vì vai trò $x, y$ như nhau nên có thể giả sử $x$ chẵn. Suy ra $x^2 + y^2 + 10$ chia hết cho 2, suy ra $y$ chẵn. Khi đó $x^2 + y^2 + 10$ chia hết cho 4, suy ra 10 chia hết cho 4 vô lý.
Vậy trong hai số đều là số lẻ.
Đặt $d= (x,y)$, $x= d.x’, y = d.y’$ ta có $x^2 + y^2 + 10 = d^2(x’^2 + y’^2) + 10$ chia hết cho $d^2x’y’$. Suy ra 10 chia hết cho $d^2$. Suy ra $d= 1$. Vậy $x, y$ nguyên tố cùng nhau.
b)  Đặt $x = 2m + 1, y = 2n + 1$, suy ra $k = \dfrac{4(m^2+m+n^2+n+3}{(2m+1)(2n+1)}$.
Ta có $4, (2m+1).(2n+1)$ nguyên tố cùng nhau. Suy ra $m^2 + n^2 +m+n+3$ chia hết cho $(2m+1)(2n+1)$. Từ đó ta có $k$ chia hết cho 4. Chứng minh $k \geq 12$ bằng hai cách.
Cách 1. Ta có $x^2 + y^2 + 10 = kxy$.
Nếu trong hai số $x, y$ có một số chia hết cho 3, giả sử $x$ chia hết cho 3. Ta có $y^2 + 10$ chia hết cho 3 vô lý vì $y^2 $ chia 3 dư 0 hoặc dư 1.
Vậy $x, y$ không chia hết cho 3, suy ra $x^2 + y^2 + 10$ chia hết cho 3 và $3, xy$ nguyên tố cùng nhau. Do đó $k$ chia hết cho 3.
Do đó $k$ chia hết cho 12, vậy $k\geq 12$.
Cách 2. Xét $k=4$ ta có $x^2 + y^2 + 10 = 4xy$ () $\Leftrightarrow (x-2y)^2 = 3y^2 – 10$.
Ta có $(x-2y)^2$ chia 3 dư 0 hoặc 1 mà $3y^2-10$ chia 3 dư 2, nên phương trình (
) không có nghiệm nguyên dương.
Xét $k=8$ ta có $x^2 + y^2 + 10 = 8xy (*)\Leftrightarrow (x-4y)^2 = 15y^2 -10$.
Ta có $(x-4y)^2$ chia 3 dư 0 hoặc 1 mà $15y^2-10$ chia 3 dư 2 nên (**) không có nghiệm nguyên dương.
Vậy $k \geq 12$.

Sau chia hết, các kiến thức về phương trình nghiệm nguyên cũng rất quan trọng, trong nhiều bài thi của PTNK kĩ năng giải phương trình nghiệm nguyên giúp mình được nhiều việc.\
Sau đây là bài toán số học, nhưng bản chất số học thì ít mà đại số thì nhiều, chỉ việc biến đổi đại số vài dòng là xong. Tuy vậy nhiều học sinh sau khi đọc đề lại phát hoảng, vì đề bài phát biểu nghe rất “kinh”, đánh lừa được các thí sinh yếu bóng vía. Bài toán sau chế tác từ bài thi của Bungari:
Bài 3. (PTNK 2012 – CT) Số nguyên dương $n$ được gọi là số điều hòa nếu như tổng các bình phương của các ước
của nó ( kể cả 1 và n ) đúng bằng $(n+3)^2$ .

a) Chứng minh rằng số 287 là số điều hòa.
b) Chứng minh rằng số $n = p^3$( $p$ nguyên tố ) không phải là số điều hòa.
c) Chứng minh rằng nếu số $n = pq$ ( $p,q$ là các số nguyên tố khác nhau) là số điều hòa thì $n
+ 2$ là số chính phương.

Nhận xét. Bài toán đưa ra định nghĩa số điều hòa, nghe có vẻ ghê gớm nhưng không có ý nghĩa mấy, hoặc không phù hợp với từ điều hòa hay dùng. Nhiều thí sinh đọc đề mà thuộc dạng yếu bóng vía sẽ bỏ qua, ngay cả bỏ qua câu a rất dễ. Tuy nhiên nếu đã hiểu định nghĩa, việc giải quyết các câu hỏi là điều khá dễ, cũng liên

Lời giải. 

a)  Số $n = 287$ có các ước dương là 1, 7, 41, 287. Ta có $1^2 + 7^2 + 41^2 +287^2 = (287+3)^2$ nên 287 là số điều hòa.
b) Các ước dương của $n = p^3$ là $1, p, p^2, p^3$. Giả sử $n$ là số điều hòa, ta có $(n+3)^2 = 1^2 + p^2 + p^4 + p^6 \Leftrightarrow p^4 + p^2 = 6p^3 + 8$. Suy ra $p|8$ mà $p$ nguyên tố nên $p = 2$. Thử lại thấy không thỏa, vậy $n = p^3$ không phải là số điều hòa với mọi số nguyên tố $p$.
c) Các ước dương của $n = pq$ là $1, p, q, pq$. Vì $n$ là số điều hòa nên ta có:
$1+p^2+q^2+p^2q^2 = (pq+3)^2 \Leftrightarrow p^2 + q^2 = 6pq + 8 \Leftrightarrow (p+q)^2 = 4(pq+2)$. Do 4 là số chính phương nên $pq+2$ cũng là số chính phương hay $n+2$ là số chính phương

Sau đây là một bài khá đẹp, ý tưởng từ phương pháp lùi vô hạn trong giải phương trình nghiệm nguyên, tuy vậy các phải có suy luận một chút khác biệt.
Bài 4.  (PTNK 2014 – CT)

a) Tìm các số nguyên $a, b, c$ sao cho $a+b+c = 0$ và $ab+bc+ac+3=0$.
b) Cho $m$ là số nguyên. Chứng minh rằng nếu tồn tại các số nguyên $a, b, c$ khác 0 sao cho $a+b+c = 0$ và $ab+bc+ac + 4m = 0$ thì cũng tồn tại các số nguyên $a’, b’, c’$ sao cho $a’+b’+c’ = 0$ và $a’b’+b’c’+a’c’ + m = 0$.
c)  Với $k$ là số nguyên dương, chứng minh rằng không tồn tại các số nguyên $a, b, c$ khác 0 sao cho $a+b+c = 0$ và $ab+bc+ac + 2^k = 0$.

Lời giải
a)  Từ $a+b+c = 0, ab+bc+ca = – 3$ ta có $a^2 + b^2 + c^2 = 6$. Do $a, b, c$ vai trò như nhau nên ta có thể giả sử $|a| \geq |b| \geq |c|$. Khi đó $ 1 < |a| < 3$. Suy ra $|a| = 2$, suy ra $a = 2$ hoặc $a = – 2$.
Với $a = 2$ thì $b + c = -2, b^2 + c^2 = 2$ giải ra được $b = c =-1$.Ta có có bộ $(2;-1;-1)$ và các hoán vị. \ Với $a = -2 $ thì $b+c = 2, b^2 + c^2 = 2$, giải ra được $b = c = 1$, ta có bộ $(-2;1;1)$ và hoán vị.
b) Ta có $a + b + c = 0$ chẵn (1)và $ab+bc+ac = -4m$ chẵn.(2)
Nếu 3 số $a, b, c$ đều lẻ, không thỏa (1).
Nếu có 1 chẵn, 2 lẻ thì không thỏa (2).
Do đó 3 số $a, b,c$ đều chẵn. Khi đó đặt $a’ = \dfrac{a}{2}, b’ = \dfrac{b}{2}, c’ = \dfrac{c}{2}$ thì $a’,b’,c’$ thỏa đề bài.
c) Với $k = 0$ ta có $a+b+c = 0, ab+bc+ac = -1$ thì $a^2 + b^2 +c^2 = 2$ (3) . Không có bộ 3 số nguyên $a, b, c$ khác 0 thỏa (3).
Với $k = 1$ thì $a+b+c=0,ab+bc+ac = -2$ khi đó $a^2+b^2+c^2 = 4$ (4). Giả sử $|a|$ nhỏ nhất khi đó $ 1\leq a^2 < 2$ (không có $a$ thỏa). Không tồn tại $a, b, c$ nguyên khác 0 thỏa (4).
Với $k > 1$.
Nếu $k$ chẵn, đặt $k = 2n$ ta có $a+b+c = 0, ab+bc+ac + 4^n = 0$, theo câu b), tồn tại $a_1, b_1, c_1$ nguyên thỏa $a_1 + b_1 +c_1 = 0, a_1b_1+a_1c_1+b_1c_1 + 4^{n-1} = 0$.

Tương tự ta sẽ được $a_n, b_n,c_n$ nguyên thỏa $a_n+b_n+c_n = 0, a_nb_n+b_nc_n+a_nc_n = -1$ (vô nghiệm).
Nếu $k$ lẻ đặt $k = 2n+1$ ta có $a+b+c = 0, ab+bc+ac + 2.4^n = 0$, làm tương tự trên ta được $a_n+b_n+c_n = 0, a_nb_n+b_nc_n+a_nc_n = – 2$ (vô nghiệm).
Vậy không tồn tại các số $a, b, c$ khác 0 thỏa đề bài.

Ngoài ra việc sử dụng đồng dư cũng được khai thác qua các bài toán chia hết hoặc các bài toán phương trình nghiệm nguyên, nhiều khi được sử dụng một cách bất ngờ cũng gây khó khăn cho thí sinh và rất ít thí sinh làm trọn vẹn, sau đây là một ví dụ:
Bài 5. (PTNK 2018 – CT) Cho $ A_n = 2018^n + 2032^n – 1964^n – 1984^n $ với $ n $ là số tự nhiên.

a) Chứng minh với mọi số tự nhiên $ n $ thì $ A_n $ chia hết cho $ 51 $.
b) Tìm tất cả những số tự nhiên $ n $ sao cho $ A_n $ chia hết cho $ 45. $

Nhận xét. Đây là dạng toán khá quen thuộc với học sinh, chỉ là việc xét các trường hợp một cách khéo léo và cẩn thận để giải quyết bài toán.

a) Do $ 2018 \equiv 1964 \quad \text{(mod 3)} \Rightarrow 2018^n \equiv 1964^n \quad \text{(mod 3)} . $
$ 2032 \equiv 1984 \quad \text{(mod 3)} \Rightarrow 2032^n \equiv 1984^n \quad \text{(mod 3)} $.
$ \Rightarrow A_n \ \vdots \ 3. $
Ta lại có $ 2018 \equiv 1984 \quad \text{(mod 17)} \Rightarrow 2018^n \equiv 1984^n \quad \text{(mod 17)} $.
$ 2032 \equiv 1964 \quad \text{(mod 17)} \Rightarrow 2032^n \equiv 1964^n \quad \text{(mod 17)} $.
$ \Rightarrow A_n \ \vdots\ 17. $
Do $ (3; 17) = 1 $ nên $ A_n \ \vdots \ 51 \quad \forall n$
b) $ A_n = 2018^n + 2032^n – 1964^n – 1984^n. $

  • Ta xét các trường hợp của $ n $ để $ A_n \ \vdots \ 5. $
    Ta có $ A_n \equiv (-2)^n + 2^n -2\cdot(-1)^n $ (mod 5).
    Do đó nếu $ n $ lẻ $ \Rightarrow A_n \equiv 2 \quad $(mod 5)$ \quad \text{(loại)}$.
  • Nếu $ n = 4k \Rightarrow A_n \equiv 2\cdot 2^{4k} -2 \equiv 2-2 \equiv 0 \quad$ (mod 5) (nhận)
  • Nếu $ n = 4k + 2 \Rightarrow A_n \equiv 2\cdot 2^{4k+2} -2 \equiv 8 – 2 \equiv 6$ (mod 5) (loại).
    Vậy $ A_n \ \vdots \ 5 \Leftrightarrow n \ \vdots \ 4. $
    Ta xét các trường hợp của $ n $ để $ A_n \ \vdots \ 9. $
    Ta có
  • $A_n \equiv 2^n + (-2)^n – 2^n – 4^n \quad \text { (mod 9)}$

$\equiv 2^n -4^n \quad \text { (mod 9) \quad (Do n chẵn).} $
$\equiv 2^n(1-2^n) \quad \text { (mod 9)}$

Vì $ (2;9 ) = 1 \Rightarrow 2^n – 1 \ \vdots \ 9$.
Xét $ n= 3k $ với $ k \in \mathbb{N} $. Ta có $ A_n \equiv 2^{3k} – 1 \equiv (-1)^k – 1 \quad \text { (mod 9)} \Rightarrow k$ chẵn
Xét $ n= 3k + 1 $ với $ k \in \mathbb{N} $. Ta có $ A_n \equiv 2^{3k + 1} – 1 \equiv 2\cdot(-1)^k – 1 \quad \text { (mod 9) \quad (loại)}. $
Xét $ n= 3k + 2 $ với $ k \in \mathbb{N} $. Ta có $ A_n \equiv 2^{3k + 2} – 1 \equiv 4\cdot(-1)^k – 1 \quad \text { (mod 9) \quad (loại)}. $

Vậy $ A_n \ \vdots \ 45 \Leftrightarrow n \ \vdots \ 12. $

Tóm lại bài toán số học thi vào lớp 10 Chuyên Toán luôn là bài toán khó, nhưng không phải không kiếm được điểm, chỉ cần thí sinh bình tĩnh vận dụng được kiến thức đã học có thể giải quyết được các ý a, ý b thì phức tạp hơn đòi hỏi phải phân tích và xử lí khéo léo cẩn thận hơn, âu cũng hợp lí cho đề thi chọn học sinh có năng khiếu toán.\
Sau đây có một số bài tập cho các em rèn luyện trước kì thi cam go này.

Bài tập rèn luyện

Bài 1. (Tuyển sinh vào lớp 10 Chuyên Toán trường PTNK 1997)
a) Tìm tất cả các số nguyên dương $n$ sao cho $n2^n + 3^n$ chia hết cho 5.
b) Tìm tất cả các số nguyên dương $n$ sao cho $n2^n + 3^n $ chia hết cho 25.

Bài 2. (Tuyển sinh vào lớp 10 Chuyên Toán trường PTNK 1997)
a) Tìm tất cả các số nguyên dương sao cho $2^n – 1$ chia hết 7.
b) Cho số nguyên tố $p \geq 5$. Đặt $A = 3^p – 2^p – 1$. Chứng minh $A$ chia hết cho $42p$.

Bài 3. Cho $n$ là số tự nhiên. Chứng minh rằng $3^nn^3+1$ chia hết cho 7 khi và chỉ khi $3^n + n^3$ chia hết cho 7.

Bài 4. Tìm tất cả các số tự nhiên x, y thỏa: ${5^x} = {y^4} + 4y + 1$.

Bài 5. Chứng minh rằng phương trình ${y^2} + y = x + {x^2} + {x^3}$ không có nghiệm nguyên dương.

Đề thi vào lớp 10 chuyên toán Phổ thông Năng khiếu: Năm 2016

ĐỀ BÀI

BÀI 1. 
a) Giải hệ $\left\{\begin{array}{l} (x-2y)(x+my) = m^2-2m-3 \\(y-2x)(y+mx) = m^2-2m-3
\end{array} \right.$ khi $m = -3$ và tìm $m$ để hệ co ít nhất một nghiệm $(x_o, y_o)$ thỏa $x_o > 0, y_o > 0$.
b)  Tìm $a \geq 1$ để phương trình $ax^2 + (1-2a)x + 1-a=0$ có hai nghiệm phân biệt $x_1, x_2$ thỏa $x_2^2 – ax_1 = a^2-a-1$.
BÀI 2.  Cho $x, y$ là hai số nguyên dương mà $x^2 + y^2 + 10$ chia hết cho $xy$.

a) Chứng minh rằng $x, y$ là hai số lẻ và nguyên tố cùng nhau.
b)  Chứng minh $k = \dfrac{x^2+y^2+10}{xy}$ chia hết cho 4 và $k \geq 12$.

BÀI 3.  Biết $x \geq y \geq z, x + y + z =0$ và $x^2 + y^2 + z^2 = 6$.

a) Tính $S = (x-y)^2 + (x-y)(y-z) + (y-z)^2$.
b) Tìm giá trị lớn nhất của $P = |(x-y)(y-z)(z-x)|$.

BÀI 4. Tam giác $ABC$ nhọn có $\angle BAC > 45^o$. Dựng các hình vuông $ABMN, ACPQ$ ($M$ và $C$ khác phía đối với $AB$; $B$ và $Q$ khác phía đối với $AC$). $AQ$ cắt đoạn $BM$ tại $E$ và $NA$ cắt đoạn $CP$ tại $F$.

a) Chứng minh $\triangle ABE \sim \triangle ACF$ và tứ giác $EFQN$ nội tiếp.
b) Chứng minh trung điểm $I$ của $EF$ là tâm đường tròn ngoại tiếp tam giác $ABC$.
c) $MN$ cắt $PQ$ tại $D$, các đường tròn ngoại tiếp các tam giác $DMQ$ và $DNQ$ cắt nhau tại $K$ ($K$ khác $D$), các tiếp tuyến tại $B$ và $C$ của đường tròn ngoại tiếp tam giác $ABC$ cắt nhau tại $J$. Chứng minh các điểm $D, A, K, J$ thẳng hàng.

BÀI 5. Với mỗi số nguyên dương $m$ lớn hơn 1, kí hiệu $s(m)$ là ước nguyên dương lớn nhất của $m$ và khác $m$. Cho số tự nhiên $n > 1$, đặt $n_o = n$ và lần lượt tính các số $n_1 =n_o- s(n_o), n_2 = n_1 – s(n_1), …, n_{i+1} = n_i – s(n_i)$,…. Chứng minh tồn tại số nguyên dương $k$ để $n_k = 1$ và tính $k$ khi $n = 2^{16}.14^{17}$.

Hết

Lời giải. 

Bài 1: 

a) Đây là hệ đối xứng loại 2, nên phương pháp giải là lấy (1) – (2) để có thừa số $x-y$, từ đó giải tiếp.

Chú ý xét trường hợp và điều kiện $x_o > 0, y_o > 0$ để biện luận. Những dạng toán này chú ý tính toán cẩn thận và xét đầy đủ các trường hợp.

b) Là bài dạng  biểu thức nghiệm không đối xứng, có nhiều cách, có thể tính nghiệm theo $m$ từ đó suy ra $m$.

Lời giải.

a) Khi $m = -3$ ta có hệ:

$\left\{\begin{array}{l} (x-2y)(x-3y)=12 \\(y-2x)(y-3x) = 12 \end{array} \right.$

$\Leftrightarrow \left\{\begin{array}{l} x^2-5xy+6y^2=12 (1)\\y^2-5xy+6x^2 = 12(2) \end{array} \right.$

Lấy (1) – (2) ta có $5(y^2-x^2) = 0 \Leftrightarrow x = y, x = -y$.
Với $x= y$ thế vào (1) ta có $x^2 =6 \Leftrightarrow x = \sqrt{6}, y = \sqrt{6}$ hoặc $x=-\sqrt{6}, y = -\sqrt{6}$.
Với $x = -y$ thế vào (1) ta có $x^2 = 1 \Leftrightarrow x = 1, x = -1$. Với $x = 1, y = -1$, với $x=-1, y = 1$.
Vậy hệ phương trình có 4 nghiệm.
Hệ có thể viết lại $\left\{\begin{array}{l} x^2+(m-2)xy-2my^2 = m^2-2m-3 (1)\\y^2+(m-2)xy-2mx^2= m^2-2m-3(2) \end{array} \right.$

Lấy (1) – (2) ta có $(2m+1)(y^2-x^2) = 0$.
Xét $m = \dfrac{-1}{2}$ ta có hệ trở thành: $x^2 – \dfrac{5}{2}xy + y^2 + \dfrac{7}{4}=0$, có nghiệm $ (\dfrac{5+\sqrt{2}}{2},2)$ thỏa đề bài.
Xét $m \neq \dfrac{-1}{2}$ ta có $x = y$ hoặc $x = -y$.

Trường hợp $x = -y$ không thỏa đề bài.
Trường hợp $x = y$, thế vào (1) ta có:

$-(m+1)x^2 = m^2-2m-3 = (m+1)(m-3)$.
Nếu $m = -1$ ta có $(x-2y)(x-y) = 0, (y-2x)(y-x) = 0$ có nghiệm thỏa đề bài, chỉ cần chọn $x=1, y=1$.
Nếu $m \neq -1$ ta có $x^2 = 3-m$ để có nghiệm $x_o = y_o > 0$ thì $m < 3$.

Khi đó phương trình có nghiệm $x_0 = \sqrt{3-m}, y_o = \sqrt{3-m}$ thỏa đề bài.

Kết luận $m = \dfrac{-1}{2}, m = -1$ và $m < 3$.

b) Điều kiện để phương trình có hai nghiệm phân biệt $\Delta = (1-2a)^2-4a(1-a) = 8a^2-8a+1 > 0$.
Theo định lý Viete ta có $x_1 + x_2 = \dfrac{2a-1}{a}$, suy ra $ax_1 + ax_2 = 2a – 1$. Suy ra $ax_1 = 2a-1-ax_2$.
Kết hợp giả thiết ta có $x_2^2+ax_2-2a+1=a^2-a-1
\Leftrightarrow x_2^2+ax_2-a^2-a+2=0
\Leftrightarrow ax_2^2+a^2x_2-a^3-a^2+2a=0$ (1).
Mà $x_2$ là nghiệm của phương trình nên ta có $ax_2^2+(1-2a)x_2+1-a = 0 (2)$.
Lấy (1) – (2) ta có $(a^2+2a-1)x_2 = a^3+a^2-3a+1$, mà $a \geq 1$ nên $a^2 + 2a – 1 \neq 0$, suy ra $x_2 = a-1$.
Thế vào phương trình (1) ta có $(a-1)^2+a(a-1)-a^2-a+2 = 0 \Leftrightarrow a=1, a=3$.
Thử lại ta nhận hai giá trị $a = 1, a=3$.

Bài 2.

a) Giả sử trong hai số $x, y$ có một số chẵn, vì vai trò $x, y$ như nhau nên có thể giả sử $x$ chẵn. Suy ra $x^2 + y^2 + 10$ chia hết cho 2, suy ra $y$ chẵn. Khi đó $x^2 + y^2 + 10$ chia hết cho 4, suy ra 10 chia hết cho 4 vô lý.
Vậy trong hai số đều là số lẻ.
Đặt $d= (x,y)$, $x= d.x’, y = d.y’$ ta có $x^2 + y^2 + 10 = d^2(x’^2 + y’^2) + 10$ chia hết cho $d^2x’y’$. Suy ra 10 chia hết cho $d^2$. Suy ra $d= 1$. Vậy $x, y$ nguyên tố cùng nhau.

b) Đặt $x = 2m + 1, y = 2n + 1$, suy ra $k = \dfrac{4(m^2+m+n^2+n+3}{(2m+1)(2n+1)}$, ta có $4, (2m+1).(2n+1)$ nguyên tố cùng nhau. Suy ra $m^2 + n^2 +m+n+3$ chia hết cho $(2m+1)(2n+1)$. Từ đó ta có $k$ chia hết cho 4. Chứng minh $k \geq 12$ bằng hai cách.
Cách 1: Ta có $x^2 + y^2 + 10 = kxy$.
Nếu trong hai số $x, y$ có một số chia hết cho 3, giả sử $x$ chia hết cho 3. Ta có $y^2 + 10$ chia hết cho 3 vô lý vì $y^2 $ chia 3 dư 0 hoặc dư 1.
Vậy $x, y$ không chia hết cho 3, suy ra $x^2 + y^2 + 10$ chia hết cho 3 và $3, xy$ nguyên tố cùng nhau. Do đó $k$ chia hết cho 3.
Do đó $k$ chia hết cho 12, vậy $k\geq 12$.
Cách 2: Xét $k=4$ ta có $x^2 + y^2 + 10 = 4xy$ () $\Leftrightarrow (x-2y)^2 = 3y^2 – 10$.
Ta có $(x-2y)^2$ chia 3 dư 0 hoặc 1 mà $3y^2-10$ chia 3 dư 2, nên phương trình (
) không có nghiệm nguyên dương.
Xét $k=8$ ta có $x^2 + y^2 + 10 = 8xy (*)\Leftrightarrow (x-4y)^2 = 15y^2 -10$.
Ta có $(x-4y)^2$ chia 3 dư 0 hoặc 1 mà $15y^2-10$ chia 3 dư 2 nên (**) không có nghiệm nguyên dương.
Vậy $k \geq 12$.

Bài 3. Bài này là bài bdt khó, nhưng câu a đã gợi ý để làm câu b, chú ý các bdt phụ quan trọng.

a) Ta có $(x+y+z)^2 = x^2+y^2+z^2 + 2(xy+yz+xz)$. Suy ra $xy + yz + xz = -3$.
Ta có $S = (x-y)^2 + (x-y)(y-z) + (y-z)^2 $

$= x^2 -2xy+y^2+xy-y^2+yz-xz+y^2-2yz + z^2$

$= x^2+y^2+z^2-yx-yz-xz = 9$.

b) Ta có thể chứng minh trực tiếp không qua câu a) như sau:

$(x-y)(y-z) \leq \dfrac{1}{3}((x-y)^2+(x-y)(y-z) + (y-z)^2) = 3$. Suy ra $P \leq 3|x-z|$.
Ta có $|x-z| \leq \sqrt{2(x^2+z^2)}\leq \sqrt{2(x^2+y^2+z^2)}= \sqrt{12}$. Suy ra $P \leq 3\sqrt{12} = 6\sqrt{3}$.
Đẳng thức xảy ra khi $x = \sqrt{3}, y =0, z = -\sqrt{3}$.

Vậy giá trị lớn nhất của P là $6\sqrt{3}$ khi $x = \sqrt{3}, y =0, z = -\sqrt{3}$

Ngoài ra ta có thể áp dụng câu a: Đặt $a = x-y, b = y-z$ ta có $a^2+b^2+ab = 9$, cần tìm giá trị lớn nhất của $P = ab(a+b)$.

Áp dụng $ab \leq \dfrac{1}{4} (a+b)^2$ và $a^2+b^2+ab \geq \dfrac{3}{4} (a+b)^2$. Ta có điều cần chứng minh.

Bài 4. Đây là bài hình khó và dài, các em chú ý hình vẽ cụ thể là góc, vẽ hình chính xác. 

Tránh dùng các kiến thức cấp 3: phương tích trục đẳng phương,…

a) Ta có $\angle EAB + \angle BAC = 90^\circ, \angle FAC + \angle BAC = 90^\circ$. Suy ra $\angle EAB = \angle FAC$.
Mặt khác có $\angle ABE = \angle ACF = 90^\circ$. Suy ra $\triangle ABE \backsim \triangle ACF$.
Suy ra $AE\cdot AC = AF\cdot AB$ mà $ AC = AQ, AB = AN$. Suy ra $AE\cdot AQ = AN\cdot AF$. Suy ra tứ giác $QNEF$ nội tiếp.
b) Cách 1: Gọi $T$ là giao điểm của $MB$ và $CP$. Ta có $ABTC$ nội tiếp và $AT$ là đường kính của đường tròn ngoại tiếp tam giác $ABC$. Mặt khác ta có $AF|| ET, AE|| FT$ nên $AETF$ là hình bình hành. Suy ra trung điểm $EF$ cũng là trung điểm $AT$. Do đó trung điểm $I$ của $EF$ là tâm đường tròn ngoại tiếp tam giác $ABC$.
Cách 2: Xét hình thang $AEBF$, gọi $X$ là trung điểm của $AB$ khi đó $IX$ thuộc đường trung bình của hình thang, suy ra $IX || BE$ hay $IX$ vuông góc $AB$ vậy $IX$ là trung trực của đoạn $AB$. Chứng minh tương tự thì $I$ cũng thuộc trung trực đoạn $AC$. Vậy $I$ là tâm ngoại tiếp của tam giác $ABC$.

b) $DA$ cắt $EF$ tại $K’$ ta có $\angle NFK’ = \angle NQA$ (vì $NQFE$ nội tiếp). Mà $\angle NQA = \angle NDA$(vì $AQDN$ nội tiếp). Suy ra $\angle NDA = \angle AFK’$.
Suy ra $NDFK’$ nội tiếp. Chứng minh tương tự ta có $DQK’E$ nội tiếp.
Do đó $K’$ là giao điểm của đường tròn ngoại tiếp hai tam giác $DQM$ và $DPN$. Vậy $K’ \equiv K$. Suy ra $D, A, K$ thẳng hàng.
Ta có $\angle BKE = \angle EAB = \angle CAF = \angle CKF$. Suy ra $\angle BKC = 180^\circ – 2 \angle BKE = 2(90^\circ – \angle EAB) = 2\angle BAC = \angle BIC$. Suy ra $BKIC$ nội tiếp. Mà $IBJC$ nội tiếp, suy ra và $JB = JC$ nên $\angle BKJ = \angle CKJ$. Hay $KJ$ là phân giác $\angle BKC$.
Mặt khác $\angle BKA = 180^\circ – \angle AEB = 180^\circ – \angle AFC = \angle AKC$. Suy ra tia đối của tia $KA$ cũng là phân giác của $\angle BKC$. Do đó $A, K, J$ thẳng hàng.
Vậy 4 điểm $D, A, K, J$ thẳng hàng.

Bài 5. Đây là bài toán lạ và khá hay, sử dụng đơn biến.

Ta có $s(n_i) < n_i$, suy ra $n_i – s(n_i) \geq 1$. Suy ra $n_{i+1} \geq 1$. Do đó $n_i \geq 1$ với mọi $i = 1, 2, …$.
Mặt khác $n_{i+1} = n_i – s(n_i) < n_i$ với mọi $i$. Suy ra $n=n_o > n_1 > n_2 > …>…$.
Nếu không tồn tại $n_k$ để $n_k = 1$ ta xây dựng được dãy vô hạn các số nguyên dương giảm và nhỏ hơn $n$ (vô lý) vì số các số nhỏ hơn $n$ là bằng $n-1$.
Vậy tồn tại $k$ sao cho $n_k = 1$.
Với $n=2^{16}.14^{17} = 2^{33}.7^{17}$, ta có $n_1 = 2^{33}7^{17} – 2^{32}.7^{17}= 2^{32}.7^{17}$.\
$n_2 = 2^{31}.7^{17}$.
Tiếp tục ta có $n_{33} = 7^{17}$.
Đặt $m_o= 7^{17}$ ta có $m_1 = 6.7^{16}$, $m_2 = 3.7^{16}, m_3 = 2.7^{16}, m_4 = 7^{16}$. Tương tự ta có $m_8 = 7^{15}$,…,$m_{68} = 7^0 = 1$.
Vậy $k = 33 + 68 = 101$.

Đáp án và bình luận thi vào lớp 10 PTNK năm 2013: Đề chuyên toán

ĐỀ BÀI

BÀI 1. Cho phương trình $x^2-4mx+m^2-2m+1=0$ (1) với m là tham số .

a) Tìm m sao cho phương trình (1) có hai nghiệm phân biệt. Chứng minh rằng khi đó hai
nghiệm không thể trái dấu.
b)  Tìm $m$ để phương trình có hai nghiệm $x_1, x_2$ thỏa $|x_1 -x_2| =1$.

BÀI 2.  Giải hệ phương trình $\left\{ \begin{array}{l}
3{x^2} + 2y + 1 = 2z\left( {x + 2} \right)\\
3{y^2} + 2z + 1 = 2x\left( {y + 2} \right)\\
3{z^2} + 2x + 1 = 2y\left( {z + 2} \right)
\end{array} \right.$

BÀI 3. Cho $x, y$ là hai số không âm thỏa $x^3+y^3 < x- y$.

a) Chứng minh rằng $y \leq x \leq 1$.
b) Chứng minh rằng $x^3+y^3 \leq x^2 + y^2 \leq 1$.

BÀI 4.  Cho $M = a^2 + 3a + 1$ với $a$ là số nguyên dương.

a) Chứng minh rằng mọi ước của $M$ đều là số lẻ.
b) Tìm $a$ sao cho $M$ chia hết cho 5. Với những giá trị nào của $a$ thì $M$ là lũy thừa của 5?

BÀI 5.  Cho tam giác $ABC$ có góc $\angle A = 60^o$ , đường tròn $(I)$ nội tiếp tam giác (với tâm I) tiếp xúc với các cạnh $BC,CA,AB$ lần lượt tại $D,E,F$. Đường thẳng $ID$ cắt $EF$ tại $K$, đường thẳng qua $K$ và song song với $BC$ cắt $AB,AC$ theo thứ tự tại $M,N$.

a) Chứng minh rằng các tứ giác $IFMK$ và $IMAN$ nội tiếp .
b) Gọi $J$ là trung điểm cạnh $BC$.Chứng minh rằng ba điểm $A,K,J$ thẳng hàng.
c) Gọi $r$ là bán kính của dường tròn $(I)$ và $S$ là diện tích tứ giác $IEAF$.Tính $S$ theo $r$ và
chứng minh $S_{IMN} \geq \dfrac{S}{4}$ ($S_{IMN}$ là diện tích tam giác $IMN$).

BÀI 6.  Trong một kỳ thi, 60 thí sinh phải giải 3 bài toán. Khi kết thúc kỳ thi , người ta nhận
thấy rằng: Với hai thí sinh bất kỳ luôn có ít nhất một bài toán mà cả hai thí sinh đó đều giải
được. Chứng minh rằng :

a) Nếu có một bài toán mà mọi thí sinh đều không giải được thì phải có một bài toán khác mà
mọi thí sinh đều giải được .
b) Có một bài toán mà có ít nhất 40 thí sinh giải được.

LỜI GIẢI

Nhìn vào đề này thấy độ phức tạp nhẹ nhàng, các câu dễ có thể một phát ăn ngay là bài 1, 3a, 4a, 4b ý đầu, 5a.

Tiếp theo là các câu khó hơn như 2,3b ý sau, 5b, 5c và khó nhằn nhất có lẽ là bài tổ hợp.

Bài hình trong đề này là một bài rất quen thuộc, do đó việc giải lại các bài toán đã học là một việc quan trọng. Chú ý những lỗi suy luận trong làm bài, các em tự làm và tự đánh giá điểm để xem được nhiêu điểm nhé, đáp án sẽ có sau vài ngày nữa.

Bài 1. (1,5 điểm) 

a) Phương trình có hai nghiệm phân biệt khi và chỉ khi $\Delta ‘ = 3m^2+2m-1> 0 \Leftrightarrow m > \dfrac{1}{3}$ hoặc $m < – 1$. Khi đó tích hai nghiệm của phương trình $x_1x_2 = (m-1)^2 \geq 0$ nên phương trình không thể có hai nghiệm trái dấu.

b) Điều kiện để phương trình có hai nghiệm $x_1, x_2$ không âm:

$\Delta’ = 3m^2+2m-1\geq 0; S = x_1+x_2 \geq 0; P=x_1x_2 = m^2-2m+1 \geq 0$

$\Leftrightarrow m \geq \dfrac{1}{3} $
Ta có $|\sqrt{x_1}-\sqrt{2}| = 1 $
$\Leftrightarrow x_1 + x_2 – \sqrt{x_1x_2} = 1 $
$\Leftrightarrow 4m – 2\sqrt{m^2-2m+1} = 1 $
$\Leftrightarrow m = \dfrac{1}{2} (n), m = \dfrac{-1}{2} (l)$.

Bình luận Nhiều bạn xét $P \geq 0$ suy ra phương trình có hai nghiệm cùng dấu, cái này là suy luận sai, vì còn trường hợp bằng 0, tốt nhất là dùng phản chứng.

Bài 2. (1 điểm) Cộng ba phương trình lại ta có:
$3(x^2+y^2+z^2) + 2(x+y+z)+3 = 2(xy+yz+zx) + 4(x+y+z)$

$\Leftrightarrow 3(x^2+y^2+z^2)-2(xy+yz+xz) – 2(x+y+z)+3 = 0$

$\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2 + (x-1)^2+(y-1)^2+(z-1)^2 = 0$
$\Leftrightarrow \left\{\begin{array}{l}x=1\\y=1\\z=1
\end{array} \right.$
Thử lại thấy $(1, 1,1)$ là nghiệm của hệ.

Bình luận: Bài này hệ hoái vị vòng quanh, bất đẳng thức là một trong những cách hay dùng.

Bài 3. (1,5 điểm) 

a) Ta có $x – y \geq x^3 + y^3 \geq 0$, suy ra $x \geq y$.
Ta có $x \geq y + y^3 + x^3 \geq x^3$, suy ra $x(1-x)(1+x) \geq 0$. \Suy ra $0\leq x \leq 1$.
Do đó $0 \leq y \leq x \leq 1$.
b) Từ câu a ta có $0 \leq y \leq x \leq 1$, suy ra $x^3 \leq x^2, y^3 \leq y^2$. Suy ra $x^3+y^3 \leq x^2+y^2$.
Ta có $x – y \geq x^3+y^3 \geq x^3-y^3 \geq 0$.
Suy ra $x^2+y^2+xy \leq 1$, suy ra $x^2+y^2 \leq 1$.
Vậy $x^3+y^3\leq x^2+y^2 \leq 1$.

Bình luận: Đây là bất đẳng thức tương đối dễ, chỉ dùng các biến đổi đơn giản, tuy vậy để làm được ý cuối trong điều kiện phòng thi thì không đơn giản.

Bài 4. (1,5 điểm) 

a)Ta có $M = a^2 + 3a + 1 = a(a+1) + 2a + 1$. Mà $a(a+1)$ là tích hai số tự nhiên liến tiếp nên chia hết cho 2, suy ra $M = a(a+1) + 2a +1$ là số lẻ, do đó mọi ước của $M$ đều là số lẻ.
b) Giả sử $M = a^2 + 3a + 1$ chia hết cho 5. Mà $M = (a-1)^2 + 5a$ nên $(a-1)^2$ chia hết cho 5. Suy ra $a = 5k + 1$ ($k$ là số tự nhiên).
Thử lại thấy với $a = 5k + 1$ thì M chia hết cho 5.
Giả sử $M = (a-1)^2+ 5a = 5^n$.
Nếu $n \geq $ ta có $M$ chia hết cho 25.
Từ M chia hết cho 5, tương tự trên ta có $a = 5k + 1$.
Khi đó $M = 25k^2 + 25k + 5 = 5(5k^2+5k+1)$. Ta có $5k^2 + 5k + 1$ không chia hết cho 5 nên M không chia hết cho 25. (mâu thuẫn).
Nếu $n = 1$. Khi đó $k = 0, a= 1$ và $A=5$ thỏa đề bài.
Đáp số $a = 1$.

Bình luận: Bài này thực chất là bài phương trình nghiệm nguyên, cách hay sử dụng là đồng dư, và đưa ra điều kiện của $a$, ta cũng có thể thử vài giá trị để đoán được nghiệm, từ đó cho ra cách giải.

Bên cạnh đó, nắm chắc một chút các phương pháp chia hết như biến đổi thành tổng.

Bài 5.  (3 điểm) 

a) Do $MN|| BC$ nên $IK \bot MN$. Do $\angle IKN = \angle IFM = 90^\circ$ nên tứ giác $IFMK$ nội tiếp. Tam giác $AEF$ đều nên $\angle KFI = 30^\circ$. Từ đó $\angle IMN = \angle KFI = \angle IAN = 30^\circ$ nên tứ giác $IMAN$ nội tiếp.
b) Ta có $\angle IMN = \angle INM = 30^\circ$ nên tam giác $IMN$ cân tại $I$.
Lại có $IK \bot MN$ nên $K$ là trung điểm của $MN$.
Gọi $J’$ là giao điểm của $AK$ và $BC$, ta có $\dfrac{MK}{BJ’} = \dfrac{AK}{AJ’} = \dfrac{NK}{CJ’}$ mà $MK = NK$ nên $BJ’ = CJ’$. Suy ra $J’$ là trung điểm của $BC$. Suy ra $J \equiv J’$, do đó $A, K, J$ thẳng hàng.
b) Ta có $AE = AF = r\sqrt{3}$, suy ra $S = 2S_{IAF} = 2.\dfrac{1}{2}IF\cdot AF = r^2 \sqrt{3}$.

Ta chứng minh được $S_{IEF} = \dfrac{1}{4}S$.
Các tam giác $IMN$ và $IEF$ cân tại $I$ có $\angle IMN = \angle IEF$ nên đồng dạng. Do đó $\dfrac{S_{IMN}}{S_{IEF}} = \dfrac{IM^2}{IF^2} \geq 1$ (do $IM \geq IF$). Suy ra $S_{IMN} \geq S_{IEF} = \dfrac{S}{4}$.
Dấu bằng xảy ra khi $M \equiv F$ hay tam giác $ABC$ là tam giác đều.

Bình luận. Đây là một mô hình quen thuộc của đường tròn nội tiếp, hầu hết các bạn đã gặp bài toán này, do đó nắm chắc các bài toán là một lợi thế.

Bài 6. (1,5 điểm) 

a) Kí hiệu các bài toán là BT1, BT2, BT3.
Từ giả thiết suy ra rằng mọi thí sinh đều giải được ít nhất một bài toán.
Ta giả sử, mọi thí sinh đều không giải được BT1. Khi đó mọi thí sinh đều giải được BT2 hoặc BT3. Nếu có một thí sinh chỉ giải được 1 bài toán, giả sử đó là bài toán 2. Khi đó theo đề bài thì mọi thí sinh khác đều giải được bài toán 2. Vậy mọi thí sinh đều giải được bài toán 2. Còn nếu tất cả các thí sinh đều giải được 2 bài toán thì cũng thỏa.

b) Ta xét hai trường hợp:
TH1: Có một thí sinh nào đó giải đúng một bài toán, theo câu a thì mọi thí sinh đều giải được bài toán đó, ta có điều cần chứng minh.
TH2: Mọi thí sinh đều giải được ít nhất 2 bài toán. Gọi $a$ là số thi sinh giải được cả 3 bài toán, $b$ là số thí sinh giải được BT1 và BT2, $c$ là số thí sinh giải được BT2 và BT3, $d$ là số thí sinh giải được BT1 và BT3.
Ta có $a + b+ c+ d = 60$.
Nếu $b, c, d > 20$, suy ra $b+c+d > 60$ vô lý. Do đó có một trong ba số $b, c, d$ phải nhỏ hơn hoặc bằng 20. Giả sử là $b \leq 20$. Suy ra $a+c+d \geq 40$.

Hay số thí sinh giải được bài BT3 không ít hơn 40. Điều cần chứng minh.

Bình luận: Đây là bài tổ hợp vừa phải, câu a, chỉ cần đọc kĩ giả thiết là làm được.

Câu b, là biểu đồ venn có thể suy nghĩ đến khi cần phân ra các tập rời nhau.

Bên cạnh đó phản chứng là phương pháp được sử dụng.

Nhìn chung đề này có nhiều câu dễ và quen thuộc, với những câu đó phải làm trước và làm thật chắc, khi đó mới có nhiều thời gian làm các câu khó.

Bổ đề về số mũ đúng

BỔ ĐỀ VỀ SỐ MŨ ĐÚNG

(Thầy Nguyễn Ngọc Duy giáo viên trường PTNK TP Hồ Chí Minh)

Bổ đề số mũ đúng của một số nguyên là một hướng tiếp cận khá mới đối với các bài toán sơ cấp. Nó cung cấp một công cụ khá hữu hiệu để giải các phương trình Diophante hoặc các bài toán chia hết liên quan đến số mũ. Trong bài viết này tôi sẽ cố gắng mang đến một cái nhìn thật sơ cấp và tự nhiên đến vấn đề, trang bị thêm kiến thức và kĩ năng cho các các em học sinh để giải quyết các bài toán số học. Đặc biệt, ta sẽ dùng bổ đề số mũ đúng để giải quyết một số trường hợp đặc biệt của định lí lớn Fermat.

1. Kiến thức cần nhớ

Định nghĩa 1.1: Cho $\left( a,n \right)=1$. Kí hiệu cấp của a theo modulo n là $or{{d}_{n}}\left( a \right)$, là số nguyên dương d nhỏ nhất thỏa $a^d\equiv 1\, \left( \bmod n \right)$.

Tính chất 1.1: Nếu $x$ là số nguyên dương thỏa mãn $a^x \equiv 1\, \left( \bmod n \right)$ thì $or{{d}_{n}}\left( a \right)|x$.

Định nghĩa 1.2: Cho $p$ là số nguyên tố, $x$ là số nguyên bất kì, kí hiệu $v_p \left( x \right)=n$ nếu $x$ chia hết cho $p^n$ nhưng không chia hết cho $p^{n+1}$ .

Tính chất 1.2: Với $a,b$ là các số nguyên và $n$ là số nguyên dương thì:

  • $v_p \left( ab \right)=v_p \left( a \right)+v_p \left( b \right)$.
  • Nếu $p|a$ thì $v_p(a) >0.$
  • $v_p \left( a^n \right)=n v_p \left( a \right)$.
  • $v_p \left( a+b \right) \ge \min \left\{ v_p \left( a \right), v_p \left( b \right) \right\}$. Đẳng thức xảy ra chẳng hạn khi $v_p(a) \neq v_p(b).$
  • $v_p(\text{gcd}(a,b)) = \min(v_p(a), v_p(b))$ và $v_p(\text{lcm}(a,b)) = \max(v_p(a), v_p(b)).$

Định lý 1.1: Bổ đề số mũ đúng. Cho $p$ là số nguyên tố lẻ; $a,b$ không chia hết cho $p$

$i)$  Nếu $a-b$ chia hết cho p thì $v_p \left( a^n – b^n \right)=v_p \left( a-b \right)+v_p \left( n \right)$.

$ii)$  Nếu $a+b$ chia hết cho $p, n$ lẻ thì $v_p\left( a^n+b^n \right)=v_p\left( a+b \right)+v_p \left( n \right)$.

$iii)$  Nếu $a, b$ lẻ thì $v_2 \left( a^n – b^n \right)=v_2 \left( \dfrac{x^2 – y^2}{2} \right) + v_2 \left( n \right)$.

Chứng minh
  • Trước tiên, ta chứng minh: ${{v}_{p}}\left( {{a}^{p}}-{{b}^{p}} \right)={{v}_{p}}\left( a-b \right)+1$ $(*)$. Ta có:

$${{a}^{p}}-{{b}^{p}}=\left( a-b \right)\left( {{a}^{p-1}}+{{a}^{p-2}}b+…+a{{b}^{p-2}}+{{b}^{p-1}} \right).$$

Do $a\equiv b\left( \bmod p \right)$ nên ${{a}^{p-1}}+{{a}^{p-2}}b+…+a{{b}^{p-2}}+{{b}^{p-1}}\equiv p.{{a}^{p-1}}\equiv 0\left( \bmod p \right)$.

Suy ra : ${{a}^{p-1}}+{{a}^{p-2}}b+…+a{{b}^{p-2}}+{{b}^{p-1}}$ chia hết cho $p$  $(1)$.

Ta chứng minh tiếp $${{a}^{p-1}}+{{a}^{p-2}}b+…+a{{b}^{p-2}}+{{b}^{p-1}} \text{không chia hết cho } {{p}^{2}}. $$

Thật vậy, do $a\equiv b\left( \bmod p \right)$ nên $a=b+kp$ . Sử dụng khai triển nhị thức Newton ta có

$ {{a}^{p-1}}+{{a}^{p-2}}b+\cdots+{{b}^{p-1}}$

$\equiv \left[ \left( p-1 \right)kp{{b}^{p-2}}+{{b}^{p-1}} \right]+\left[ \left( p-2 \right)kp{{b}^{p-2}}+{{b}^{p-1}} \right]+  \cdots+\left[ kp{{b}^{p-2}}+{{b}^{p-1}} \right]+{{b}^{p-1}}\left( \bmod {{p}^{2}} \right) $

$\equiv \dfrac{p\left( p-1 \right)}{2}kp{{b}^{n-2}}+p.{{b}^{p-1}}$

$\equiv p{{b}^{p-1}}\left( \bmod {{p}^{2}} \right) $

Theo giả thiết thì $b$ không chia hết cho $p$ nên $p{{b}^{p-1}}$ không chia hết cho ${{p}^{2}}$. Do đó ${{a}^{p-1}}+{{a}^{p-2}}b+\cdots+a{{b}^{p-2}}+{{b}^{p-1}}$ cũng không chia hết cho ${{p}^{2}}$  $(2)$.

Từ $(1), (2)$ ta có: ${{v}_{p}}\left( {{a}^{p-1}}+{{a}^{p-2}}b+\cdots+a{{b}^{p-2}}+{{b}^{p-1}} \right)=1$.

Vậy ${{v}_{p}}\left( {{a}^{p}}-{{b}^{p}} \right)={{v}_{p}}\left( a-b \right)+1$.

  • Tương tự, ta cũng có: nếu m không chia hết cho p thì ${{v}_{p}}\left( {{a}^{m}}-{{b}^{m}} \right)={{v}_{p}}\left( a-b \right)$ $(**)$.

Ta quay lại định lí. Đặt ${{v}_{p}}\left( n \right)=k\Rightarrow n={{p}^{k}}.m$, với $\left( m,p \right)=1$.

Áp dụng $(*)$ và $(**)$ ta có:

${{v}_{p}}\left( {{a}^{n}}-{{b}^{n}} \right)  ={{v}_{p}}\left( {{\left( {{a}^{{{p}^{k-1}}.m}} \right)}^{p}}-{{\left( {{b}^{{{p}^{k-1}}.m}} \right)}^{p}} \right) $

$={{v}_{p}}\left( {{a}^{{{p}^{k-1}}.m}}-{{b}^{{{p}^{k-1}}.m}} \right)+1=\ldots={{v}_{p}}\left( {{a}^{m}}-{{b}^{m}} \right)+k $

$={{v}_{p}}\left( a-b \right)+{{v}_{p}}\left( n \right).$

Vậy ta đã chứng minh xong phần $i)$ của định lí.

Vì $n$ lẻ nên thay $b$ bởi $-b$ trong i. ta được ${{v}_{p}}\left( {{a}^{n}}+{{b}^{n}} \right)={{v}_{p}}\left( {{a}^{n}}-{{\left( -b \right)}^{n}} \right)={{v}_{p}}\left( a+b \right)+{{v}_{p}}\left( n \right)$

Vậy ta đã chứng minh xong phần $ii)$ của định lí. Tương tự cách làm trong $i)$ ta cũng có kết quả $iii)$.

Như vậy ta đã chứng minh xong bổ đề số mũ đúng. Sau đây ta sẽ sử dụng bổ đề để giải quyết một bài toán thú vị.

2. Các bài toán áp dụng

Bài toán Fermat lớn: Cho $n$ là số tự nhiên lớn hơn $2.$ Chứng minh rằng phương trình ${{a}^{n}}+{{b}^{n}}={{c}^{n}}$ không có nghiệm nguyên dương.

Bài Toán Fermat lớn là bài toán cực kì thú vị. Nó tồn tại gần bốn thế kỉ, kích thích biết bao nhà toán học thế giới. Bài toán cuối cùng được chứng minh bởi nhà toán học Andrew Wiles vào năm 1993. Và người ta nói rằng sẽ không có phương pháp sơ cấp nào có thể chứng minh bài toán trên. Bài báo sẽ đề cập một trường hợp đặc biệt của bài toán: số $c$ là số nguyên tố. Và chúng ta sẽ giải quyết thông qua bổ đề số mũ đúng.

Bài toán 1: Cho số nguyên lẻ $n>2$, $p$ là số nguyên tố. Chứng minh rằng phương trình $a^n + b^n = p^n$ không có nghiệm nguyên dương.

Giải

Không mất tính tổng quát, giả sử phương trình có nghiệm $a\ge b$ .

$1.$ Nếu $a=1\Rightarrow b=1$, thế vào phương trình suy ra vô lí.

$2.$ Nếu $a=2\Rightarrow b=1;2$.

  • Trường hợp $\left( a,b \right)=\left( 2,2 \right)\Rightarrow p=2$ (vô lí).
  • Trường hợp $\left( a,b \right)=\left( 2,1 \right)\Rightarrow p=3$ , thế vào phương trình ta được ${{3}^{n}}-{{2}^{n}}=1$ , cũng suy ra vô lí.

Vậy bắt buộc $a\ge 3$, mà ${{p}^{n}}>{{a}^{n}}\Rightarrow p>3$ , nên p là số nguyên tố lẻ. Do n lẻ, ta có : $${{p}^{n}}={{a}^{n}}+{{b}^{n}}=\left( a+b \right)\left( {{a}^{n-1}}-{{a}^{n-2}}b+\cdots-a{{b}^{n-2}}+{{b}^{n-1}} \right) $$

Suy ra $p|a+b$ (do $a+b>1$ ). Áp dụng bổ đề số mũ đúng cho $p$, ta có

$${{v}_{p}}\left( {{a}^{n-1}}-{{a}^{n-2}}b+\cdots-a{{b}^{n-2}}+{{b}^{n-1}} \right)={{v}_{p}}\left( {{a}^{n}}+{{b}^{n}} \right)-{{v}_{p}}\left( a+b \right)={{v}_{p}}\left( n \right) $$

Mà ${{a}^{n-1}}-{{a}^{n-2}}b+\cdots-a{{b}^{n-2}}+{{b}^{n-1}}$ là lũy thừa của $p$ nên ta có $$\left( {{a}^{n-1}}-{{a}^{n-2}}b+\cdots-a{{b}^{n-2}}+{{b}^{n-1}} \right)|n.$$

Do ${{a}^{n-1}}-{{a}^{n-2}}b+\cdots-a{{b}^{n-2}}+{{b}^{n-1}}=\frac{1}{2}\left[ {{a}^{n-1}}+{{a}^{n-3}}{{\left( a-b \right)}^{2}}+\cdots+{{b}^{n-3}}{{\left( a-b \right)}^{2}}+{{b}^{n-1}} \right]\ge \dfrac{1}{2}\left( {{a}^{n-1}}+{{b}^{n-1}} \right)$

Vì $a\ge 3$, $n\ge 3$ nên $\frac{1}{2}\left( {{a}^{n-1}}+{{b}^{n-1}} \right)>n$ nên không thể $$\left( {{a}^{n-1}}-{{a}^{n-2}}b+\cdots-a{{b}^{n-2}}+{{b}^{n-1}} \right)|n.$$

Vậy phương trình vô nghiệm khi $p$ là số nguyên tố.

Bài tập 2: Cho số nguyên $n>2$ có ước lẻ khác 1, $p$ là số nguyên tố. Chứng minh rằng phương trình ${{a}^{n}}+{{b}^{n}}={{p}^{n}}$ không có nghiệm nguyên dương.

Giải

Gọi $k>1$ là ước lẻ của $n$, giả sử $n=km$ . Đặt $x={{a}^{m}};y={{b}^{m}}$. Phương trình trên trở thành

$${{x}^{k}}+{{y}^{k}}={{p}^{n}}.$$

Không mất tính tổng quát, giả sử $x\ge y$ . Tương tự bài toán $1$ ta sẽ loại được các trường hợp tầm thường $x=1;x=2$ . Nên ta xét bài toán với trường hợp $x,p\ge 3.$ Do $k$ lẻ, ta có ${{p}^{n}}={{a}^{k}}+{{b}^{k}}=\left( a+b \right)\left( {{a}^{k-1}}-{{a}^{k-2}}b+\cdots-a{{b}^{k-2}}+{{b}^{k-1}} \right)$

Suy ra $p|b+a$. Áp dụng bổ đề số mũ đúng cho $p$ ta có

$${{v}_{p}}\left( {{a}^{k-1}}-{{a}^{k-2}}b+\cdots-a{{b}^{k-2}}+{{b}^{k-1}} \right)={{v}_{p}}\left( {{a}^{k}}+{{b}^{k}} \right)-{{v}_{p}}\left( a+b \right)={{v}_{p}}\left( k \right) $$

Mà ${{a}^{k-1}}-{{a}^{k-2}}b+ \cdots-a{{b}^{k-2}}+{{b}^{k-1}}$ là lũy thừa của $p$ nên ta có $$\left( {{a}^{k-1}}-{{a}^{k-2}}b+\cdots-a{{b}^{k-2}}+{{b}^{k-1}} \right) | k$$

Lập luận tương tự bài toán $1$ ta cũng suy ra vô lí. Vậy phương trình vô nghiệm .

Bài tập 3: Cho số nguyên $n={{2}^{k}},k>1$ , p là số nguyên tố. Chứng minh rằng phương trình ${{a}^{n}}+{{b}^{n}}={{p}^{n}}$ không có nghiệm nguyên dương.

Giải

Tương tự Bài toán $1$, ta loại được các trường hợp tầm thường nên ta chỉ xét đối với trường hợp $a,b$ có ít nhất một số lớn hơn $2$, khi đó $p>3$. Phương trình trở thành dạng

$${{x}^{4}}+{{y}^{4}}={{p}^{{{2}^{k}}}}$$

trong đó $x, y$ có ít nhất một số lớn hơn $2$ và $\left( x,y \right)=1$.

Do $p$ lẻ nên $x, y$ khác tính chẵn lẻ. Không mất tính tổng quát, giả sử $x$ lẻ, $y$ chẵn. Ta có

$${{y}^{4}}={{p}^{{{2}^{k}}}}-{{x}^{4}}=\left( {{p}^{{{2}^{k-1}}}}+{{x}^{2}} \right)\left( {{p}^{{{2}^{k-1}}}}-{{x}^{2}} \right)$$

Do $\left( {{p}^{{{2}^{k-1}}}}+{{x}^{2}};{{p}^{{{2}^{k-1}}}}-{{x}^{2}} \right)=2$ nên

$$\left\{ \begin{array}{l} {{p}^{{{2}^{k-1}}}}+{{x}^{2}}=2{{m}_{1}}^{2} \\ {{p}^{{{2}^{k-1}}}}-{{x}^{2}}=2{{n}_{1}}^{2} \end{array} \right. $$

Suy ra

$$\left\{ \begin{array}{l} {{p}^{{{2}^{k-1}}}}={{m}_{1}}^{2}+{{n}_{1}}^{2} \\ {{x}^{2}}={{m}_{1}}^{2}-{{n}_{1}}^{2} \end{array} \right. $$

và ${{y}^{2}}=2{{m}_{1}}{{n}_{1}}.$

Ta thấy $\left( {{m}_{1}};{{n}_{1}} \right)=1$ vì nếu ngược lại thì ${{m}_{1}}$ và ${{m}_{2}}$ đều phải chia hết cho $p$ (vô lí) nên có các trường hợp sau

$1)$ Nếu $m_1 = m_2^2, n_1=2n_2^2$ và $(m_2,n_2)=1$ thì thế vào ta được

$${{p}^{{{2}^{k-1}}}}={{m}_{2}}^{4}+4{{n}_{2}}^{4}=\left( {{m}_{2}}^{2}+2{{m}_{2}}{{n}_{2}}+2{{n}_{2}}^{2} \right)\left( {{m}_{2}}^{2}-2{{m}_{2}}{{n}_{2}}+2{{n}_{2}}^{2} \right)$$

mà \[\left( {{m}_{2}}^{2}+2{{m}_{2}}{{n}_{2}}+2{{n}_{2}}^{2},{{m}_{2}}^{2}-2{{m}_{2}}{{n}_{2}}+2{{n}_{2}}^{2} \right)=1\] nên \[{{m}_{2}}^{2}-2{{m}_{2}}{{n}_{2}}+2{{n}_{2}}^{2}=1\Leftrightarrow {{\left( {{m}_{2}}-{{n}_{2}} \right)}^{2}}+{{n}_{2}}^{2}=1\Leftrightarrow {{m}_{2}}={{n}_{2}}=1.\] Trường hợp này không thỏa.

$2)$ Nếu $m_1=2m_2^2,n_1=n_2^2$ và $(m_2,n_2)=1$ thì cũng tương tự.

Vậy phương trình không có nghiệm nguyên dương.

Như vậy sử dụng bổ đề số mũ đúng ta đã chứng minh được một trường hợp đặc biệt của Định lí lớn Fermat.

Sau đây, chúng ta sẽ sử dụng Bổ đề số mũ đúng để giải quyết một số bài toán khác.

Bài tập 4: Tìm bộ số nguyên dương $\left( a,b,p \right)$ trong đó $p$ là số nguyên tố thỏa $${{2}^{a}}+{{p}^{b}}={{15}^{a}}.$$

Giải

Ta có $\forall x,y\in \mathbb{Z};n\in \mathbb{N}$ thì ${{x}^{n}}-{{y}^{n}}\vdots x+y$ nên ${{p}^{b}}={{15}^{a}}-{{2}^{a}}\vdots 13\Rightarrow p=13.$

Áp dụng bổ đề

$$b={{v}_{13}}\left( {{13}^{b}} \right)={{v}_{13}}\left( {{15}^{a}}-{{2}^{a}} \right)={{v}_{13}}\left( 15-2 \right)+{{v}_{13}}\left( a \right)\Rightarrow {{v}_{13}}\left( a \right)=b-1\Rightarrow a \ \vdots \  {{13}^{b-1}}$$

Mà $a>0$ nên $a\ge {{13}^{b-1}}$, suy ra

${{13}^{b}}  ={{15}^{a}}-{{2}^{a}}=\left( 15-2 \right)\left( {{15}^{a-1}}+{{15}^{a-2}}.2+\cdots +{{15.2}^{a-2}}+{{2}^{a-1}} \right) $

$ \ge \left( 15-2 \right)\left( {{15}^{{{13}^{b-1}}-1}}+{{15}^{{{13}^{b-1}}-2}}.2+\cdots+{{15.2}^{{{13}^{b-1}}-2}}+{{2}^{{{13}^{b-1}}-1}} \right) $

$\Rightarrow b=1\Rightarrow a=1.$

Vậy nghiệm bài toán là $\left( a,b,p \right)=\left( 1,1,13 \right)$.

 

Bài tập 5: Chứng minh rằng không tồn tại cặp số $\left( a,n \right)$ nguyên dương, $n>2$ , sao cho ${{\left( a+1 \right)}^{n}}-{{a}^{n}}$ là lũy thừa bậc dương của $5.$

Giải

Giả sử tồn tại số nguyên dương $m$ sao cho $${{\left( a+1 \right)}^{n}}-{{a}^{n}}={{5}^{m}}.$$

Nhận xét: nếu$a$ hoặc $a+1$ chia hết cho $5$ thì số còn lại cũng cũng chia hết cho $5$ (vô lí). Nên cả hai số đều không chia hết cho $5.$ Ta xét các trường hợp:

$1.$  Nếu $a\equiv 1\left( \bmod 5 \right)\Rightarrow 0\equiv {{\left( a+1 \right)}^{n}}-{{a}^{n}}\equiv {{2}^{n}}-1\left( \bmod 5 \right)$ . Suy ra $4|n$.

$2.$  Nếu $a\equiv 2\left( \bmod 5 \right)\Rightarrow 0\equiv {{\left( a+1 \right)}^{n}}-{{a}^{n}}\equiv {{3}^{n}}-{{2}^{n}}\left( \bmod 5 \right)$. Suy ra $2|n$.

$3.$  Nếu $a\equiv 3\left( \bmod 5 \right)\Rightarrow 0\equiv {{\left( a+1 \right)}^{n}}-{{a}^{n}}\equiv {{4}^{n}}-{{3}^{n}}\left( \bmod 5 \right)$. Suy ra $4|n$.

Do đó, $n$ luôn là số chẵn, đặt $n=2{{n}_{1}}$, $\left( {{n}_{1}}\in \mathbb{N},{{n}_{1}}\ge 2 \right)$. Ta có

$ {{5}^{m}} = {{\left( a+1 \right)}^{2{{n}_{1}}}}-{{a}^{2{{n}_{1}}}}=\left( {{\left( a+1 \right)}^{2}}-{{a}^{2}} \right)\left( {{\left( a+1 \right)}^{2\left( {{n}_{1}}-1 \right)}}+ \cdots + {{\left( a+1 \right)}^{2}}{{a}^{2\left( {{n}_{1}}-2 \right)}}+{{a}^{2\left( {{n}_{1}}-1 \right)}} \right) $

$=\left( 2a+1 \right)\left( {{\left( a+1 \right)}^{2\left( {{n}_{1}}-1 \right)}}+{{\left( a+1 \right)}^{2\left( {{n}_{1}}-2 \right)}}{{a}^{2}}+…+{{\left( a+1 \right)}^{2}}{{a}^{2\left( {{n}_{1}}-2 \right)}}+{{a}^{2\left( {{n}_{1}}-1 \right)}} \right). $

Suy ra $5| 2a+15$ , áp dụng bổ đề số mũ đúng ta được

${{v}_{5}}\left( {{\left( a+1 \right)}^{2\left( {{n}_{1}}-1 \right)}}+{{\left( a+1 \right)}^{2\left( {{n}_{1}}-2 \right)}}{{a}^{2}}+…+{{\left( a+1 \right)}^{2}}{{a}^{2\left( {{n}_{1}}-2 \right)}}+{{a}^{2\left( {{n}_{1}}-1 \right)}} \right) $

$= {{v}_{5}}\left( {{\left( a+1 \right)}^{2{{n}_{1}}}}-{{a}^{2{{n}_{1}}}} \right)-{{v}_{5}}\left( 2a+1 \right)={{v}_{5}}\left( {{n}_{1}} \right). $

Do ${{\left( a+1 \right)}^{2\left( {{n}_{1}}-1 \right)}}+{{\left( a+1 \right)}^{2\left( {{n}_{1}}-2 \right)}}{{a}^{2}}+ \cdots +{{\left( a+1 \right)}^{2}}{{a}^{2\left( {{n}_{1}}-2 \right)}}+{{a}^{2\left( {{n}_{1}}-1 \right)}}$ là lũy thừa của $5$ nên $${{n}_{1}}\vdots \left( {{\left( a+1 \right)}^{2\left( {{n}_{1}}-1 \right)}}+{{\left( a+1 \right)}^{2\left( {{n}_{1}}-2 \right)}}{{a}^{2}}+…+{{\left( a+1 \right)}^{2}}{{a}^{2\left( {{n}_{1}}-2 \right)}}+{{a}^{2\left( {{n}_{1}}-1 \right)}} \right)$$ (vô lí vì về phải gồm ${{n}_{1}}$ số nguyên dương, ${{n}_{1}}>1$ và $a+1\ge 2$).

Vậy không tồn tại cặp số $\left( a,n \right)$ nguyên dương, $n>2$ sao cho ${{\left( a+1 \right)}^{n}}-{{a}^{n}}$ là lũy thừa bậc dương của $5.$

 

Bài tập 6: Cho hai số nguyên $a,n\ge 2$ sao cho tồn tại số nguyên dương k thỏa $n|{{\left( a-1 \right)}^{k}}$ . Chứng minh rằng n là ước của $1+a+{{a}^{2}}+…+{{a}^{n-1}}$ .

Giải

Giả sử $p$ là ước nguyên tố bất kì của $n$ . Theo giả thiết $n|{{\left( a-1 \right)}^{k}}$ nên p cũng là ước của $a-1$ .

Do ${{a}^{n}}-1=\left( a-1 \right)\left( 1+a+{{a}^{2}}+\cdots +{{a}^{n-1}} \right)$ nên áp dụng bổ đề số mũ đúng ta có

$${{v}_{p}}\left( 1+a+{{a}^{2}}+\cdots+{{a}^{n-1}} \right)={{v}_{p}}\left( {{a}^{n}}-1 \right)-{{v}_{p}}\left( a-1 \right)={{v}_{p}}\left( n \right).$$

Do mọi ước nguyên tố $p$ của n đều thỏa điều trên nên ta có $$n|1+a+{{a}^{2}}+\cdots+{{a}^{n-1}}.$$

Bài tập 7 (HSG Trung Quốc 2009): Tìm cặp số nguyên tố $\left( p,q \right)$ thỏa $pq|{{5}^{p}}+{{5}^{q}}$ (*).

Giải

Ta xét các trường hợp

$1.$   $p=q=5$ thỏa mãn bài toán.

$2.$   Nếu có một số bằng $5$, một số khác $5$. Không mất tính tổng quát, giả sử $p=5;q\ne 5$. Ta có :

$$5q|{{5}^{5}}+{{5}^{q}}\Leftrightarrow q|{{5}^{4}}+{{5}^{q-1}}\Leftrightarrow q|{{5}^{4}}+1=626$$ do ${{5}^{q-1}}\equiv 1\left( \bmod \,q \right)$ nên suy ra $q=2$ hoặc $q=313$.

$3.$  Nếu cả hai số $p,q\ne 5$ . Do ${{5}^{p}}\equiv 5\left( \bmod p \right),\,\,{{5}^{q}}\equiv 5\,\,\,\,\left( \bmod \,q \right)$ nên

$$\left( * \right)\Leftrightarrow \left\{ \begin{array}{l}  {{5}^{p-1}}+1\vdots q \\ {{5}^{q-1}}+1\vdots p \end{array} \right. \Rightarrow \left\{ \begin{array}{l} {{5}^{2\left( p-1 \right)}}-1\vdots q \\ {{5}^{2\left( q-1 \right)}}-1\vdots p \end{array} \right.$$

Do ${{5}^{2\left( p-1 \right)}}-1$ chia hết cho $q$ nhưng ${{5}^{p-1}}-1$ không chia hết cho $q$ nên

$${{v}_{2}}\left( \text{ord}_{q}\left( 5 \right) \right)=1+{{v}_{2}}\left( p-1 \right) .$$

Do ${{5}^{q-1}}-1$ chia hết $q$ nên $q-1\vdots or{{d}_{q}}\left( 5 \right)$ nên

$${{v}_{2}}\left( q-1 \right)\ge 1+{{v}_{2}}\left( p-1 \right) .$$

Tương tự khi xét chia hết cho $p$ ta lại có ${{v}_{2}}\left( p-1 \right)\ge 1+{{v}_{2}}\left( q-1 \right)$ (vô lí).

Vậy các cặp số thỏa mãn là $\left( p,q \right)=\left( 2,5 \right);\left( 5,2 \right);\left( 5,5 \right);\left( 5,313 \right);\left( 313,5 \right).$

Bài tập 8 (HSG Brazil 2009): Cho hai số nguyên tố $p, q$ sao cho $q=2p+1$ . Chứng minh rằng tồn tại một số là bội của $q$ có tổng các chữ số của nó trong hệ cơ số $10$ nhỏ hơn $4.$

Giải

Do $p,q$ đều là số nguyên tố nên $q\ge 5$ .

Nếu $q=5$ thì ta chỉ cần chọn số $10$ thì thỏa yêu cầu bài toán.

Nếu $q>5$ , áp dụng Định lí Fermat nhỏ thì $q|{{10}^{q-1}}-1={{10}^{2p}}-1=\left( {{10}^{p}}-1 \right)\left( {{10}^{p}}+1 \right)$

Suy ra $q|{{10}^{p}}+1$ hoặc $q|{{10}^{p}}-1$.

$1.$  Nếu $q|{{10}^{p}}+1$ thì số $a={{10}^{p}}+1$ là số thỏa yêu cầu đề bài.

$2.$  Nếu $q|{{10}^{p}}-1$. Do $p$ là số nguyên tố và $q$ không là ước của $10-1$(do $q>5$ ) nên $p$ cũng chính là $or{{d}_{q}}\left( 10 \right)$. Do đó $10;{{10}^{2}};\ldots ;{{10}^{p}}$ sẽ có số dư khác nhau khi chia cho $q.$

Ta sẽ có các trường hợp

  • Nếu tồn tại $1\le k\le p$ mà ${{10}^{k}}\equiv p\left( \bmod \,q \right)$ thì ${{2.10}^{k}}+1\equiv 2p+1\equiv 0\left( \bmod \,q \right)$. Khi đó số $a={{2.10}^{k}}+1$ là số thỏa yêu cầu đề bài.
  • Nếu tồn tại $1\le k\le p$ mà ${{10}^{k}}\equiv 2p\left( \bmod \,q \right)$ thì ${{10}^{k}}+1\equiv 2p+1\equiv 0\left( \bmod \,q \right)$. Khi đó số $a={{10}^{k}}+1$ là số thỏa yêu cầu đề bài.
  • Nếu không tồn tại $1\le k\le p$ mà ${{10}^{k}}$ có số dư là $p$ hay $2p$ khi chia cho $q.$ Thì ta sẽ chia các số dư còn lại của $q$ thành $p$ bộ $$\left( 1;2p-1 \right),\left( 2;2p-2 \right),\ldots,\left( p-1;p+1 \right)$$ (tổng $2$ phần tử của một bộ bằng $2p$) . Do tập số dư khi chia cho $q$ của tập $\left\{ 10;{{10}^{2}};\ldots ;{{10}^{p}} \right\}$ có $p$ phần tử nên Theo nguyên lí Dirichlet sẽ có ít nhất hai số ${{10}^{k}}$ và ${{10}^{l}}$ thuộc cùng một bộ. Khi đó số $a={{10}^{k}}+{{10}^{l}}+1$ sẽ chia hết cho $q$ là số thỏa yêu cầu đề bài.

Bài tập 9 (IMO Shortlist 1997): Cho $b,m,n$ là các số nguyên dương thỏa$m>1;\,\,m\ne n$. Biết ${{b}^{m}}-1$và ${{b}^{n}}-1$ có cùng tập hợp các ước nguyên tố. Chứng minh $b+1$ là lũy thừa của $2.$

Giải

Theo đề, gọi $p$ là ước nguyên tố bất kì của ${{b}^{m}}-1$và ${{b}^{n}}-1$.

Ta có kết quả quen thuộc: $$\left( {{b}^{m}}-1,{{b}^{n}}-1 \right)={{b}^{\left( m,n \right)}}-1,$$ đặt $\alpha =\left( m,n \right)$ nên $p|{{b}^{\alpha }}-1$. Suy ra tồn tại $k,l\in \mathbb{N}*$ thỏa $m=\alpha k;\,\,n=\alpha l$.

Đặt $a={{b}^{\alpha }}$ , từ giả thiết suy ra mọi ước nguyên tố của ${{a}^{k}}-1$ và ${{a}^{l}}-1$ đều là ước của $a-1$ . Nói cách khác, tập hợp các ước nguyên tố của ${{a}^{k}}-1,{{a}^{l}}-1$ và $a-1$ là trùng nhau.

Do $m\ne n$ suy ra tồn tại một số $k$ hoặc $l$ lớn hơn 1. Giả sử số đó là k.

Ta chứng minh $a+1$ là lũy thừa của 2.

Thật vậy:

$1.$  Nếu $k$ là số chẵn, đặt $k={{2}^{\beta }}.k’$($k’$ là số lẻ).

Ta có: $${{a}^{k}}-1=\left( {{a}^{k’}}-1 \right)\left( {{a}^{k’}}+1 \right)\left( {{a}^{2k’}}+1 \right)…\left( {{a}^{{{2}^{\beta -1}}k’}}+1 \right).$$

Do đó mọi ước nguyên tố $q$ của ${{a}^{k’}}+1$ cũng là ước của $a-1$

Mà ${{a}^{k’}}+1\vdots a+1$, $\left( a+1;a-1 \right)=1$ hoặc $2.$ Suy ra $2\vdots q\Rightarrow q=2$ nên ${{a}^{k’}}+1$ là lũy thừa của $2.$ Suy ra $a+1$ cũng là lũy thừa của $2.$

$2.$  Nếu $k$ là số lẻ, ta có ${{a}^{k}}-1=\left( a-1 \right)\left( {{a}^{k-1}}+{{a}^{k-2}}+…+a+1 \right)$

Gọi $q$ là ước nguyên tố bất kì của ${{a}^{k-1}}+{{a}^{k-2}}+…+1$. Do ${{a}^{k-1}}+{{a}^{k-2}}+…+a+1$ là số lẻ nên, nên $q$ cũng lẻ và là ước của ${{a}^{k}}-1$ . Do đó q cũng là ước của $a-1$ .

Áp dụng bổ đề số mũ đúng của $q$ ta có

${{v}_{q}}\left( {{a}^{k-1}}+{{a}^{k-2}}+…+1 \right)={{v}_{q}}\left( {{a}^{k}}-1 \right)-{{v}_{q}}\left( a-1 \right)={{v}_{q}}\left( k \right)$

Suy ra $k\vdots \left( {{a}^{k-1}}+{{a}^{k-2}}+…+1 \right)$ (vô lí vì vế phải có k số nguyên dương, $a>1$ ).

Vậy $a+1={{b}^{\alpha }}+1$ là lũy thừa của $2$.

Vì ${{b}^{\alpha }}+1$ là lũy thừa của $2$ nên nếu $\alpha $ là số chẵn thì ${{b}^{\alpha }}+1={{\left( {{b}^{\alpha ‘}} \right)}^{2}}+1$ hoặc là số lẻ hoặc chia 4 dư 2 nên chỉ có một trường hợp thỏa là $b=1$ . Còn nếu $\alpha $ là số lẻ thì ${{b}^{\alpha }}+1=\left( b+1 \right)\left( {{b}^{\alpha -1}}+{{b}^{\alpha -2}}+…+b+1 \right)$ nên $b+1$ cũng là lũy thừa của $2$.

Bài tập 10 (IMO Shortlist 1999): Tìm các số nguyên dương $n,p$ trong đó p nguyên tố thỏa ${{n}^{p-1}}|{{\left( p-1 \right)}^{n}}+1$.

Giải

Ta xét các trường hợp sau

$1.$  Nếu $p=2\Rightarrow n|2\Rightarrow n=1;2$ (thỏa).

$2.$  Nếu $p>2$ , suy ra $p$ lẻ nên ${{\left( p-1 \right)}^{n}}+1$ lẻ $\Rightarrow n$ lẻ

Gọi $q$ là ước nguyên tố nhỏ nhất của n $\Rightarrow q|{{n}^{p-1}}|{{\left( p-1 \right)}^{n}}+1$ $\Rightarrow q|{{\left( p-1 \right)}^{2n}}-1$

Mà : $q|{{\left( p-1 \right)}^{q-1}}-1\Rightarrow q|{{\left( p-1 \right)}^{\left( 2n,q-1 \right)}}-1$

Do n lẻ và $q$ là ước nguyên tố nhỏ nhất của n nên $\left( 2n;q-1 \right)=2$ .

Suy ra $q|{{\left( p-1 \right)}^{2}}-1=\left( p-2 \right)p$ $\Rightarrow $ $q|p-2$ hoặc $q=p$. Ta lại có các trường hợp nhỏ

$(a)$  Nếu $q|p-2\Rightarrow 0\equiv {{\left( p-1 \right)}^{n}}+1\equiv 1+1\equiv 2\left( \bmod \,q \right)$ $\Rightarrow q=2$ (vô lí vì q lẻ)

$(b)$  Nếu $q=p$ . Áp dụng bổ đề số mũ đúng cơ số q ta có

$\left( p-1 \right){{v}_{p}}\left( n \right)={{v}_{p}}\left( {{n}^{p-1}} \right)\le {{v}_{p}}\left[ {{\left( p-1 \right)}^{n}}+1 \right]={{v}_{p}}\left( p-1+1 \right)+{{v}_{p}}\left( n \right)=1+{{v}_{p}}\left( n \right)$

Suy ra : $\left( p-2 \right){{v}_{p}}\left( n \right)\le 1\Rightarrow p=3$ và ${{v}_{p}}\left( n \right)=1.$

Đến đây, bài toán trở thành : Tìm n để ${{n}^{2}}|{{2}^{n}}+1$.

Nhận xét $n=1$ thỏa yêu cầu bài toán nên ta xét $n>1$. Suy ra $n$ là số lẻ, gọi $r$ là ước nguyên tố nhỏ nhất của $n$. Suy ra $r|{{2}^{n}}+1\,\,|{{2}^{2n}}-1$, mà $r|{{2}^{r-1}}-1$ nên suy ra $r|{{2}^{\left( 2n;r-1 \right)}}-1$.

Do $n$ là số lẻ và $r$ là ước nguyên tố nhỏ nhất của $n$ nên $\left( 2n;r-1 \right)=2$ nên $r=3$. Ta có đánh giá sau

$$2{{v}_{3}}\left( n \right)\le {{v}_{3}}\left( {{4}^{n}}-1 \right)={{v}_{3}}\left( 4-1 \right)+{{v}_{3}}\left( n \right)\Rightarrow {{v}_{3}}\left( n \right)\le 1\Rightarrow {{v}_{3}}\left( n \right)=1.$$ Suy ra $n=3.m$, $\left( m,n \right)=1$. Thế vào đề bài, ta được $${{m}^{2}}|{{8}^{m}}+1|{{8}^{2m}}-1.$$

Nếu $m>1$ , tương tự ta gọi $s$ là ước nguyên tố nhỏ nhất của $m.$ Suy ra $m$ là ước của ${{8}^{2}}-1=63$. Do đó $s=7$, điều này vô lí vì ${{8}^{m}}+1$ chia $7$ dư $2.$ Suy ra $m=1\Rightarrow n=3$.

Vậy $\left( n,p \right)=\left( 1,2 \right);\left( 2,2 \right);\left( 3;3 \right)$ .

Một số lưu ý cho kì thi vào lớp 10: Môn Toán chuyên

Tới giờ phút này có lẽ những bạn muốn thi vào lớp 10 chuyên toán có lẽ đã chuẩn bị hết các kiến thức và kĩ năng chuẩn bị cho kì thi cam go, thời điểm này cũng không học được nhiều cái mới và cũng không đủ thời gian thẩm thấu, tốt nhất cứ ôn lại các phần mình đã được học, làm bài thật chắc chắn và tập phản xạ với đề thi. Tôi xin có một vài lưu ý cho các em như sau:

ĐẠI SỐ: Xem lại các chuyên đề biến đổi đại số, các phương pháp nâng cao giải phương trình, hệ phương trình: đặt ẩn phụ, lượng liên hợp,…Định lý Viete và các bài toán liên quan, bất đẳng thức và một số phương pháp chứng minh, chủ yếu các phương pháp nhẹ nhàng cauchy hai số, biến đổi tương đương.

HÌNH HỌC: Chú ý các bài toán phụ, các mô hình định lý quen thuộc, bổ đề nào sử dụng cần phải chứng minh lại, sử dụng kiến thức trong SGK, các bài toán cố định, di động, cực trị hình học.

SỐ HỌC: Chú ý các phương pháp về chứng minh chia hết, phải nắm chắc các tính chất số học, phương trình nghiệm nguyên: biến đổi thành tích, tổng, đồng dư và kẹp, nắm các tính chất của số nguyên tố, lũy thừa số nguyên, biểu diễn thập phân…

TỔ HỢP: Chú ý các phương pháp chứng minh: phản chứng, Dirichlet, quy nạp, một số quy tắc suy luận có lý.

GIẢI ĐỀ: Nên dành thời gian để giải đề thi hàng tuần, có thể là đề thi cũ của các trường mà mình muốn thi vào, làm bài dễ đến bài khó, làm bài nào chắc bài đó và ghi chép cẩn thận. Nhiều khi chấm thi các bạn ghi 2, 3 tời giấy đôi mà không được điểm nào, viết lung tung với toán chuyên là không có điểm, chú ý tới tính logic của lời giải, giải thích rõ ràng nhất là với các bài số học và tổ hợp. Việc giải đề trong thời gian cho phép giúp rèn luyện sự cẩn thận, tập trung cho kì thi thật, giải đề  xong thấy không ổn phần nào thì xem kĩ lại phần đó, khó quá thì cho qua.

CHÚC CÁC EM THI TỐT!

Một số lưu ý chuẩn bị cho kì thi vào lớp 10: Toán chung

Năm nay TPHCM và PTNK thi vào lớp 10 ba môn chung: Toán, Văn, Anh. Cũng sắp tới ngày thi, giai đoạn này cần tập trung vào việc học tập, ôn luyện rèn luyện giải đề…để có một kì thi thành công, kết quả như ý. Nhân đây tôi cũng có một số điều muốn chia sẻ trong giai đoạn nước rút này.

Đại số

  • Ôn tập rút gọn các biểu thức, chú ý các hằng đẳng thức, chú ý sai dấu.
  • Phương trình: Xem lại các giải pt vô tỷ, điều kiện, phương pháp giải, phương trình tích. Hệ phương trình xe, kĩ phương pháp thế, cộng đại số, ẩn phụ.
  • Viete chú ý các xử lí biểu thức chứa biết đối xứng hay không đối xứng, điều kiện có nghiệm.

Hình học

  • Nắm chắc hệ thức lượng, tỉ số lượng giác, công thức diện tích, chú ý các bài tính toán độ dài.
  • Hình học chú ý các các tính chất tiếp tuyến, phương pháp chứng minh tiếp tuyến, tính chất 2 tiếp tuyến cắt nhau và các bài toán liên quan.
  • Phương pháp chứng minh tứ giác nội tiếp,  các loại góc, các tính chất quen thuộc.

Toán thực tế

  • Chú ý các bài toán về phần trăm, giá cả, năng suất.
  • Hỏi cái nào, đặt ẩn cái đó, tìm mối tương quan giữa các đại lượng để lập phương trình hay hệ phương trình.
  • Nắm chắc các kĩ thuật giải pt, hpt, chú ý điều kiện của  ẩn.
  • Chú ý các công thức tính chu vi, diện tích, thể tích các hình quen thuộc.

Chúc các em có mùa thi thành công!