Tag Archives: 10

Đáp án đề thi chọn đội dự tuyển lớp 10 năm 2016 – 2017

Bài 1: Cho $x,y,z$ là các số thực dương thoả mãn $x+y+z=1$. Chứng minh rằng:

$$\dfrac{x^4}{x^3+y^2+z^2}+\dfrac{y^4}{y^3+z^2+x^2}+\dfrac{z^4}{z^3+x^2+y^2}\ge \dfrac{1}{7}.$$

Bài 2: Tìm tất cả các hàm số $f:\mathbb N^* \rightarrow \mathbb N^*$ thoả mãn đồng thời các điều kiện:

i/ $f(mn)=f(m)f(n)\ \forall m,n \in \mathbb N^*$.

ii/ $f(m)+f(n)$ chia hết cho $m+n$ $\forall m,n \in \mathbb N^*$.

iii/ $f(2017)=2017^3$.

Bài 3. Cho đường tròn $(O)$ và dây cung $AB$ cố định. $C$ là một điểm thay đổi trên cung lớn $AB$ sao cho tam giác $ABC$ nhọn. Gọi $I,I_a,I_b$ lần lượt là tâm đường tròn nội tiếp, tâm đường tròn bàng tiếp $\angle BAC$ và $\angle ABC$ của tam giác $ABC$.

a/ Gọi $M$ đối xứng với $I$ qua $O$. Chứng minh rằng tam giác $MI_{a}I_{b}$ cân.

b/ Gọi $H,K$ lần lượt là hình chiếu của $I_a,I_b$ trên $OI$. Đường thẳng qua $H$ vuông góc với $BI_a$ và đường thẳng qua $K$ vuông góc với $AI_b$ cắt nhau tại $P$. Chứng minh rằng $P$ thuộc một đường cố định khi $C$ thay đổi.

Bài 4. Cho $S$ là tập hợp khác rỗng và $A_1,A_2,\ldots,A_m\ (m\ge 2)$ là $m$ tập con của $S$. Gọi $\mathcal T$ là tập hợp gồm tất cả các tập hợp $A_i\Delta A_j\ (1\le i,j \le m$). Chứng minh rằng $|\mathcal T| \ge m$.

(Ký hiệu $A\Delta B=(A\backslash B)\cup (B\backslash A)$ là hiệu đối xứng của hai tập hợp $A,B$).

Giải

Bài 1.

Theo bất đẳng thức Cauchy-Schwarz, ta có

$$ \sum \dfrac{x^4}{x^3+y^2+z^2} \ge \dfrac{ \left( x^2+y^2+z^2 \right)^2}{ x^3+y^3+z^3+2 \left( x^2+y^2+z^2 \right)} $$

Cần chứng minh $\dfrac{ \left( x^2+y^2+z^2 \right)^2}{ x^3+y^3+z^3+2 \left( x^2+y^2+z^2 \right)} \ge \dfrac{1}{7} $ hay

$$7 \left( x^2+y^2+z^2 \right)^2 \ge x^3+y^3+z^3+2 \left( x^2+y^2+z^2 \right).$$ Ta có ${{(xy+yz+zx)}^{2}}\ge 3xyz(x+y+z)=3xyz$ và

$${{x}^{3}}+{{y}^{3}}+{{z}^{2}}-3xyz=(x+y+z)({{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx)$$ nên ${{x}^{3}}+{{y}^{3}}+{{z}^{3}}=3xyz+1-3(xy+yz+zx)\le {{(xy+yz+zx)}^{2}}+1-3(xy+yz+zx).$

Đặt $q=xy+yz+zx$ thì vì ${{(x+y+z)}^{2}}\ge 3(xy+yz+zx)$ nên $q\le \frac{1}{3}.$ Ta đưa về

$$7{{(1-2q)}^{2}}\ge {{q}^{2}}+1-3q+2(1-2q)$$ hay

$$(1-3q)(4-9q)\ge 0.$$

Do $q\le \frac{1}{3}$ nên $q\le \frac{4}{9}$ và bất đẳng thức trên là đúng. Vậy ta có đpcm.

Bài 2.

Nhận xét rằng vai trò của số $2017$ trong bài toán là không cần thiết cho nên ta sẽ giải bài toán khi thay $2017$ bởi số nguyên dương $p$ bất kỳ. Từ điều kiện đầu tiên, ta có được $f(p^k)=p^{3k}$ với $k$ là số nguyên dương bất kỳ.

Trong điều kiện thứ hai, thay $n$ bởi $m$, ta có $f(m)$ là bội của $m$ với mỗi $m$ nguyên dương nên ta đặt $f(m)=m.g(m)$ ($g:\mathbb{N^{*}}\rightarrow \mathbb{N^{*}}$). Khi đó ta có các điều kiện sau:

i/ $g(mn)=g(m).g(n) \forall m,n \in\mathbb{N^{*}}$

ii/ $mg(m)+ng(n)$ là bội của $m+n$.

iii/ $g(p^{n})=p^{2n} \forall n\in \mathbb{N^{*}}$.

Đặt $h(m)=g(m)-m^2$ ($h:\mathbb{N^{*}}\rightarrow \mathbb{Z}$) và thay $n$ bởi $p^n$ tại ii), ta có $m.h(m)$ là bội của $m+p^n$. Chọn $n$ đủ lớn thì $h(m)=0$ với mỗi $m$ hay $f(m)=m^3$ với mỗi $m$ nguyên dương. Thử lại thoả mãn.

Vậy $f(m)=m^3$ là nghiệm hàm duy nhất.

Bài 3.

(a) Trước hết, ta có một kết quả quen thuộc sau.

Bổ đề: Gọi $A_1$, $B_1$ lần lượt là điểm chính giữa các cung $BC$, $AC$ không chứa $A$, $B$ của $(O)$. Khi đó $A$, $I$, $A_1$, $I_a$ thẳng hàng và $A_1$ là trung điểm của $II_a$. Tương tự đối với $B$, $I$, $B_1$, $I_b$.

Trở lại bài toán, theo bổ đề, phép vị tự tâm $I$, tỉ số $2$ biến $\Delta OA_1B_1$ thành $\Delta MI_aI_b$, do đó tam giác này cân tại $M$.

Mở ảnh

(b) Ta thực hiện chuyển đổi mô hình. Gọi $I_a$ là tâm bàng tiếp góc $A$ của tam giác $ABC$ thì $(O)$ chính là đường tròn Euler của tam giác $I_aI_bI_c$. Xét bổ đề sau:

Bổ đề: Cho tam giác $ABC$ có đường thẳng $d$ đi qua tâm ngoại tiếp $O$. Gọi $D,E,F$ lần lượt là hình chiếu của $A,B,C$ lên $d$. Chứng minh rằng đường thẳng qua $D,E,F$ vuông góc với $BC,CA,AB$ đồng quy trên đường tròn $Euler$ của tam giác $ABC$.

Gọi $l$ là đường thẳng đi qua trực tâm $H$ của tam giác $ABC$ và vuông góc với $d$. Gọi $S$ là điểm anti-Steiner của $l$. $J$ là điểm đối xứng của $S$ qua $BC$ và $X$ là giao điểm của $SJ$ và $(O)$. $K$ là điểm đối xứng với $H$ qua $BC$. \medskip

Ta có: $$\angle AXS =\angle AKS=\angle KHJ$$ suy ra $HJ \parallel AX$. Do đó, $D$ nằm trên $AX$ hay $D$ là trung điểm $AX$. Suy ra đường thẳng qua $D$ vuông góc với $BC$ đi qua trung điểm $I$ của $SH$ và nằm trên đường tròn $Euler$ của tam giác $ABC$. \medskip

Trở lại bài toán, ta áp dụng bổ đề trên cho đường thẳng $OI$ đi qua tâm đường tròn $(I_aI_bI_c)$ thì dễ dàng có $P \in (O).$

Bài 4.

Ta sẽ chứng minh quy nạp theo $m$ cho điều này. Trước hết ta phát biểu bổ đề: $A\Delta B=A\Delta C$ thì $B=C$.

Giả sử $B\neq C$, khi đó không giảm tổng quát giả sử giả sử $a$ là phần tử thỏa $a\in B$ và $a\notin C$. Ta có hai trường hợp như sau:

  •  Nếu $a\in A$ khi đó $a\notin (A\setminus B),a\notin (B\setminus A)\Rightarrow a\notin A\Delta B$. Nhưng lại có $a\in (A\setminus C)$ nên suy ra $a\in A\Delta C$ nên $A\Delta B\neq A\Delta C$, vô lý.
  •  Nếu $a\notin A$ thì chứng minh tương tự suy ra $a\notin A\Delta C$ và $a\in A\Delta B$ nên suy ra $A\Delta B\neq A\Delta C$. Như vậy ta suy ra $B=C$.

Bây giờ ta sẽ quy nạp theo $m$. Với $m=1$ thì ta có một tập thuộc $T$ là tập rỗng. Với $m=2$ và hai tập $A,B$ thì ta có hai tập thuộc $T$ là tập rỗng và $A\Delta B$ thỏa. Như vậy giả thiết đúng với $m=1,2$.

Giả sử giả thiết đúng với $m=k$ thì ta chứng minh nó đúng với $m=k+1$. Xét $m+1$ tập $A_1,A_2,\ldots,A_{m+1}$. Nếu với $m$ tập $A_1,A_2,\ldots,A_m$ mà số lượng tập tạo thành không nhỏ hơn $m+1$ thì khi đó ta thêm vào một tập $A_{m+1}$ thì giả thiết vẫn đúng. Do đó ta chỉ xét cho trường hợp $|T|=m$.

Khi đó, nếu ta thêm vào một tập $A_{m+1}$ thì ta sẽ thêm vào tập $T$ các tập hợp $A_{m+1}\Delta A_1,\ldots,A_{m+1}\Delta A_{m+1}$. Nếu các tập này trùng với $m$ tập đã có trong $T$ thì do $|T|=m$ nên theo nguyên lý Dirichlet tồn tại $i,j,1\leq i<j\leq m+1$ để $A_{m+1}\Delta A_i=A_{m+1}\Delta A_j$ và theo bổ đề ta có $A_i=A_j$, vô lý. Vậy trong $m+1$ tập đó chắc chắn có một tập khác với các tập trong $T$ và số phần tử của $T$ tăng lên ít nhất một đơn vị, tức là $|T|\geq m+1$.

Vậy giả thiết quy nạp là đúng và ta có đpcm.

Đề ôn thi vào lớp 10 Chuyên Toán – Đề số 2

Bài 1. (2 điểm)
a) Cho các số $a$, $b$, $c$ thỏa $2a + 3b + 6c = 0$. Chứng minh rằng phương trình $ax^2 + bx + c = 0$ luôn có nghiệm.
b) Giải hệ phương trình: $\left{ \begin{array}{l}
\left( {{x^4} + 1} \right)\left( {{y^4} + 1} \right) = 4xy\
\sqrt[3]{{x – 1}} – \sqrt {y – 1} = 1 – {x^3}
\end{array} \right.$
Bài 2. (2 điểm) Cho các số $a$, $b$, $c$ thỏa $a^3 + b^3 + c^3 – 3abc = 1$.
a) Chứng minh rằng trong 3 số $a, b, c$ có ít nhất một số dương.
b) Tìm giá trị nhỏ nhất của biểu thức $a^2+b^2+c^2$.
Bài 3. (1,5 điểm) Cho $n$ là số nguyên dương và $d_1$, $d_2$, $d_3$, $d_4$ là các ước nguyên dương nhỏ nhất của $n$ thỏa: $n = d_1^2 + d_2^2 + d_3^2 + d_4^2$
a) Chứng minh rằng $n$ chia hết cho $2$ nhưng không chia hết cho $4$
b) Tìm $n$.
Bài 4. (3 điểm) Cho tam giác $ABC$ nội tiếp đường tròn $(O)$ cố định, $A, B$ cố định, $C$ thay đổi trên cung lớn $AB$. Gọi $K$ là trung điểm $AB$; $D$ và $E$ là hình chiếu của $K$ trên $CA, CB$.
a) Tìm vị trí của $C$ để $DE$ lớn nhất.
b) $DE$ cắt $AB$ và $CO$ tại $N, M$. Chứng minh rằng đường tròn ngoại tiếp tam giác $CMN$ đi qua một điểm cố định.
c) $(CDE)$ và $(O)$ cắt nhau tại $F$ khác $A$. $NF$ cắt $(CDE)$ tại $G$. Chứng minh $G$ thuộc một đường thẳng cố định.
Kí hiệu $(CDE)$ là bán kính đường tròn ngoại tiếp tam giác $CDE$.

Bài 5. (1,5 điểm) Cho hình thang cân, người ta tô màu 4 cạnh và 2 đường chéo của hình bằng hai màu đỏ và xanh, trong đó mỗi màu tô 3 đoạn. Chứng minh có 3 đoạn thẳng được tô cùng màu có thể lập được một tam giác.

 

Đáp án chi dành cho các bạn đã đăng kí website tiết tại Đây