Tag Archives: 2011

Đề thi và đáp án kì thi chọn đội tuyển thi Quốc gia trường Phổ thông Năng khiếu năm học 2011 – 2012

 

ĐỀ THI

Ngày thi thứ nhất

Bài 1. Cho các số $a, b, c>0$ thoả mãn $a b+b c+c a=1$. Chứng minh rằng:

$\quad\quad\quad\quad\quad\quad\quad\quad\frac{1}{3+2\left(a^2-b c\right)}+\frac{1}{3+2\left(b^2-c a\right)}+\frac{1}{3+2\left(c^2-a b\right)} \geq 1$

Bài 2. Có bao nhiêu bộ số nguyên dương $(x, y, z, t)$ thoả mãn

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad 12<x<y<z<t \text { và } x+y+z+t=2011 ?$

Bài 3. Cho tam giác $A B C$ nội tiếp đường tròn $(O, R)$. Gọi $\left(\mathcal{C}_1\right)$ là đường tròn thay đổi luôn qua $B, C$ và lần lượt cắt các cạnh $A B, A C$ tại $M, N$ khác $B, C$.

(a) Chứng minh rằng $(A M N)$ luôn tiếp xúc với một đường cố định.

(b) Cho $B, C$ cố định, $B C=2 R$ và $A$ thay đổi trên $(O)$. Đường thẳng qua $A$ vuông góc $B C$ cắt $(O)$ tại $D$ và cắt $\left(\mathcal{C}_1\right)$ tại $E, F$. Chứng minh rằng nếu $A$ và $\left(\mathcal{C}_1\right)$ thay đổi sao cho $\frac{E F}{A D}=\frac{\sqrt{5}}{2}$ thì $(A M N)$ luôn tiếp xúc với một đường cố định.

Bài 4. Cho $p$ là số nguyên tố lẻ và đa thức $Q(x)=(p-1) x^p-x-1$. Xét dãy số $\left(a_n\right)$ thoả mãn

$\quad\quad\quad\quad\quad\quad\quad\quad a_0=\frac{p-1}{2}, a_n=a_{n-1}+Q\left(a_{n-1}\right) \forall n \in \mathbb{N}^* .$

(a) Chứng minh rằng với mọi số nguyên dương $n$ thì $\left(a_n, p\right)=1$.

(b) Chứng minh rằng với mọi số nguyên dương $n$ thì $Q\left(a_n\right) \equiv 0\left(\bmod p^n\right)$.

Ngày thi thứ hai

Bài 5. Cho dãy số $\left(u_n\right)$ thoả mãn $u_1=\frac{1}{6}$ và $u_{n+1}=u_n^2+\frac{2}{3} u_n \forall n \in \mathbb{N}^*$.

Tìm $\lim \frac{5 u_{n+1}^2-2 u_n^2 u_{n+1}+5 u_n u_{n+1}}{3 u_n^2+u_n u_{n+1}\left(4+u_n^2\right)}$.

Bài 6. Cho hàm số $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ thoả mãn $f(0,0)=0$ và:

$\quad\quad\quad\quad\quad\quad\quad\quad f(a, b)=\left\{\begin{array}{l}f\left(\left\lfloor\frac{a}{2}\right\rfloor,\left\lfloor\frac{b}{2}\right\rfloor\right) \text { khi } a+b \equiv 0 \quad(\bmod 2) \\ 1+f\left(\left\lfloor\frac{a}{2}\right\rfloor,\left\lfloor\frac{b}{2}\right\rfloor\right) \text { khi } a+b \equiv 1 \quad(\bmod 2)\end{array}\right.$

(a) Có bao nhiêu số tự nhiên $m \leq 2011$ sao cho $f(2011, m)=5$ ?

(b) Cho số lẻ $p$, cho $n \in \mathbb{N}\left(1<p<2^n\right)$ và $A$ là tập hợp gồm $p$ số tự nhiên không vượt quá $2^n-1$. Chứng minh rằng $\sum_{{a, b} \subset A} f(a, b) \leq n \cdot \frac{p^2-1}{4}$.

Bài 7. Cho tam giác $A B C$ nội tiếp đường tròn $(O)$ với $B, C$ cố định và $A$ thay đổi trên $(O)$. Đường trung trực $d$ của $B C$ cắt $A B, A C$ tại $M, N$. Gọi $P, Q$ lần lượt là các điểm đối xứng của $M, N$ qua $O . K$ là giao điểm của $B P$ và $C Q$.

(a) Chứng minh rằng $K$ luôn thuộc một đường tròn cố định.

(b) Kết luận trên còn đúng không khi $d$ là đường thẳng Euler của tam giác $A B C ?$

Bài 8. Với mọi số nguyên dương $n$, đặt $S_n=x^n+y^n+z^n$. Ta đã biết rằng $S_n=$ $P_n(s, t, p)$ với $s=x+y+z, t=x y+y z+z x, p=x y z$. Hãy tính tổng các hệ số của các đơn thức chứa $p$ trong $P_{2011}(s, t, p)$.

 

LỜI GIẢI

Bài 1. Cho các số $a, b, c>0$ thoả mãn $a b+b c+c a=1$. Chứng minh rằng:

$\quad\quad\quad\quad\quad\quad\quad\quad \frac{1}{3+2\left(a^2-b c\right)}+\frac{1}{3+2\left(b^2-c a\right)}+\frac{1}{3+2\left(c^2-a b\right)} \geq 1$

Lời giải. Đặt $a b=x ; b c=y ; c a=z$ thì ta có $x+y+z=1$. Khi đó áp dụng bất đẳng thức Cauchy-Schwarz, ta có

$\quad\quad\quad\quad\quad \sum_{c y c} \frac{1}{3+2\left(\frac{x z}{y}-y\right)} =\sum_{c y c} \frac{y^2}{3 y^2+2 x y z-2 y^3} $

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad  \geq \frac{1}{3\left(x^2+y^2+z^2\right)+6 x y z-2\left(x^3+y^3+z^3\right)} .$

Ta đưa về chứng minh

$\quad\quad\quad\quad\quad\quad\quad\quad 3\left(x^2+y^2+z^2\right)+6 x y z-2\left(x^3+y^3+z^3\right) \leq 1 .$

Tuy nhiên đây lại là đẳng thức vì

$\quad\quad\quad\quad 3\left(x^2+y^2+z^2\right)+6 x y z-2\left(x^3+y^3+z^3\right) $

$\quad\quad\quad\quad\quad =3\left(x^2+y^2+z^2\right)-2(x+y+z)\left(x^2+y^2+z^2-x y-y z-z x\right) $

$\quad\quad\quad\quad\quad =3\left(x^2+y^2+z^2\right)-2\left(x^2+y^2+z^2\right)+2(x y+y z+z x) $

$\quad\quad\quad\quad\quad =(x+y+z)^2=1$

Đẳng thức xảy ra khi $x=y=z=1$ hay $a=b=c=\frac{1}{\sqrt{3}}$.

Bài 2. Có bao nhiêu bộ số nguyên dương $(x, y, z, t)$ thoả mãn $12<x<y<z<t$ và $x+y+z+t=2011 ?$

Lời giải. Đặt $x^{\prime}=x-12 ; y^{\prime}=y-12 ; z^{\prime}=z-12 ; t^{\prime}=t-12$. Phương trình đã cho tương đương với:

$\quad\quad\quad\quad\quad x^{\prime}+y^{\prime}+z^{\prime}+t^{\prime}=2011-48=1963 \text { với } 0 \leq x^{\prime}<y^{\prime}<z^{\prime}<t^{\prime}.$

Theo bài toán chia kẹo Euler thì nếu không có điều kiện thứ hai, số nghiệm của phương trình trên sẽ là $C_{1966}^3$. Ta sẽ trừ ra các trường hợp các số bị trùng nhau

  • Số bộ có 3 số giống nhau là $C_4^3 \cdot\left(1+\left\lfloor\frac{1963}{3}\right\rfloor\right)=2620=A$.
  • Số bộ có 2 số giống nhau là $C_4^2\left(\sum_{a=0}^{981}(1964-2 a)\right)=5791836=B$.

Do mỗi bộ nghiệm như trên chỉ tồn tại 1 cách sắp xếp $x, y, z, t$ thỏa mãn nên số bộ thoả mãn đề bài là

$\quad\quad\quad\quad\quad\quad\quad\quad \frac{C_{1966}^3-B+2 A}{4 !}=\frac{C_{1966}^3-5786596}{4 !} .$

Bài 3. Cho tam giác $A B C$ nội tiếp đường tròn $(O, R)$. Gọi $\left(\mathcal{C}_1\right)$ là đường tròn thay đổi luôn qua $B, C$ và lần lượt cắt các cạnh $A B, A C$ tại $M, N$ khác $B, C$.

(a) Chứng minh rằng $(A M N)$ luôn tiếp xúc với một đường cố định.

(b) Cho $B, C$ cố định, $B C=2 R$ và $A$ thay đổi trên $(O)$. Đường thẳng qua $A$ vuông góc $B C$ cắt $(O)$ tại $D$ và cắt $\left(\mathcal{C}_1\right)$ tại $E, F$. Chứng minh rằng nếu $A$ và $\left(\mathcal{C}_1\right)$ thay đổi sao cho $\frac{E F}{A D}=\frac{\sqrt{5}}{2}$ thì $(A M N)$ luôn tiếp xúc với một đường cố định.

Lời giải. (a) Gọi $d$ là đường thẳng qua $A$, song song với $B C$ và cắt đường tròn $(O)$ tại $T$. Bằng biến đổi góc, ta có

$\quad\quad\quad\quad\quad\quad\quad\quad \angle T A C=\angle A C B=\angle A M N .$

Suy ra $A T$ là tiếp tuyến của đường tròn $(A M N)$ nên ( $A M N)$ tiếp xúc với đường thẳng $d$ cố định.

(b) Gọi $H$ là hình chiếu của $A$ lên $B C$. Xét phương tích từ $A$ đến $\mathcal{C}_1$ thì

$\quad\quad\quad\quad\quad\quad\quad\quad A M \cdot A B=A N \cdot A C=A E \cdot A F \text {. }$

Ta có $H E \cdot H F=H B \cdot H C=H A^2$, mà $\frac{E F}{A D}=\frac{\sqrt{5}}{2}$ nên $H E+H F=\sqrt{5} A H$. Giải hệ này, ta có

$\quad\quad\quad\quad\quad\quad\quad\quad H E=\frac{\sqrt{5}-1}{2} A H \text { và } H F=\frac{\sqrt{5}+1}{2} A H .$

Suy ra $A E=A H-H E=\frac{3-\sqrt{5}}{2} A H$ và $A F=A H+H F=\frac{3+\sqrt{5}}{2} A H$. Từ đó ta được

$\quad\quad\quad\quad\quad\quad\quad\quad A E \cdot A F=\frac{3-\sqrt{5}}{2} A H \cdot \frac{3+\sqrt{5}}{2} A H=A H^2 \text {. }$

Vì thế nên $A H^2=A M \cdot A B=A N \cdot A C$, chứng tỏ $H M, H N$ lần lượt vuông góc với $A B, A C$. Suy ra $(A M N)$ có đường kính là $A H$ nên $(A M N)$ tiếp xúc với $B C$ là đường thẳng cố định.

Bài 4. Cho $p$ là số nguyên tố lẻ và đa thức $Q(x)=(p-1) x^p-x-1$. Xét dãy số $\left(a_n\right)$ thoả mãn

$\quad\quad\quad\quad\quad\quad\quad\quad a_0=\frac{p-1}{2}, a_n=a_{n-1}+Q\left(a_{n-1}\right) \forall n \in \mathbb{N}^* .$

(a) Chứng minh rằng với mọi số nguyên dương $n$ thì $\operatorname{gcd}\left(a_n, p\right)=1$.

(b) Chứng minh rằng với mọi số nguyên dương $n$ thì $Q\left(a_n\right) \equiv 0\left(\bmod p^n\right)$.

Lời giải. (a) Ta có

$\quad\quad\quad\quad a_0=\frac{p-1}{2} \text { và } a_1=a_0+(p-1) a_0^p-a_0-1=\frac{(p-1)^{p+1}}{2^p}-1$

không chia hết cho $p$.

Giả sử tồn tại $k$ nhỏ nhất sao cho $p \mid a_k$ thì $k \geq 2$. Ta có

$\quad\quad\quad\quad a_k=(p-1) a_{k-1}^p-1 \text { và } p-1 \equiv-1, a_{k-1}^p \equiv a_k \quad(\bmod p) .$

Suy ra $a_{k-1} \equiv-1(\bmod p)$ từ đó ta được $a_{k-2} \equiv 0(\bmod p)$, mâu thuẫn với tính nhỏ nhất của $k$. Vậy nên ta phải có $\operatorname{gcd}\left(a_n, p\right)=1$ với mọi $n$ nguyên dương.

(b) Ta có $Q(x)=(p-1) x^p-x-1 \equiv(-1) x-x-1=-2 x-1(\bmod p)$ với mọi $x$ nguyên nên

$\quad\quad\quad\quad Q\left(a_1\right) \equiv-2 a_1-1 \equiv-2(p-1) \frac{p-1}{2}+2-1=0 \quad(\bmod p)$

nên khẳng định đúng với $n=1$. Ta sẽ chứng minh bằng quy nạp.

$\quad\quad\quad\quad Q\left(a_{n+1}\right)=(p-1)\left(a_{n+1}^p-a_n^p\right)=(p-1) Q\left(a_n\right)\left(\sum_{i=1}^p a_n^{i-1} a_{n+1}^{p-i}\right).$

Giả sử rằng $p^n \mid Q\left(a_n\right)$ nên suy ra

$\quad\quad\quad\quad a_{n+1} \equiv a_n \quad(\bmod p) \Rightarrow \sum_{i=1}^p a_n^{i-1} a_{n+1}^{p-i} \equiv p a_n^{p-1} \equiv 0 \quad(\bmod p) .$

Như vậy $p^{n+1} \mid Q\left(a_{n+1}\right)$.Theo nguyên lí quy nạp thì ta có điều phải chứng minh.

Bài 5. Cho dãy số $\left(u_n\right)$ thoả mãn $u_1=\frac{1}{6}$ và $u_{n+1}=u_n^2+\frac{2}{3} u_n \forall n \in \mathbb{N}^*$.

Tìm $\lim \frac{5 u_{n+1}^2-2 u_n^2 u_{n+1}+5 u_n u_{n+1}}{3 u_n^2+u_n u_{n+1}\left(4+u_n^2\right)}$.

Lời giải. Trước hết, ta sẽ tìm giới hạn của dãy $\left(u_n\right)$. Bằng quy nạp, ta sẽ chứng minh rằng $0<u_n<\frac{1}{3}, \forall n$. Thật vậy,

  • Với $n=1$ thì khẳng định đúng.
  • Giả sử khẳng định đúng với $n=k>1$ thì $0<u_k<\frac{1}{3}$. Ta có:

$\quad\quad\quad\quad\quad\quad\quad\quad 0<u_{k+1}=u_k^2+\frac{2}{3} u_k<\frac{1}{9}+\frac{2}{3} \cdot \frac{1}{3}=\frac{1}{3}$

nên khẳng định cũng đúng với $n=k+1$.

Theo nguyên lí quy nạp, khẳng định được chứng minh. Xét hàm số $f(x)=x^2+$ $\frac{2}{3} x, x \in\left(0 ; \frac{2}{3}\right)$ thì $f^{\prime}(x)=2 x+\frac{2}{3}>0$ nên đây là hàm đồng biến. Dãy số đã cho chính là $u_1=\frac{1}{6}, u_{n+1}=f\left(u_n\right), n=1,2,3, \ldots$

Hơn nữa $u_2=\frac{1}{6^2}+\frac{2}{3} \cdot \frac{1}{6}=\frac{5}{36}<\frac{1}{6}$ nên đây là dãy giảm và bị chặn dưới nên có giới hạn. Gọi $l$ là giới hạn của dãy thì

$\quad\quad\quad\quad\quad\quad\quad\quad l=l^2+\frac{2}{3} l \Leftrightarrow l=0 \text { hay } l=\frac{1}{3} \text {. }$

Nhưng do dãy này giảm và theo chứng minh trên thì $0<u_n<\frac{1}{3}, \forall n$ nên giới hạn của dãy là 0 .

Theo công thức xác định dãy, ta có $\frac{u_{n+1}}{u_n}=u_n+\frac{2}{3}$. Do dãy $\lim u_n=0$ nên dãy tương ứng $\left(\frac{u_{n+1}}{u_n}\right)$ có giới hạn là $\frac{2}{3}$. Từ đó, ta tính được

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad =\frac{5\left(\frac{2}{3}\right)^2-2 \cdot 0+5 \cdot \frac{2}{3}}{3+\frac{2}{3}\left(4+0^2\right)}=\frac{50}{51} .$

Bài 6 . Cho hàm số $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ thoả mãn $f(0,0)=0$ và:

$\quad\quad\quad\quad\quad\quad\quad\quad f(a, b)=\left\{\begin{array}{l}f\left(\left\lfloor\frac{a}{2}\right\rfloor,\left\lfloor\frac{b}{2}\right\rfloor\right) \text { khi } a+b \equiv 0 \quad(\bmod 2) \\ 1+f\left(\left\lfloor\frac{a}{2}\right\rfloor,\left\lfloor\frac{b}{2}\right\rfloor\right) \text { khi } a+b \equiv 1 \quad(\bmod 2)\end{array}\right.$

(a) Có bao nhiêu số tự nhiên $m \leq 2011$ sao cho $f(2011, m)=5$ ?

(b) Cho số lẻ $p$, cho $n \in \mathbb{N}\left(1<p<2^n\right)$ và $A$ là tập hợp gồm $p$ số tự nhiên không vượt quá $2^n-1$. Chứng minh rằng $\sum_{{a, b} \subset A} f(a, b) \leq n \cdot \frac{p^2-1}{4}$.

Lời giải. (a) Đổi số 2011 sang hệ nhị phân, ta có $2011=\overline{11111011011}(2)$. Khi đổi số $m$ sang hệ nhị phân, ta cũng có tương ứng $m=\overline{a_1 a_2 \ldots a_{11}(2)}$ (do $m \leq 11$ nên ta chỉ xét 11 chữ số).

Do công thức xác định của hàm, ta thấy $f(2011, m)$ chính bằng số vị trí trong dãy chữ số trên mà hai chữ số tại cùng vị trí là khác tính chẵn lẻ.

Trong 11 chữ số của $m$, ta chọn 5 vị trí để cho chúng khác tính chẵn lẻ với các chữ số của 2011 thì có $C_{11}^5=462$ cách. Mỗi cách chọn tính chẵn lẻ đó tương ứng với đúng một số $m$.

Tuy nhiên, ta phải trừ đi trường hợp đổi tính chẵn lẻ tại vị trí thứ 6 (và giữ nguyên từ $a_1 \rightarrow a_5$ ), tức là

$\quad\quad\quad\quad\quad\quad\quad\quad a_1=a_2=\cdots=a_6=1$

khi đó thì $m>2011$, không thỏa mãn. Ta sẽ đếm số cách chọn $m$ như thế. Trong 5 vị trí từ $a_7 \rightarrow a_{11}$, chọn ra 4 vị trí để đổi tính chẵn lẻ, có $C_5^4=5$ cách. Chú ý rằng số 0 ở vị trí thứ 9 không ảnh hưởng vì sau nó chỉ còn 2 vị trí, không đủ để thực hiện chọn ra 4 vị trí để đổi tính chẵn lẻ như trên.

Vậy nên số các số $m$ thỏa mãn là $462-5=457$.

(b) Đổi tất cả $p$ số của tập $A$ sang hệ nhị phân thì mỗi số sẽ có không quá $n$ chữ số và xếp vào bảng ô vuông kích thước $p \times n$. Mỗi dòng tương ứng với một số, và số nào không có đủ $n$ chữ số trong hệ nhị phân thì ta thêm 0 vào trước nó. Khi đó, tổng $\sum_{{a, b} \subset A} f(a, b)$ chính bằng tổng các cặp vị trí khác nhau trên mỗi cột.

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad \begin{array}{|l|l|l|l|}\hline a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\ \hline a_{2,1} & a_{2,2} & \cdots & a_{2, n} \\ \hline \cdots & \cdots & \cdots & \cdots \\ \hline a_{p, 1} & a_{p, 2} & \cdots & a_{p, n} \\ \hline\end{array}$

Xét cột thứ 1 , giả sử trên đó có $x$ số 0 và $y$ số 1 với $x+y=p$. Khi đó, số cặp chữ số khác nhau trên cột này sẽ là

$\quad\quad\quad\quad x y=\frac{1}{4}\left[(x+y)^2-(x-y)^2\right]=\frac{1}{4}\left[p^2-(x-y)^2\right] \leq \frac{p^2-1}{4}$

(do $x, y$ khác tính chẵn lẻ nên $|x-y| \geq 1$ ). Tương tự với các cột khác, số cặp chữ số khác nhau cũng không vượt quá $\frac{p^2-1}{4}$. Và do tính độc lập giữa các cột, ta có

$\quad\quad\quad\quad\quad\quad\quad\quad \sum_{{a, b} \subset A} f(a, b) \leq n \cdot \frac{p^2-1}{4} .$

Bài 7. Cho tam giác $A B C$ nội tiếp đường tròn $(O)$ với $B, C$ cố định và $A$ thay đổi trên $(O)$. Đường trung trực $d$ của $B C$ cắt $A B, A C$ tại $M, N$. Gọi $P, Q$ lần lượt là các điểm đối xứng của $M, N$ qua $O$. $K$ là giao điểm của $B P$ và $C Q$.

(a) Chứng minh rằng $K$ luôn thuộc một đường tròn cố định.

(b) Kết luận trên còn đúng không khi $d$ là đường thẳng Euler của tam giác $A B C ?$

Lời giải. Ta sẽ chứng minh bài toán tổng quát khi thay trung trực $B C$ lẫn đường thẳng Euler bởi đường thẳng $d$ bất kỳ đi qua $O$.

Kẻ đường kính $B B^{\prime}, C C^{\prime}$ của $(O)$ và giả sử $B^{\prime} N, C^{\prime} M$ cắt nhau ở $T$. Khi đó, vì $M, N, O$ thẳng hàng nên theo định lý Pascal đảo thì lục giác tạo bởi các đỉnh $A, B, C, B^{\prime}, C^{\prime}, T$ nội tiếp. Do đó, $T \in(O)$.

Ngoài ra, vì $\angle B T N=\angle B T B^{\prime}=90^{\circ}$ nên $T B \perp T N$, tương tự thì $T C \perp T M$.

Kẻ đường kính $T K^{\prime}$ của $(O)$ thì do $O$ là trung diểm chung của $T K^{\prime}, M P$ nên tứ giác $T M K^{\prime} P$ là hình bình hành. Suy ra $T M | K^{\prime} P$ nên $K^{\prime} P \perp T C$.

Mà tứ giác $C M C^{\prime} P$ cũng là hình bình hành nên $C P | C^{\prime} M$, mà $C^{\prime} M \perp T C$ nên $C P \perp T C$. Từ các điều này, ta suy ra $K^{\prime}, P, C$ thẳng hàng. Tương tự thì $K^{\prime}, Q, B$ thẳng hàng. Vì thế nên $K^{\prime} \equiv K$, hay $K$ luôn thuộc đường tròn $(O)$ cố định.

Nhận xét. Trong bài toán trên, $T$ chính là giao điểm của hai đường tròn đường kính $B N, C M$. Nếu gọi $S$ là giao điểm còn lại thì ta chứng minh được bằng phép nghịch đảo trực tâm $H$ rằng $S$ nằm trên đường tròn Euler của tam giác $A B C$.

Bài 8. Với mọi số nguyên dương $n$, đặt $S_n=x^n+y^n+z^n$. Ta đã biết rằng $S_n=P_n(s, t, p)$ với $s=x+y+z, t=x y+y z+z x, p=x y z$. Hãy tính tổng các hệ số của các đơn thức chứa $p$ trong $P_{2011}(s, t, p)$.

Lời giải. Theo định lý Viete thì $x, y, z$ là nghiệm của phương trình

$\quad\quad\quad\quad\quad\quad\quad\quad\quad a^3-s a^2+t a-p=0 .$

Để tính tổng hệ số của tất cả các đơn thức trong $P_{2011}$, ta xét $P_{2011}(1,1,1)$. Tương tự, tổng các hệ số của các đơn thức không chứa $p$ trong $P_{2011}$ là $P_{2011}(1,1,0)$. Do đó, ta cần tính

$\quad\quad\quad\quad\quad\quad\quad\quad M=P_{2011}(1,1,1)-P_{2011}(1,1,0) .$

Xét phương trình $a^3-a^2+a-1=0$ có ba nghiệm là $a=1, a=i$ và $a=-i$. Vì $P_{2011}(s, t, p)=x^n+y^n+z^n$ nên ta có

$\quad\quad\quad\quad\quad\quad\quad P(1,1,1)=1^{2011}+i^{2011}+(-i)^{2011}=1 .$

Tiếp tục xét $a^3-a^2+a=0$ có ba nghiệm là $a=0, a=\frac{1 \pm i \sqrt{3}}{2}$. Áp dụng công thức Moivre của lũy thừa số phức, ta tính được

$\quad\quad\quad\quad P(1,1,0) =0^{2011}+\left(\frac{1+i \sqrt{3}}{2}\right)^{2011}+\left(\frac{1-i \sqrt{3}}{2}\right)^{2011} $

$\quad\quad\quad\quad\quad\quad\quad\quad =\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)^{2011}-\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)^{2011} $

$\quad\quad\quad\quad\quad\quad\quad\quad =\left(\cos \frac{2011 \pi}{3}+i \sin \frac{2011 \pi}{3}\right)-\left(\cos \frac{4022 \pi}{3}+i \sin \frac{4022 \pi}{3}\right)=1$

Vì thế nên $M=0$.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Đề thi và đáp án kì thi chọn đội tuyển thi Quốc gia trường Phổ thông Năng khiếu năm học 2010 – 2011

ĐỀ THI

Ngày thi thứ nhất

Bài 1. Giải hệ phương trình sau:

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad \left\{\begin{array}{l}\frac{5(x+y)}{x+y+6 x y}+\frac{6(x+z)}{x+z+5 x z}=4 \\ \frac{6(y+z)}{z+y+4 z y}+\frac{4(x+y)}{x+y+6 x y}=5 \\ \frac{4(x+z)}{x+y+5 x z}+\frac{5(y+z)}{y+z+4 y z}=6\end{array}\right.$

Bài 2. Tìm tất cả các hàm số $f: \mathbb{R} \rightarrow \mathbb{R}$ thỏa mãn:

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad  f(|x|+y+f(y+f(y)))=3 y+|f(x)|, \forall x, y \in \mathbb{R}$

Bài 3. Cho $p$ là số nguyên tố lẻ và $n=2 p+r$ với $r \in{0,1,2, \ldots, p-1}$. Đặt $X={1,2, \ldots, n}$. Ánh xạ $f: X \rightarrow X$ được gọi là có tính chất $\mathcal{P}$ nếu $f$ không phải là ánh xạ đồng nhất và $f(f(\ldots(f(k)) \ldots)$ ) $=k$ (ánh xạ hợp $p$ lần) với mọi $k \in X$.

Đặt $A_f={k \in X \mid f(k)=k}$.

a) Chứng minh rằng nếu $f$ có tính chất $\mathcal{P}$ thì $\left|A_f\right| \equiv r(\bmod p)$.

b) Gọi $d$ là số các ánh xạ có tính chất $\mathcal{P}$. Chứng minh rằng $d$ không là ước của $n$ !.

(Kí hiệu $|A|$ chỉ số lượng các phần tử của tập hợp $A$.)

Bài 4. Cho tam giác $A B C$ nội tiếp đường tròn $(O)$ có $A$ cố định và $B, C$ thay đổi trên $(O)$ sao cho $B C$ luôn song song với một đường thẳng cố định. Các tiếp tuyến của $(O)$ tại $B$ và $C$ cắt nhau tại $K$. Gọi $M$ là trung điểm của $B C, N$ là giao điểm của $A M$ với $(O)$. Chứng minh rằng đường thẳng $K N$ luôn đi qua một điểm cố định.

Ngày thi thứ hai

Bài 5. Chứng minh rằng nếu $a, b, c$ là độ dài ba cạnh của một tam giác thì:

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad (2 a+2 b-c)(2 b+2 c-a)(2 c+2 a-b)>25 a b c$

Bài 6. Cho dãy số $\left(u_n\right)$ thoả mãn $u_1=\sqrt{2}$ và $u_{n+1}=\frac{2 u_n^2+5 u_n+5}{2 u_n+4}, \forall n \geq 1$. Tìm $\lim \frac{u_n^2-3 u_n+5}{3 n^2+4 n-1}$.

Bài 7. Xét số tự nhiên $n>1$. Bắt đầu từ bộ số $1,2, \ldots, 2 n-1,2 n$, ta thực hiện phép biến đổi sau: Chọn hai số $a, b$ sao cho $a-b>1$, xoá hai số này và thay thế bởi hai số $a-1, b+1$. Với bộ số mới, ta lại tiếp tục thực hiện phép biến đổi tương tự’

a) Chứng minh rằng ta sẽ đạt đến trạng thái dừng, tức là không thể tiếp tục thực hiện phép biến đổi như vậy được nữa.

b) Gọi $k$ là số lần phép biến đổi cần thực hiện để đạt đến trạng thái dừng. Tìm giá trị nhỏ nhất và lớn nhất của $k$.

Bài 8. Cho đường tròn $\left(\gamma_1\right)$ đường kính $A B$ và đường tròn $\left(\gamma_2\right)$ tâm $A$ cắt $\left(\gamma_1\right)$ tại $C, D$. Điểm $M$ thay đổi trên cung $C D$ (nằm bên trong $\left(\gamma_1\right)$ ) của $\left(\gamma_2\right)$. Gọi $B M$ cắt $\left(\gamma_1\right)$ tại $N$ khác $M$ và $B$. Tìm giá trị nhỏ nhất của $\frac{N D+N C}{M N}$.

 

LỜI GIẢI

Ngày thi thứ nhất

Bài 1. Giải hệ phương trình

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad \left\{\begin{array}{l}\frac{5(x+y)}{x+y+6 x y}+\frac{6(x+z)}{x+z+5 x z}=4 \\ \frac{6(y+z)}{z+y+4 z y}+\frac{4(x+y)}{x+y+6 x y}=5 \\ \frac{4(x+z)}{x+y+5 x z}+\frac{5(y+z)}{y+z+4 y z}=6\end{array} .\right.$

Lời giải. Đặt $u=\frac{x+y}{x+y+6 x y}, v=\frac{y+z}{y+z+4 y z}, w=\frac{z+x}{z+x+5 z x}$ thì ta có hệ

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad \left\{\begin{array} { l }{ 5 u + 6 w = 4 } \\ { 6 v + 4 u = 5 } \\ { 4 w + 5 v = 6 }\end{array} \Leftrightarrow \left\{\begin{array}{l}8 u=1 \\ 4 v=3 \\ 16 w=9\end{array} .\right.\right.$

Suy ra

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad \left\{\begin{array} { l }{ 7 ( x + y ) = 6 x y } \\ { 3 ( y + z ) = 1 2 y z } \\ { 7 ( z + x ) = 4 5 z x }\end{array} \Leftrightarrow \left\{\begin{array}{l}a+b=\frac{6}{7} \\ b+c=12 \\ c+a=\frac{45}{7}\end{array}\right.\right.$

trong đó $a=\frac{1}{x}, b=\frac{1}{y}, c=\frac{1}{z}$. Giải hệ trên, ta thu được $a=-\frac{33}{14}, b=\frac{45}{14}, c=\frac{123}{14}$ nên $(x, y, z)=\left(-\frac{14}{33}, \frac{14}{45}, \frac{14}{123}\right)$.

Bài 2. Tìm tất cả các hàm số $f: \mathbb{R} \rightarrow \mathbb{R}$ thỏa mãn:

$\quad\quad\quad\quad\quad\quad f(|x|+y+f(y+f(y)))=3 y+|f(x)|, \forall x, y \in \mathbb{R}$

Lời giải. Dễ thấy $f$ toàn ánh. Giả sử $f(a)=0$ và thay $x=0, y=a$, ta có

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad 0=3 a+|f(0)|$

Suy ra $a$ tồn tại duy nhất và $a=-\frac{1}{3}|f(0)| \leq 0$. Lại thay $x=y=a$, ta có $f(0)=3 a \leq 0$. Lại thay $x=-a, y=a$ thì chú ý rằng $|-a|+a=0$, ta có $f(0)=3 a+|f(-a)|$ nên $f(-a)=0$, điều này kéo theo $a=-a$ hay $a=0$ (do tính duy nhất ở trên).

Thay $y=0$ thì $f(|x|)=|f(x)|$ nên $f(x) \geq 0, \forall x \geq 0$. Xét $x>0$ và $y=-\frac{f(x)}{3}$, ta có $f\left(x-\frac{f(x)}{3}+f\left(-\frac{f(x)}{3}+f\left(-\frac{f(x)}{3}\right)\right)\right)=0$ nên

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad -\frac{f(x)}{3}+f\left(-\frac{f(x)}{3}+f\left(-\frac{f(x)}{3}\right)\right)=-x$

với mọi $x>0$. Trong đề bài, thay $x=0$ thì $f(y+f(y+f(y)))=3 y$. Thay $y \rightarrow-\frac{f(x)}{3}$ thì $f\left(-\frac{f(x)}{3}+f\left(-\frac{f(x)}{3}+f\left(-\frac{f(x)}{3}\right)\right)\right)=-f(x)$. So sánh hai đẳng thức trên, ta có $f(-x)=-f(x), \forall x>0$ nên $f$ là hàm số lẻ.

Từ tính chất hàm số lẻ, ta có $f\left(\frac{f(x)}{3}+f\left(\frac{f(x)}{3}+f\left(\frac{f(x)}{3}\right)\right)\right)=f(x)$ với mọi $x>0$. Trong đề bài, xét $x \geq 0$ và $y \rightarrow \frac{f(y)}{3}$, ta có

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad f\left(x+\frac{f(y)}{3}+f\left(\frac{f(y)}{3}+f\left(\frac{f(y)}{3}\right)\right)\right)=f(y)+f(x)$

hay $f(x+y)=f(x)+f(y)$ với mọi $x, y>0$. Vì $f$ cộng tính trên $\mathbb{R}^{+}$nên ta có $f(x)=a x, \forall x>0$. Lại do tính chất hàm lẻ, ta suy ra $f(x)=a x, \forall x \in \mathbb{R}$. Thay vào đề bài, ta có $a=1$.

Vậy tất cả các hàm số cần tìm là $f(x)=x$.

Bài 3. Cho $p$ là số nguyên tố lẻ và $n=2 p+r$ với $r \in{0,1,2, \ldots, p-1}$. Đặt $X={1,2, \ldots, n}$. Ánh xạ $f: X \rightarrow X$ được gọi là có tính chất $\mathcal{P}$ nếu $f$ không phải là ánh xạ đồng nhất và $f(f(\ldots(f(k)) \ldots)$ ) $=k$ (ánh xạ hợp $p$ lần) với mọi $k \in X$.

Đặt $A_f={k \in X \mid f(k)=k}$.

a) Chứng minh rằng nếu $f$ có tính chất $\mathcal{P}$ thì $\left|A_f\right| \equiv r(\bmod p)$.

b) Gọi $d$ là số các ánh xạ có tính chất $\mathcal{P}$. Chứng minh rằng $d$ không là ước của $n$ !.

(Kí hiệu $|A|$ chỉ số lượng các phần tử của tập hợp $A$.)

Lời giải. a) Ta có

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad \left|A_f\right| \equiv r \quad(\bmod p) \Leftrightarrow\left|X \backslash A_f\right| \text { chia hết cho } p \text {. }$

Điều này tương đương số phần tử của tập hợp $B={k \in X \mid f(k) \neq k}$ là bội của $p$. Đặt $f_m(x)$ là ánh xạ hợp $m$ lần. Xét $x \in B$ thì cũng có các số $f(x), f_2(x), \ldots, f_{p-1}(x) \in$ B. Thật vậy,

Giả sử tồn tại $1<m<p$ sao cho $f_m(x)=x$ với số $x \in B$ nào đó, ta chọn $m$ là số nhỏ nhất như thế. Vì $p$ nguyên tố lẻ nên $p$ không chia hết cho $m$. Do vậy tồn tại số $t$ sao cho $0<p-t m<m$. Lại có

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad f_m(x)=x \Rightarrow f_{t m}(x)=x \Rightarrow f_{p-t m}(x)=f_p(x)=x$

(mâu thuẫn với tính nhỏ nhất của $m$ ). Vì thế nên với mọi $m$ mà $1<m<p$ thì $f_m(x) \neq x$. Từ đó suy ra với mọi $1<k<l<p$ thì $f_k(x) \neq f_l(x)$, tức là $x, f(x), f_2(x), \ldots, f_{p-1}(x)$ là $p$ số khác nhau thuộc $B$.

Xét số $y \in B$ và $y$ khác tất cả $p$ số ở trên. Khi đó, ta cũng sẽ có $y$ sinh ra một bộ $p$ số phân biệt mới. Giả sử rằng có $f_i(x)=f_j(y)$ với $i<j$ nào đó thì sẽ có $f_{p+i-j}(x)=f_p(y)=y$, mâu thuẫn. Suy ra trong $B$ sẽ có 1 hoặc 2 bộ $p$ số rời nhau, chứng tỏ rằng số phần tử của $B$ chia hết cho $p$. Suy ra điều phải chứng minh.

(b) Từ đây ta thấy rằng để đếm số ánh xạ $f$ có tính chất $\mathcal{P}$, trước hết, ta chọn ra $r$ hoặc $p+r$ vị trí cố định. Ta xét hai trường hợp như sau:

  1. Nếu $\left|A_f\right|=p+r$ thì có $C_n^{p+r}$ cách chọn ra các số này, còn lại $p$ số thì $f$ phải là song ánh trên tập con đó. Do đó trong trường hợp này có $p ! C_n^{p+r}$ cách.
  2. Nếu $\left|A_f\right|=r$ thì tương tự trên, ta cũng đếm được $(p !)^2 C_n^r C_{2 p}^p$.

Từ đó suy ra số ánh xạ tính chất $\mathcal{P}$ là

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad d=p ! C_n^{p+r}+(p !)^2 C_n^r C_{2 p}^p$

Ta sẽ chứng minh số này không là ước của $n$ !. Ta viết số $d$ dưới dạng khai triển

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad d=p ! \frac{n !}{(p+r) ! p !}+(p !)^2 \frac{n !}{r !(2 p) !} \cdot \frac{(2 p) !}{(p !)^2}=\frac{n !}{(p+r) !}+\frac{n !}{r !} .$

Đặt $(p+r) !=k \cdot(r !)^2$ với $k=\frac{(p+r) !}{(r !)^2}=\frac{p !}{r !} \cdot \frac{(p+r) !}{p ! r !}=\frac{p !}{r !} C_{p+r}^r \in \mathbb{Z}$. Khi đó, ta viết lại

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad \frac{n !}{d}=\frac{r !(p+r) !}{r !+(p+r) !}=\frac{k \cdot(r !)^3}{(1+k \cdot r !) \cdot r !}=\frac{k \cdot(r !)^2}{k \cdot r !+1} .$

Dễ thấy số này không thể nguyên vì $k \cdot r !+1$ nguyên tố cùng nhau với $k \cdot(r !)^2$. Từ đó ta có $d$ không là ước của $n$ !.

Nhận xét. Bài này nếu tổng quát $n=k q+r$ thì kết quả câu a vẫn đúng. Tuy nhiên, câu b biến đổi sẽ phức tạp hơn nhiều.

Bài 4. Cho tam giác $A B C$ nội tiếp đường tròn $(O)$ có $A$ cố định và $B, C$ thay đổi trên $(O)$ sao cho $B C$ luôn song song với một đường thẳng cố định. Các tiếp tuyến của $(O)$ tại $B$ và $C$ cắt nhau tại $K$. Gọi $M$ là trung điểm của $B C, N$ là giao điểm của $A M$ với $(O)$. Chứng minh rằng đường thẳng $K N$ luôn đi qua một điểm cố định.

Lời giải. Giả sử $K N$ cắt $(O)$ tại $I$ thì tứ giác $B N C I$ điều hòa.

Do đó $A(B C, N I)=-1$, mà $A N$ chia đôi $B C$ nên $A I | B C$, tức là $A I$ có phương cố định. Từ đó ta thấy $I$ là điểm cố định cần tìm.

Ngày thi thứ hai

Bài 5. Chứng minh rằng nếu $a, b, c$ là độ dài ba cạnh của một tam giác thì:

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad (2 a+2 b-c)(2 b+2 c-a)(2 c+2 a-b)>25 a b c .$

Lời giải. Đặt $a+b-c=x, b+c-a=y, c+a-b=z$ thì $x, y, z>0$. Ta đưa về bất đẳng thức

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad \left(4 \cdot \frac{x}{y+z}+1\right)\left(4 \cdot \frac{y}{z+x}+1\right)\left(4 \cdot \frac{z}{x+y}+1\right)>25 .$

Không mất tính tổng quát, giả sử $0<x \leq y \leq z$. Đặt $S=x+y+z$. Ta đưa về

$\quad\quad\quad\quad\quad\quad\quad\quad\quad (S+3 x)(S+3 y)(S+3 z)>25(S-x)(S-y)(S-z) .$

Khai triển và rút gọn, ta được

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad S^3-4 S(x y+y z+z x)+13 x y z>0 .$

Chú ý rằng

$\quad\quad\quad\quad S^3-4 S(x y+y z+z x)=S\left(S^2-4(x y+y z+z x)\right)=S\left((x+y-z)^2-4 x y\right)$

nên ta đưa về $S(x+y-z)^2+x y(13 z-4 S)>0$. Bất đẳng thức cuối đúng vì $13 c-4 S=9 z-4(x+y)>0$.

Bài 6. Cho dãy số $\left(u_n\right)$ thoả mãn $u_1=\sqrt{2}$ và $u_{n+1}=\frac{2 u_n^2+5 u_n+5}{2 u_n+4}, \forall n \geq 1$. Tìm $\lim \frac{u_n^2-3 u_n+5}{3 n^2+4 n-1}$.

Lời giải. Ta thấy rằng $u_n>0, \forall n$ và $u_{n+1}-u_n=\frac{u_n+5}{2\left(u_n+2\right)}>0$ nên dãy tăng. Giả sử dãy bị chặn trên thì nó hội tụ về $L>0$, suy ra

$\quad\quad\quad\quad\quad\quad\quad\quad\quad L=\frac{2 L^2+5 L+5}{2 L+4} \Leftrightarrow L=-5,$

vô lý. Suy ra $\lim _{n \rightarrow+\infty} u_n=+\infty$. Từ đó, ta được

nên theo định lý Stolz, ta suy ra $\lim _{n \rightarrow+\infty} \frac{u_n}{n}=\frac{1}{2}$ và $\lim _{n \rightarrow+\infty} \frac{u_n}{n^2}=0$. Do đó, trong biểu thức cần tính giới hạn, chia tử và mẫu cho $n^2$ rồi áp dụng kết quả trên, ta có

$\quad\quad\quad\quad\quad \lim _{n \rightarrow+\infty} \frac{u_n^2-3 u_n+5}{3 n^2+4 n-1}=\lim _{n \rightarrow+\infty} \frac{\left(\frac{u_n}{n}\right)^2-\frac{3 u_n-5}{n^2}}{3+\frac{4}{n}-\frac{1}{n^2}}=\left(\frac{1}{2}\right)^2 \cdot \frac{1}{3}=\frac{1}{12}$

Bài 7. Xét số tự nhiên $n>1$. Bắt đầu từ bộ số $1,2, \ldots, 2 n-1,2 n$, ta thực hiện phép biến đổi sau: Chọn hai số $a, b$ sao cho $a-b>1$, xoá hai số này và thay thế bởi hai số $a-1, b+1$. Với bộ số mới, ta lại tiếp tục thực hiện phép biến đổi tương tự.

a) Chứng minh rằng ta sẽ đạt đến trạng thái dừng, tức là không thể tiếp tục thực hiện phép biến đổi như vậy được nữa.

b) Gọi $k$ là số lần phép biến đổi cần thực hiện để đạt đến trạng thái dừng. Tìm giá trị nhỏ nhất và lớn nhất của $k$.

Lời giải. (a) Xét đại lượng $S$ là tổng bình phương các số thu được sau mỗi thao tác biến đổi.

Ta thấy rằng từ $(a, b)$ với $a-b>1$, ta đưa về bộ $(a-1, b+1)$ thì tổng trên thay đổi một lượng là $a^2+b^2-(a-1)^2-(b+1)^2=2(a+b-1)>0$. Do đó, tổng $S$ giảm ngặt, và rõ ràng $S$ phải luôn dương nên thao tác trên chỉ thực hiện được trong hữu hạn lần.

(b) Rõ ràng tổng trên không đổi khi không còn cặp số $a, b$ nào mà $a-b>1$. Điều này đồng nghĩa với việc các số thu được trong trạng thái cuối chỉ nhận hai giá trị liên tiếp nào đó. Ta thấy rằng tổng các số đã cho luôn không đổi và là $1+2+\cdots+2 n=n(2 n+1)$

Giả sử cuối cùng, ta có $x$ số $m$ và $y$ số $m+1$ thì

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\left\{\begin{array}{l}x+y=2 n \\ m x+(m+1) y=n(2 n+1)\end{array}\right.$

Suy ra $2 m n+y=2 n^2+n \Rightarrow n \mid y$. Tuy nhiên, nếu $y \in{0,2 n}$ thì vô lý vì vế phải không chia hết cho $2 n$. Do đó $x=y=n$ và $m=n$, tức là ở trạng thái cuối, ta còn $n$ số $n$ và $n+1$.

  • Tổng bình phương của chúng là $S=n \cdot n^2+n \cdot(n+1)^2=n\left(2 n^2+2 n+1\right)$.
  • Tổng bình phương ban đầu là $S_0=1^2+2^2+\cdots+(2 n)^2=\frac{n(2 n+1)(4 n+1)}{3}$.

Suy ra $S_0-S=\frac{2}{3}\left(n^3-n\right)$.

(b) Để thực hiện được nhiều lần nhất thì giá trị giảm đi ở mỗi lần phải ít nhất. Theo câu a) thì giá trị đó sẽ là $2(a+b-1) \geq 2$.

Suy ra số lần nhiều nhất sẽ là $\frac{1}{3}\left(n^3-n\right)$. Để thực hiện được điều này, ta sẽ cố gắng trong mỗi thao tác tạo ra nhiều giá trị nhất có thể và đồng thời làm giảm số lượng các giá trị ở hai biên đi. Từ đó ta được $k_{\max }=\frac{1}{3}\left(n^3-n\right)$.

Để thực hiện được ít lần nhất, ta sử dụng ý tưởng tham lam, mỗi lần, ta sẽ chọn các cặp số nằm về hai phía của $n, n+1$. Khi đó, giá trị của các số $1,2, \ldots, n-1$ sẽ dần dần được tăng lên, trong khi giá trị của các số $n+2, n+3, \ldots, 2 n$ dần dần sẽ giảm đi. Tổng khoảng cách từ các số nhỏ hơn $n$ đến $n$ là $1+2+\cdots+n-1=\frac{n(n-1)}{2}$. Tương tự thì tổng khoảng cách các số lớn hơn $n+1$ đến $n+1$ cũng là $\frac{n(n-1)}{2}$. Ta thấy mỗi lần thao tác thì các số này sẽ thu hẹp khoảng cách đúng 2 đơn vị nên số lần thao tác tối thiểu phải là $\frac{1}{2}\left(\frac{n(n-1)}{2}+\frac{n(n-1)}{2}\right)=\frac{n(n-1)}{2}$.

Để đạt được giá trị này, mỗi lần, ta chỉ cần chọn các cặp số có dạng $(t, 2 n+1-t)$ với $1 \leq t \leq n-1$ là được. Suy ra $k_{\min }=\frac{n(n-1)}{2}$.

Bài 8. Cho đường tròn $\left(\gamma_1\right)$ đường kính $A B$ và đường tròn $\left(\gamma_2\right)$ tâm $A$ cắt $\left(\gamma_1\right)$ tại $C, D$. Điểm $M$ thay đổi trên cung $C D$ (nằm bên trong $\left(\gamma_1\right)$ ) của $\left(\gamma_2\right)$. Gọi $B M$ cắt $\left(\gamma_1\right)$ tại $N$ khác $M$ và $B$. Tìm giá trị nhỏ nhất của $\frac{N D+N C}{M N}$.

Lời giải. Theo định lý Ptolemy cho tứ giác $B C N D$ nội tiếp trong $\gamma_1$ thì

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad B C \cdot N D+B D \cdot N C=B N \cdot C D .$

Vì $A C=A D$ nên $B C=B D=m$ và $C D=n$ là các giá trị cố định.

Ta có

$\quad\quad\quad\quad\quad\quad\quad\quad m(N C+N D)=n \cdot B N \Rightarrow N C+N D=\frac{n}{m} \cdot B N .$

Suy ra $\frac{N C+N D}{M N}=\frac{n}{m} \cdot \frac{B N}{M N}$. Ta đưa về tìm giá trị nhỏ nhất của $\frac{B N}{M N}$. Xét phương tích từ $B$ đến $\gamma_2$ thì $B M \cdot B N=B K \cdot B A=c$ là hằng số nên$(B N-M N) B N=c$. Do đó $\frac{M N}{B N}=1-\frac{c}{B N^2}$ nên

$\quad\quad\quad\quad\quad\quad\frac{B N}{M N} \min \Leftrightarrow \frac{M N}{B N} \max \Leftrightarrow \frac{c}{B N^2} \min \Leftrightarrow B N^2 \max .$

Dễ thấy $\max B N=A B$, xảy ra khi $N \equiv A$ hay $M \equiv K$. Khi đó

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\frac{N C+N D}{M N}=\frac{A C+A D}{A K}=2$

chính là giá trị nhỏ nhất cần tìm.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Đề thi chuyên toán vào lớp 10 trường Phổ thông Năng khiếu năm 2011

Bài 1. Cho phương trình bậc hai $x^{2}-(m+3) x+m^{2}=0$ trong đó $m$ là tham số sao cho phương trình có hai nghiệm phân biệt $x_{1}, x_{2}$.
(a) Khi $m=1$. Chứng minh rằng ta có hệ thức $\sqrt[8]{x_{1}}+\sqrt[8]{x_{2}}=\sqrt{2+\sqrt{2+\sqrt{6}}}$
(b) Tìm tất cả các giá trị của $m$ sao cho $\sqrt{x_{1}}+\sqrt{x_{2}}=\sqrt{5}$
(c) Xét đa thức $P(x)=x^{3}+a x^{2}+b x$. Tìm tất cả các cặp số $(a, b)$ sao cho ta có hệ thức $P\left(x_{1}\right)=P\left(x_{2}\right)$ với mọi giá trị của tham số $m$.
Bài 2. (a) Cho $a, b$ là các số thực dương. Tìm giá trị nhỏ nhất của biểu thức
$$
P=\frac{\sqrt{1+a^{2}} \sqrt{1+b^{2}}}{1+a b}
$$
(b) Cho các số $x, y, z$ thỏa $|x| \leq 1,|y| \leq 1,|z| \leq 1$. Chứng minh rằng:
$$
\sqrt{1-x^{2}}+\sqrt{1-y^{2}}+\sqrt{1-z^{2}} \leq \sqrt{9-(x+y+z)^{2}}
$$
Bài 3. Cho tam giác $A B C$ nhọn có $A B=b, A C=c . M$ là một điểm thay đổi trên cạnh $A B$. Đường tròn ngoại tiếp tam giác $B C M$ cắt $A C$ tại $N$.
(a) Chứng minh rằng tam giác $A M N$ đồng dạng với tam giác $A C B$. Tính tỉ số $\frac{M A}{M B}$ để diện tích tam giác $A M N$ bằng $\frac{1}{2}$ diện tích tam giác $A C B$.
(b) Gọi $I$ là tâm đường tròn ngoại tiếp tam giác $A M N$. Chứng minh rằng $I$ luôn thuộc một đường cố định.
(c) Gọi $J$ là tâm đường tròn ngoại tiếp tam giác $M B C$. Chứng minh rằng đoạn thẳng $I J$ có độ dài không đổi.
Bài 4. Cho các số nguyên $a, b, c$ sao cho $2 a+b, 2 b+c, 2 c+a$ đều là các số chính phương.
(a) Biết rằng có ít nhất một trong 3 số chính phương trên chia hết cho $3 .$ Chứng minh rằng $(a-b)(b-c)(c-a)$ chia hết cho 27 .
(b) Tồn tại hay không các số $a, b, c$ thỏa điều kiện $\left(^{*}\right)$ mà $(a-b)(b-c)(c-a)$ không chia hết cho 27 ?
Bài 5. Cho hình chữ nhật $A B C D$ có $A B=3, A D=4$.
(a) Chứng minh rằng từ 7 điểm bất kì trong hình chữ nhật $A B C D$ luôn tìm được hai điểm mà khoảng cách giữa chúng không lớn hơn $\sqrt{5}$
(b) Chứng minh khẳng định ở câu $\mathrm{a}$ ) vẫn còn đúng với 6 điểm bất kì nằm trong hình chữ nhật $A B C D$.

Đáp án

 

Đề thi và đáp án tuyển sinh vào 10 TPHCM 2011

Đề thi vào lớp 10 TPHCM Năm 2011

Bài 1. Giải các phương trình và hệ phương trình sau:

a) $3 x^{2}-2 x-1=0$

b)  $\left\{\begin{array}{l}5 x+7 y=3 \\ 5 x-4 y=-8\end{array}\right.$

c) $x^{4}+5 x^{2}-36=0$

d) $3 x^{2}-x\sqrt{3}+\sqrt{3}-3=0$.

Giải

a) Vì phương trình $3x^2-2x-1 =0$ có $a+b+c=0$ nên

$(a) \Leftrightarrow x=1$ hoặc $x=\dfrac{-1}{3}$.

b)  $\left\{\begin{array}{l}5 x+7 y=3 \\ 5 x-4 y=-8 \end{array} \right. \Leftrightarrow \left\{\begin{array}{l}11 y=11 \\ 5 x-4 y=-8\end{array} \right.$

$\quad((1)-(2))$ $\Leftrightarrow\left\{\begin{array}{l}y=1 \\ 5 x=-4\end{array} \\ \Leftrightarrow\left\{\begin{array}{l}x=-\dfrac{4}{5} \\ y=1\end{array}\right.\right.$.

c)  Đặt $\mathrm{u}=\mathrm{x}^{2} \geq 0,$ phương trình thành $: \mathrm{u}^{2}+5 \mathrm{u}-36=0$

$(*)$ có $\Delta=169,$ nên

$(*) \Leftrightarrow u=\dfrac{-5+13}{2}=4$ hay $u=\dfrac{-5-13}{2}=-9\ ($loại$)$

Do đó, phương trình có nghiệm $ \mathrm{x}=\pm 2$.

Cách khác $:(\mathrm{c}) \Leftrightarrow\left(\mathrm{x}^{2}-4\right)\left(\mathrm{x}^{2}+9\right)=0 \Leftrightarrow \mathrm{x}^{2}=4 \Leftrightarrow \mathrm{x}=\pm 2$.

d) $(d)$ có $: \mathrm{a}+\mathrm{b}+\mathrm{c}=0$ nên

$(\mathrm{d}) \Leftrightarrow \mathrm{x}=1$ hay $x=\dfrac{\sqrt{3}-3}{3}$.

Bài 2.

a) Vẽ đồ thị $(P)$ của hàm số $y=-x^{2}$ và đường thẳng $(\mathrm{D}): y=-2 x-3$ trên cùng một hệ trục toạ độ.

b) Tìm tọa độ các giao điểm của (P) và (D) ở câu trên bằng phép tính.

Giải

a) Đồ thị tự vẽ.

Lưu ý: $(P)$ đi qua $\mathrm{O}(0 ; 0),(\pm 1 ;-1),(\pm 2 ;-4)$

$(D)$ đi qua $(-1 ;-1),(0 ;-3)$.

b) Phương trình hoành độ giao điểm của $(P)$ và $(D)$ là

$-x^{2}=-2 x-3 \Leftrightarrow x^{2}-2 x-3=0 \Leftrightarrow x=-1$ hay $x=3($vì $a-b+c=0)$

$y(-1)=-1, y(3)=-9$.

Vậy toạ độ giao điểm của $(P)$ và $(D)$ là $(-1 ;-1),(3 ;-9)$.

Bài 3. Thu gọn các biểu thức sau:

$$A=\sqrt{\dfrac{3 \sqrt{3}-4}{2 \sqrt{3}+1}}+\sqrt{\dfrac{\sqrt{3}+4}{5-2 \sqrt{3}}} $$

$$B=\dfrac{x \sqrt{x}-2 x+28}{x-3 \sqrt{x}-4}-\dfrac{\sqrt{x}-4}{\sqrt{x}+1}+\dfrac{\sqrt{x}+8}{4-\sqrt{x}} \quad(x \geq 0, x \neq 16)  $$

Giải

Ta có: $A=\sqrt{\dfrac{(3 \sqrt{3}-4)(2 \sqrt{3}-1)}{11}}-\sqrt{\dfrac{(\sqrt{3}+4)(5+2 \sqrt{3})}{13}} $

$=\sqrt{\dfrac{22-11 \sqrt{3}}{11}} -\sqrt{\dfrac{26+13 \sqrt{3}}{13}}=\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}} $

$=\dfrac{1}{\sqrt{2}}(\sqrt{4-2 \sqrt{3}}-\sqrt{4+2 \sqrt{3}})=\dfrac{1}{\sqrt{2}}\left(\sqrt{(\sqrt{3}-1)^{2}}-\sqrt{(\sqrt{3}+1)^{2}}\right) $

$=\dfrac{1}{\sqrt{2}}[\sqrt{3}-1-(\sqrt{3}+1)]=-\sqrt{2}$

 

Ta có: $B=\dfrac{x \sqrt{x}-2 x+28}{x-3 \sqrt{x}-4}-\dfrac{\sqrt{x}-4}{\sqrt{x}+1}+\dfrac{\sqrt{x}+8}{4-\sqrt{x}} \quad(x \geq 0, x \neq 16) $

$=\dfrac{x \sqrt{x}-2 x+28}{(\sqrt{x}+1)(\sqrt{x}-4)}-\dfrac{\sqrt{x}-4}{\sqrt{x}+1}+\dfrac{\sqrt{x}+8}{4-\sqrt{x}} $

$=\dfrac{x \sqrt{x}-2 x+28-(\sqrt{x}-4)^{2}-(\sqrt{x}+8)(\sqrt{x}+1)}{(\sqrt{x}+1)(\sqrt{x}-4)} $

$=\dfrac{x \sqrt{x}-2 x+28-x+8 \sqrt{x}-16-x-9 \sqrt{x}-8}{(\sqrt{x}+1)(\sqrt{x}-4)}=\dfrac{x \sqrt{x}-4 x-\sqrt{x}+4}{(\sqrt{x}+1)(\sqrt{x}-4)} $

$=\dfrac{(\sqrt{x}+1)(\sqrt{x}-1)(\sqrt{x}-4)}{(\sqrt{x}+1)(\sqrt{x}-4)}=\sqrt{x}-1$

Bài 4. Cho phương trình $x^{2}-2 m x-4 m-5=0$ ($x$ là ẩn số)

a) Chứng minh rằng phương trình luôn luôn có nghiệm với mọi $m$.

b) Gọi $x_1, x_2$ là các nghiệm của phương trình. Tìm $m$ để biểu thức $A=x_{1}^{2}+x_{2}^{2}-x_{1} x_{2}$ đạt giá trị nhỏ nhất.

Giải

a) Phương trình $(1)$ có $\Delta^{\prime}=\mathrm{m}^{2}+4 \mathrm{~m}+5=(\mathrm{m}+2)^{2}+1>0$ với mọi $m$ nên phương trình $(1)$ có $2$ nghiệm phân biệt với mọi $m$.

b) Do đó, theo Viet, với mọi $\mathrm{m},$ ta có: $\mathrm{S}=-\dfrac{b}{a}=2 m ; \mathrm{P}=\dfrac{c}{a}=-4 m-5$

$\begin{array}{l} \Rightarrow \mathrm{A}=\left(x_{1}+x_{2}\right)^{2}-3 x_{1} x_{2}=4 m^{2}+3(4 m+5)=(2 m+3)^{2}+6 \geq 6, \text { với mọi } \mathrm{m} . \\ \text { Và } \mathrm{A}=6 \text { khi } \mathrm{m}=\dfrac{-3}{2} \end{array} $

Vậy $A$ đạt giá trị nhỏ nhất là 6 khi $\mathrm{m}=\dfrac{-3}{2}$

Bài 5. Cho đường tròn $(O)$ có tâm $O$, đường kính $BC$. Lấy một điểm $A$ trên đường tròn $(O)$ sao cho $\mathrm{AB}>\mathrm{AC}$. Từ $A$, vẽ $\mathrm{AH}$ vuông góc với $\mathrm{BC}$ ($H$ thuộc $\mathrm{BC}$ ). Từ $\mathrm{H},$ vẽ $\mathrm{HE}$ vuông góc với $\mathrm{AB}$ và $\mathrm{HF}$ vuông góc với $\mathrm{AC}$ (E thuộc $\mathrm{AB}, \mathrm{F}$ thuộc $\mathrm{AC}$ ).

a) Chứng minh rằng $AEHF$ là hình chữ nhật và OA vuông góc với EF.

b) Đường thắng $EF$ cắt đường tròn $(O)$ tại $\mathrm{P}$ và $\mathrm{Q}$ ($E$ nằm giữa $\mathrm{P}$ và $\mathrm{F}$ ). Chứng minh $\mathrm{AP}^{2}=\mathrm{AE} . \mathrm{AB}$. Suy ra $APH$ là tam giác cân.

c) Gọi $D$ là giao điểm của $\mathrm{PQ}$ và $\mathrm{BC} ; \mathrm{K}$ là giao điểm cùa $AD$ và đường tròn $(O)$ ($K$ khác $A$). Chứng minh $AEFK$ là một tứ giác nội tiếp.

d) Gọi $I$ là giao điểm của $\mathrm{KF}$ và $\mathrm{BC}$. Chứng minh $\mathrm{IH}^{2}=\mathrm{IC} . \mathrm{ID}$.

Giải

a) Tứ giác $AEHF$ là hình chữ nhật vì có $3$ góc vuông.

$\angle HAF = \angle EFA$ ($AEHF$ là hình chữ nhật),

$\angle OAC=\angle OCA$ ($\triangle OAC$ cân)

Do đó: $\angle OAC+\angle AFE=90^{\circ}$

$\Rightarrow$ $OA$ vuông góc với $EF$.

b) $OA$ vuông góc $\mathrm{PQ} \Rightarrow$ cung $\mathrm{PA}=$ cung $\mathrm{AQ}$

Do đó: $\triangle \mathrm{APE}\backsim \triangle \mathrm{ABP}$

$\Rightarrow \dfrac{A P}{A B}=\dfrac{A E}{A P} \Rightarrow \mathrm{AP}^{2}=\mathrm{AE} \cdot \mathrm{AB}$.

Ta có : $\mathrm{AH}^{2}=$ AE.AB (hệ thức lượng $\Delta \mathrm{HAB}$ vuông tại $\mathrm{H}$, có $\mathrm{HE}$ là chiều cao) $\Rightarrow \mathrm{AP}=\mathrm{AH} \Rightarrow \triangle \mathrm{APH}$ cân tại $\mathrm{A}$

c) $\mathrm{DE.DF}=\mathrm{DC.DB}, \mathrm{DC.DB}=\mathrm{DK.DA} \Rightarrow \mathrm{DE.DF}=\mathrm{DK.DA}$.

Do đó $\Delta \mathrm{DFK}\backsim \Delta \mathrm{DAE} \Rightarrow$ $\angle \mathrm{DKF}= \angle \mathrm{DEA} \Rightarrow$ tứ giác $AEFK$ nội tiếp.

d) $\angle ICF = \angle AEF = \angle DKF$ vậy ta có: $IC\cdot ID=IF\cdot IK$ ( $\triangle \mathrm{ICF}$ đồng dạng $\triangle \mathrm{IKD})$ và $\mathrm{IH}^{2}=IF.IK$ (từ $\triangle \mathrm{IHF}$ đồng dạng $\left.\triangle \mathrm{IKH}\right) \Rightarrow \mathrm{IH}^{2}=\mathrm{IC} . \mathrm{ID}$.

Đề thi và đáp án tuyển sinh vào lớp 10 PTNK không chuyên 2011

Đề thi vào lớp 10 trường Phổ thông Năng khiếu năm 2011

Bài 1. Cho phương trình $(x^2-mx-2m^2)\sqrt{x-3} = 0$ $(1)$.

a) Giải phương trình $(1)$ khi $m = 2$.

b) Tìm $m$ để phương trình $x^2-mx-2m^2 = 0$ có hai nghiệm phân biệt $x_1, x_2$ thỏa $x_1^2+2x_2^2 = 7m^2+2$.

c) Chứng minh rằng phương trình $(1)$ không thể có quá hai nghiệm.

Giải

a) Điều kiện $x \geq 3$. Khi m = 2 ta có phương trình:

$\left( x^2 -2x -8 \right) \sqrt{x-3}=0 \Leftrightarrow \left[ \begin{array}{l} x=3 \,\, (n)\\ x=4 \,\, (n)\\ x=-2 \,\, (l) \end{array} \right. $

b) Ta có: $x^2 -mx-2m^2=0$

$\Delta = m^2 + 8m^2 =9m^2$, suy ra phương trình có nghiệm $x=2m$, $x=-m$

TH1: $x_1=2m$, $x_2 = -m$ ta có $4m^2=7m^2 +2 $ (VN)

TH2: $x_1=-m$, $x_2 =2m$ ta có $9m^2 = 7m^2 +2 \Leftrightarrow m=1, m=-1$

c) Điều kiện $x \ge 3$, phương trình $x^2 -mx – 2m^2 =0$ luôn có nghiệm $x_1$, $x_2$ và $x_1x_2 = -2m^2 \le 0$ nên không thể có hai nghiệm đều dương. Suy ra phương trình $(1)$ có nhiều nhất là hai nghiệm.

Bài 2.

a) Giải phương trình $\sqrt{x+2}+\sqrt{5-2x}=1+\sqrt{6-x}$.

b) Giải hệ phương trình $\left\{\begin{array}{l} x^2+y^2=2y+1\\ xy=x+1 \end{array} \right.$

Giải

Điều kiện: $-2 \le x \le \dfrac{5}{2}$

$\sqrt{x+2}+\sqrt{5-2x} = 1+ \sqrt{6-x} $

$\Leftrightarrow x+2+5-2x + 2\sqrt{x+2}\sqrt{5-2x}=1+6-x+ 2\sqrt{6-x} $

$\Leftrightarrow \sqrt{\left( x+2 \right) \left( 5-2x \right) } = \sqrt{6-x}$

$\Leftrightarrow -2x^2 +x+10 =6-x $

$\Leftrightarrow \left[ \begin{array}{l} x=-1 \,\, (n) \\ x=2 \,\, (n) \end{array} \right. $

b) Từ (2) ta có $y= \dfrac{x+1}{x}$ thế vào (1) ta có:

$x^2 + \dfrac{\left( x+1 \right) ^2}{x^2} = \dfrac{2(x+1)}{x}+1 $

$\Leftrightarrow x^4 + x^2 +2x+1 = 2x(x+1) + x^2 $

$\Leftrightarrow x^4 -2x^2 +1 = 0 \Leftrightarrow x=1, x=-1 $ $

Với $x = 1, y = 2.$

Với $x = -1 , y = 0.$

Bài 3.

a) Rút gọn biểu thức $$R = \left(\dfrac{x-1}{\sqrt{x}-1}+\dfrac{\sqrt{x^3}-1}{1-x}\right):\left(\dfrac{(\sqrt{x}-1)^2+\sqrt{x}}{\sqrt{x}+1}\right)$$ với $x \geq 0, x \neq 1$.

b) Chứng minh $R < 1$.

Giải

a) $R = \left(\dfrac{x-1}{\sqrt{x}-1}+\dfrac{\sqrt{x^3}-1}{1-x}\right):\left(\dfrac{(\sqrt{x}-1)^2+\sqrt{x}}{\sqrt{x}+1}\right)$

$= \left[ \dfrac{(\sqrt{x}+1)(\sqrt{x}-1)}{\sqrt{x}-1} – \dfrac{(\sqrt{x}-1)(x+\sqrt{x} +1)}{(\sqrt{x}+1)(\sqrt{x}-1)}\right] : \dfrac{ x-2\sqrt{x} + 1+ \sqrt{x}}{\sqrt{x}+1}$

$= \left( \sqrt{x} +1 – \dfrac{x+\sqrt{x} +1}{\sqrt{x} -1}\right) \cdot \dfrac{\sqrt{x}+1}{ x-\sqrt{x} + 1}$

$= \dfrac{\sqrt{x}}{\sqrt{x}+1} \cdot \dfrac{\sqrt{x}+1}{ x-\sqrt{x} + 1}$

$=\dfrac{\sqrt{x}}{x-\sqrt{x}+1}$

b) $R<1 \Leftrightarrow \dfrac{\sqrt{x}}{x-\sqrt{x}+1}<1 \Leftrightarrow \sqrt{x}< x-\sqrt{x}+1 \Leftrightarrow \left( \sqrt{x}-1 \right) ^2 >0$ (đúng vì $x \ne 1$).

Bài 4. Một tổ mua nguyên vật liệu để thuyết trình tại lớp hết 72.000 đồng, cho phí được chia đều cho mỗi thành viên của tổ. Nếu tổ giảm bớt 2 người thì mỗi người phải đóng thêm 3000 đồng. Hỏi số người của tổ?

Giải

Gọi số tổ viên là $x$ $(x>2)$, số tiền mỗi tổ đóng lúc đầu là $y$. Ta có hệ phương trình:

$\left\{ \begin{array}{l} xy=72000 \\ (x-2)(y+3000)=72000 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} y=\dfrac{72000}{x} \ (1)\\ y+3000=\dfrac{72000}{x-2}\ (2) \end{array} \right.$

Lấy $(2) -(1)$ ta được: $\dfrac{72000}{x-2} – \dfrac{72000}{x}  =3000$

$\Leftrightarrow x^2 – 2x – 48 = 0 \Leftrightarrow \left[ \begin{array}{l} x=8 \, (n) \\ x=-6 \, (l) \end{array} \right. $

Vậy số người của tổ là $8$ người.

Bài 5. Cho tam giác $ABC$ có $\angle BAC = 75^\circ, \angle BCA = 45^\circ, AC = a\sqrt{2}$. $AK$ vuông góc với $BC$ và $K$ thuộc $BC$.

a) Tính độ dài các đoạn $KC$ và $AB$ theo $a$.

b) Gọi $H$ là trực tâm và $O$ là tâm đường tròn ngoại tiếp tam giác $ABC$. Tính $\angle OHC$.

c) Đường tròn tâm $I$ nội tiếp tam giác $ABC$. Tính bán kính đường tròn ngoại tiếp tam giác $HIO$ theo $a$.

Giải

a) Tam giác $ACK$ vuông cân tại $C$, suy ra $AK = \dfrac{AC}{\sqrt{2}}=a$

$\sin \angle{ABK} =\dfrac{AK}{AB}=\dfrac{\sqrt{3}}{2} \Rightarrow AB= \dfrac{2a}{\sqrt{3}}$

b) Ta có $\angle{AOC} = 2\angle{ABC}=120^\circ $ và $\angle{AHC}=2\angle{EHF} =180^\circ – \angle{BAC}=120^\circ $.

Suy ra $\angle{AHC}=\angle{AOC}$, suy ra $AHOC$ nội tiếp.

Do đó $\angle{OHC}=\angle{OAC}=30^\circ $

c) Ta có $\angle{AIC}=180^\circ – \angle{IAC}-\angle{ICA}$

$=180^\circ – \dfrac{1}{2}\left( \angle{BAC} + \angle{ACB} \right)$

$=120^\circ = \angle{AOC}$.

Do đó tứ giác $AIOC$ nội tiếp.

Vậy 5 điểm $A$, $H$, $I$, $O$, $C$ cùng thuộc đường tròn.

Gọi $D$ là điểm chính giữa cung $AC$.

Ta có $OAD$ và $OCD$ đều, suy ra $DA = DC = DO$, hay $D$ là tâm đường tròn ngoại tiếp, và bán kính $DO =DA=\dfrac{AB}{\sqrt{2}}= \dfrac{a\sqrt{2}}{\sqrt{3}}$