Tag Archives: Lop8

Rút gọn phân thức cơ bản

Phương pháp giải: Để rút gọn các phân thức đơn giản dạng $\dfrac{A}{B}$, ta làm các bước sau:

  • Phân tích nhân tử $A$ và $B$.
  • Rút gọn cho thừa số chung của $A$ và $B$.

Ví dụ 1. Rút gọn phân thức

a) $\dfrac{x^2-2xy+y^2}{x^2-y^2}$
b) $\dfrac{ax^2+2axy+ay^2}{ax^3+ay^3}$

Giải

a) $\dfrac{x^2-2xy+y^2}{x^2-y^2}$

$=\dfrac{(x-y)^2}{(x-y)(x+y)}$

$=\dfrac{x-y}{x+y}$.

b) $\dfrac{ax^2+2axy+ay^2}{ax^3+ay^3}$

$=\dfrac{a(x^2+2xy+y^2)}{a(x^3+y^3)}$

$=\dfrac{(x+y)^2}{(x+y)(x^2-xy+y^2)}$

$=\dfrac{x+y}{x^2-xy+y^2}$.

 

Ví dụ 2. Rút gọn phân thức

a) $\dfrac{x^3-3x+2}{x^2-2x+1}$
b) $ \dfrac{x^2 -xy -x + y}{x^2 + xy – x- y}. $

Giải

a) $\dfrac{x^3-3x+2}{x^2-2x+1}$

$ =\dfrac{x^3 -x -2x + 2}{(x-1)^2} $

$ =\dfrac{(x^3 -x) -(2x – 2)}{(x-1)^2} $

$ =\dfrac{x(x-1)(x+1) -2(x – 1)}{(x-1)^2} $

$ =\dfrac{(x-1)[x(x+1) -2]}{(x-1)^2} $

$ =\dfrac{x(x+1) -2}{x-1} $.

b) $ \dfrac{x^2 -xy -x + y}{x^2 + xy – x- y} $

$ =\dfrac{(x^2 -xy) -(x – y)}{(x^2 + xy) – (x+y)}$

$ =\dfrac{x(x -y) -(x – y)}{x(x + y) – (x+y)}$

$ =\dfrac{(x -y)(x-1)}{(x + y) (x-1)}$

$ =\dfrac{x -y}{x+y}$.

Bài tập

Bài 1. Rút gọn các phân thức sau

a) $ \dfrac{6x^3y^2}{9x^2y} $.
b) $ \dfrac{12x^3y^2}{18xy^5}. $
c) $ \dfrac{6xy^3}{4x^2y}. $
d) $ \dfrac{15x(x+5)^3}{20x^2(x+5)} $
e) $ \dfrac{8(x^2 – xy)}{12x(x-y)^2} $.

Bài 2. Rút gọn các phân thức sau

a) $ \dfrac{x^2 + xy + x+ y}{x^2 -xy + x -y} .$
b) $ \dfrac{25(x-2)}{20x(2-x)} $.
c) $ \dfrac{x(4-x)^2}{x-4}. $
d) $ \dfrac{(x-y)^2}{x(y-x)^3} .$
Bài 3. Rút gọn các phân thức sau

a) $ \dfrac{6x^2y^2}{8xy^5}. $
b) $ \dfrac{10xy^2(x+y)}{15xy(x+y)^3} $
c) $ \dfrac{2x^2 +2x}{x+1}. $
d) $ \dfrac{x(x-2)}{(2-x)^3}. $

Bài 4. Rút gọn các phân thức

a) $ \dfrac{x^4-4x^2}{x(x+2)^2}. $
b) $ \dfrac{x^2 + 2x}{x^2+4x + 4}. $
c) $ \dfrac{8x(1-x)}{12x^2(x-1)^3}. $
d) $ \dfrac{xy -x^2}{y(x-y)^3}. $
e) $ \dfrac{x^3 – y^3}{xy^2 – x^2y}. $

Bài 5. Rút gọn các phân thức

a) $ \dfrac{36(x-2)^3}{32-16x} $.
b) $ \dfrac{x^2 – xy}{5y^2 – 5xy}. $
c) $ \dfrac{3x^2-12x+12}{x^4 – 8x}. $
d) $ \dfrac{7x^2 +14x+7}{3x^2+3x}. $

Phép nhân các phân thức

Quy tắc:

  • Muốn nhân hai phân thức, ta nhân các tử thức với nhau, các mẫu thức với nhau:

$\dfrac{A}{B}.\dfrac{C}{D}=\dfrac{A.C}{B.D}$.

  • Muốn chia phân thức $\dfrac{A}{B}$ cho phân thức $\dfrac{C}{D}$ khác $0$, ta nhân phân thức $\dfrac{A}{B}$  với phân thức nghịch đảo của phân thức $\dfrac{C}{D}$: $\dfrac{A}{B}:\dfrac{C}{D}=\dfrac{A}{B}.\dfrac{D}{C}$ với $\dfrac{C}{D} \neq 0.$

Ví dụ 1:  Thực hiện phép nhân hai phân thức:

$\dfrac{{2{{\rm{x}}^2}}}{{x – y}}.\dfrac{y}{{5{{\rm{x}}^3}}}$.

Giải

$\dfrac{{2{{\rm{x}}^2}}}{{x – y}}.\dfrac{y}{{5{{\rm{x}}^3}}}$

=$\dfrac{2x^2.y}{(x-y).5x^3}$

=$\dfrac{2y}{5x(x-y)}$.

Ví dụ 2: Thực hiện phép chia hai phân thức:

$\dfrac{{5x – 15}}{{4x + 4}}:\dfrac{{x{}^2 – 9}}{{{x^2} + 2x + 1}}$

Giải

$\dfrac{{5x – 15}}{{4x + 4}}:\dfrac{{x{}^2 – 9}}{{{x^2} + 2x + 1}}$

$=\dfrac{{5x – 15}}{{4x + 4}}.\dfrac{{{x^2} + 2x + 1}}{{x{}^2 – 9}}$

$=\dfrac{{5(x – 3)}}{{4(x + 1)}}.\dfrac{(x+1)^2}{(x-3)(x+3)}$

$=\dfrac{{5(x + 1)}}{4(x+3)}$.

Bài tập

Bài 1. Thực hiện phép tính:

a) $\dfrac{{5x + 10}}{{4x – 8}}\,.\,\dfrac{{4 – 2x}}{{x + 2}}$
b)  $\dfrac{{{x^2} – 36}}{{2x + 10}}\,.\,\dfrac{3}{{6 – x}}$

c) $\dfrac{{{x^2} – 9{y^2}}}{{{x^2}{y^2}}}.\dfrac{{3{\rm{x}}y}}{{2{\rm{x}} – 6y}}$
d) $\dfrac{{3{{\rm{x}}^2} – 3{y^2}}}{{5{\rm{x}}y}}.\dfrac{{15{{\rm{x}}^2}y}}{{2y – 2{\rm{x}}}}$.

Bài 2. Thực hiện phép tính:

a) $\dfrac{{6x + 48}}{{7x – 7}}:\dfrac{{{x^2} – 64}}{{{x^2} – 2x + 1}}$

b) $\dfrac{{4x – 24}}{{5x + 5}}:\dfrac{{{x^2} – 36}}{{{x^2} + 2x + 1}}$
c) $\dfrac{{3x + 21}}{{5x + 5}}:\dfrac{{{x^2} – 49}}{{{x^2} + 2x + 1}}$
d) $\dfrac{{3 – 3x}}{{{{(1 + x)}^2}}}:\dfrac{{6{x^2} – 6}}{{x + 1}}$.

Bài 3. Thực hiện phép tính:

a) $ \dfrac{5x-10}{x^2+7} :(2x-4). $
b) $ (x^2-25):\dfrac{2x+10}{3x-7}. $
c) $ \dfrac{x^2+x}{5x^2-10x+5}: \dfrac{3x+3}{5x-5}. $
d) $ (x^-25):\dfrac{2x+10}{3x-7}. $

Bài 4. Thực hiện phép tính:

a) $ \dfrac{27-x^3}{3xy^3} : \dfrac{14x+14}{x^2y}. $
b) $ \dfrac{8xy}{3x-1} : \dfrac{12xy^3}{5-15x}. $
c) $ \dfrac{7x+2}{3xy^3} : \dfrac{14x+4}{x^2y}. $
d) $ (4x^2 -16):\dfrac{3x+6}{7x-2}. $
e) $ \dfrac{3x^3+3}{x-1} :(x^2 -x+1). $

Bài 5. Rút gọn biểu thức

a)$ \dfrac{x+1}{x+2} : \dfrac{x+2}{x+3} : \dfrac{x+3}{x+1}. $
b) $ \dfrac{x+1}{x+2}\cdot \dfrac{x+2}{x+3} : \dfrac{x+3}{x+1}. $

c) $ \dfrac{x+1}{x+2} : \dfrac{x+2}{x+3} \cdot \dfrac{x+3}{x+1}. $
d) $ \dfrac{x+1}{x+2} : \left(\dfrac{x+2}{x+3} : \dfrac{x+3}{x+1}\right) $.

Cộng trừ hai phân thức

Quy tắc:

  • Muốn cộng hai phân thức có cùng mẫu thức, ta giữ nguyên mẫu thức và cộng các tử thức.
  • Muốn cộng hai phân thức không cùng mẫu, ta quy đồng mẫu thức rồi thực hiện phép cộng.
  • Muốn trừ phân thức $\dfrac{A}{B}$ cho phân thức $\dfrac{C}{D}$, ta cộng $\dfrac{A}{B}$ với phân thức đối của $\dfrac{C}{D}$: $\dfrac{A}{B}-\dfrac{C}{D}=\dfrac{A}{B}+\left(-\dfrac{C}{D}\right).$

Ví dụ 1: $\dfrac{{5xy – 4y}}{{2{x^2}{y^3}}} + \dfrac{{3xy + 4y}}{{2{x^2}{y^3}}}$

Giải

$\dfrac{{5xy – 4y}}{{2{x^2}{y^3}}} + \dfrac{{3xy + 4y}}{{2{x^2}{y^3}}}$

=$\dfrac{{5xy – 4y+3xy+4y}}{{2{x^2}{y^3}}} $

=$\dfrac{{8xy}}{{2{x^2}{y^3}}} $

=$\dfrac{{4}}{{2{x}{y^2}}} $.

Ví dụ 2: $\dfrac{{3{\rm{x}}}}{{5{\rm{x}} + 5y}} – \dfrac{x}{{10{\rm{x}} – 10y}}$

Giải

Ta có:

$\dfrac{3x}{5x+5y}=\dfrac{3x}{5(x+y)}$

$\dfrac{x}{10x-10y}=\dfrac{x}{10(x-y)}$

MTC: $10(x+y)(x-y)$

$\dfrac{3x}{5x+5y}-\dfrac{x}{10(x-y)}$

$=\dfrac{3x.2(x-y)}{2.5(x+y)(x-y)}-\dfrac{x(x+y)}{10(x-y)(x+y)}$

$=\dfrac{6x^2-6xy-x^2-xy}{10(x-y)(x+y)}$

$=\dfrac{5x^2-7xy}{10(x-y)(x+y)}$.

 

Ví dụ 3: $\dfrac{x-4}{4x-16} + \dfrac{4+x}{8-2x}$.

Giải

Ta có:

$\dfrac{x-4}{4x-16}=\dfrac{x-4}{4(x-4)}$

$\dfrac{4+x}{8-2x}=\dfrac{4+x}{2(4-x)}$

MTC: $4(x-4)$

$\dfrac{x-4}{4x-16}+\dfrac{4+x}{8-2x}$

$=\dfrac{x-4}{4(x-4)}+\dfrac{(4+x).(-2)}{2(4-x).(-2)}$

$=\dfrac{x-4-8-2x}{4(x-4)}$

$=\dfrac{-x-12}{4(x-4)}$.

Ví dụ 4: $\dfrac{y+1}{2y-2} +\dfrac{-2y}{y^2-1}$

Giải

Ta có:

$\dfrac{y+1}{2y-2}=\dfrac{y+1}{2(y-1)}$

$\dfrac{-2y}{y^2-1}=\dfrac{-2y}{(y-1)(y+1)}$

MTC: $2(y+1)(y-1)$

$\dfrac{y+1}{2y-2} +\dfrac{-2y}{y^2-1}$

$=\dfrac{(y+1)(y+1)}{2(y+1)(y-1)} +\dfrac{-2y.2}{2(y-1)(y+1)}$

$=\dfrac{(y+1)^2}{2(y+1)(y-1)} +\dfrac{-4y}{2(y-1)(y+1)}$

$=\dfrac{y^2+2y+1-4y}{2(y+1)(y-1)}$

$=\dfrac{y^2-2y+1}{2(y+1)(y-1)}$

$=\dfrac{(y-1)^2}{2(y+1)(y-1)}$

$=\dfrac{y-1}{2(y+1)}$.

Bài tập

Bài 1. Thực hiện phép tính:
a) $\dfrac{{x – 5}}{5} + \dfrac{{1 – x}}{5}$
b) $\dfrac{{x – y}}{8} + \dfrac{{2y}}{8}$
c) $\dfrac{{{x^2} – x}}{{xy}} + \dfrac{{1 – 4{\rm{x}}}}{{xy}}$
d)  $\dfrac{{5{\rm{x}}{y^2} – {x^2}y}}{{3{\rm{x}}y}} + \dfrac{{4{\rm{x}}{y^2} + {x^2}y}}{{3{\rm{x}}y}}$ .

Bài 2.Thực hiện phép tính:

a) $\dfrac{{2{\rm{x}} + 4}}{{10}} + \dfrac{{2 – x}}{{15}}$

b)  $\dfrac{{3{\rm{x}}}}{{10}} + \dfrac{{2{\rm{x}} – 1}}{{15}} + \dfrac{{2 – x}}{{20}}$
c) $\dfrac{{x + 1}}{{2{\rm{x}} – 2}} + \dfrac{{{x^2} + 3}}{{2 – 2{{\rm{x}}^2}}}$
d)  $\dfrac{{{x^2}}}{{{x^2} – 4{\rm{x}}}} + \dfrac{6}{{6 – 3{\rm{x}}}} + \dfrac{1}{{x + 2}}$.

Bài 3. Thực hiện phép tính:

a) $\dfrac{{4x + 1}}{2} – \dfrac{{3{\rm{x}} + 2}}{3}$
b)  $\dfrac{{x + 3}}{x} – \dfrac{x}{{x – 3}} + \dfrac{9}{{{x^2} – 3{\rm{x}}}}$
c)  $\dfrac{{x + 3}}{{{x^2} – 1}} – \dfrac{1}{{{x^2} + x}}$
d) $\dfrac{1}{{3{\rm{x}} – 2}} – \dfrac{4}{{3{\rm{x}} + 2}} – \dfrac{{ – 10{\rm{x}} + 8}}{{9{{\rm{x}}^2} – 4}}$
e)  $\dfrac{3}{{2{{\rm{x}}^2} + 2{\rm{x}}}} + \dfrac{{2{\rm{x}} – 1}}{{{x^2} – 1}} – \dfrac{2}{x}$.

Bài 4. Thực hiện phép tính:

a) $\dfrac{{4{{\rm{a}}^2} – 3{\rm{a}} + 5}}{{{a^3} – 1}} – \dfrac{{1 – 2{\rm{a}}}}{{{a^2} + a + 1}} – \dfrac{6}{{a – 1}}$
b) $\dfrac{{5{{\rm{x}}^2} – {y^2}}}{{xy}} – \dfrac{{3{\rm{x}} – 2y}}{y}$
c) $\dfrac{{x + 9y}}{{{x^2} – 9{y^2}}} – \dfrac{{3y}}{{{x^2} + 3{\rm{x}}y}}$

d)  $\dfrac{{3x + 2}}{{{x^2} – 2x + 1}} – \dfrac{6}{{{x^2} – 1}} – \dfrac{{3x – 2}}{{{x^2} + 2x + 1}}$

d) ${x^2} + 1 – \dfrac{{{x^4} + 1}}{{{x^2} + 1}}$.

Quy đồng hai phân thức

Quy tắc: Quy đồng MT (mẫu thức) nhiều phân thức.

  • Phân tích các MT thành nhân tử rồi tìm MTC (mẫu thức chung)

  • Tìm NTP (nhân tử phụ) của mỗi mẫu thức.

  • Nhân cả tử và mẫu của mỗi phân thức với NTP tương ứng.

Ví dụ 1: Tìm mẫu thức chung và quy đồng:
$\dfrac{{{x^4} + 1}}{{{x^2} – 1}}$,  $\dfrac{x-1}{x+1}, \dfrac{4}{x-1}$

Giải

MT1: $x^2-1=(x -1)(x+1)$

MT2: $x+1$

MT3: $x-1$

MTC: $(x-1)(x+1)$

$\dfrac{{{x^4} + 1}}{{{x^2} – 1}}=\dfrac{x^4 + 1}{(x-1)(x+1)}$

$\dfrac{x-1}{x+1}=\dfrac{(x-1)^2}{(x+1)(x-1)}$

$\dfrac{4(x+1)}{(x-1)(x+1)}$.

Ví dụ 2: Tìm mẫu thức chung và quy đồng:
$\dfrac{5}{{2{\rm{x}} – 4}}$, $\dfrac{4}{{3{\rm{x}} – 9}}$, $\dfrac{7}{{50 – 25{\rm{x}}}}$

Giải

MT1:$2x-4=2(x-2)$

MT2:$3x-9=3(x-3)$

MT3:$50-25x=-25(x-2)$

MTC: $150(x-2)(x-3)$

$\dfrac{5}{2x – 4}=\dfrac{5.75(x-3)}{150(x-2)(x-3)}=\dfrac{375(x-3)}{150(x-2)(x-3)}$

$\dfrac{4}{3x – 9}=\dfrac{4.50(x-2)}{150(x-2)(x-3)}=\dfrac{200(x-2)}{150(x-2)(x-3)}$

$\dfrac{7}{50-25x}=\dfrac{-7.6(x-3)}{150(x-2)(x-3)}=\dfrac{-42(x-3)}{150(x-2)(x-3)}$.

Bài tập

Bài 1. Quy đồng các mẫu thức các phân thức sau.

a) $ \dfrac{4}{3x^2y} $ và $ \dfrac{3}{4xy^3}. $
b) $ \dfrac{5}{14x^2y^3} $ và $ \dfrac{8}{21x^4y^2}. $
c) $ \dfrac{5}{2x+2} $ và $ \dfrac{9}{x^2 -1}. $
d) $ \dfrac{1}{4-2x} $ và $ \dfrac{3}{x^2-4}. $

Bài 2. Quy đồng các mẫu thức các phân thức sau.

a) $ \dfrac{1}{3x-9} $ và $ \dfrac{2}{x^2 -6x +9}. $
b) $ \dfrac{7}{4-2x} $ và $ \dfrac{2}{x^2 – 4x + 4}. $
c) $ \dfrac{1}{x-1} $ ; $ \dfrac{2}{x^3-1} $ và $ \dfrac{3}{x^2 + x+1}. $
d) $ \dfrac{3}{6-2x} $; $ \dfrac{2}{x-3} $ và $ \dfrac{-5}{3x-9}. $

Bài 3. Quy đồng các mẫu thức các phân thức sau.

a) $ \dfrac{x-1}{x^2-9} $ và $ \dfrac{2xy +1}{2x+6} .$

b) $ \dfrac{7x-1}{2x^2 + 6x} $ và $ \dfrac{5-3x}{x^2 -9}. $

c) $ \dfrac{3x+y}{y^2 – 2xy + x^2} $ và $ \dfrac{y+1}{2x-2y}. $

d) $ \dfrac{x-1}{2} $ và $ \dfrac{x^2 }{x^2 – xy}. $

Bài 4. Quy đồng các mẫu thức các phân thức sau.

a) $ \dfrac{4x^2 -3x +5}{x^3 -1} $, $ \dfrac{1-2x}{x^2+x+1} $ và $ -2 $.
b) $ \dfrac{10}{x+2} $, $ \dfrac{5}{2x-4} $ và $ \dfrac{1}{6-3x}. $
c) $ \dfrac{5x^2}{x^3-6x^2} $; $ \dfrac{3x^2 +18x}{x^2 – 36}. $
d) $ \dfrac{5x^2}{x^3 + 6x^2 +12x +8} $; $ \dfrac{4x}{x^2 +4x+4} $ và $ \dfrac{3}{2x+4}. $

Bài 5. Tìm mẫu thức chung và quy đồng các phân thức:

a) $\dfrac{5}{{2{\rm{x}} – 4}}$,
b) $\dfrac{4}{{3{\rm{x}} – 9}}$, $\dfrac{7}{{50 – 25{\rm{x}}}}$
c) $\dfrac{x}{{4 + 2{\rm{a}}}}$, $\dfrac{y}{{4 – 2{\rm{a}}}}$, $\dfrac{z}{{4 – {a^2}}}$
d) $\dfrac{{2{\rm{a}}}}{{{b^2}}}$, $\dfrac{x}{{2{\rm{a}} + 2b}}$, $\dfrac{y}{{{a^2} – {b^2}}}$
e) $\dfrac{3}{{2{\rm{x}} + 6}}$, $\dfrac{{x – 2}}{{{x^2} + 6{\rm{x}} + 9}}$.

Bài 6. Tìm mẫu thức chung và quy đồng các phân thức:

a) $\dfrac{x}{{2{{\rm{x}}^2} + 7{\rm{x}} – 15}}$, $\dfrac{{x + 2}}{{{x^2} + 3{\rm{x}} – 10}}$, $\dfrac{1}{{x + 5}}$
b) $\dfrac{1}{{ – {x^2} + 3{\rm{x}} – 2}}$, $\dfrac{1}{{{x^2} + 5{\rm{x}} – 6}}$, $\dfrac{1}{{ – {x^2} + 4{\rm{x}} – 3}}$
c) $\dfrac{3}{{{x^3} – 1}}$, $\dfrac{{2{\rm{x}}}}{{{x^2} + x + 1}}$, $\dfrac{x}{{x – 1}}$
d) $\dfrac{x}{{{x^2} – 2{\rm{x}}y + {y^2} – {z^2}}}$, $\dfrac{y}{{{x^2} + 2yz – {y^2} – {z^2}}}$, $\dfrac{z}{{{x^2} – 2xz – {y^2} + {z^2}}}$.

Định nghĩa phân thức đại số – Điều kiện để phân thức có nghĩa

Định nghĩa: Phân thức đại số là biểu thức có dạng $ \dfrac{A}{B} $ , trong đó $A$, $B$ là những đa thức và $B$ khác $0$. $A$ được gọi là tử, $B$ được gọi là mẫu.

Ví dụ: 

1.Tìm điều kiện để phân thức có nghĩa

a) $\dfrac{{{x^2} – 4}}{{9{x^2} – 16}}$
b) $\dfrac{{2x – 1}}{{{x^2} – 4x + 4}}$
c)  $\dfrac{x}{x^2-3y^2+2xy}$.

Giải

a) $\dfrac{{{x^2} – 4}}{{9{x^2} – 16}}$

Phân thức có nghĩa khi:

$9x^2-16 \neq 0$

$(3x-4)(3x+4)\neq 0$

$3x-4 \neq 0 $ và $3x+4 \neq 0$

$x \neq \dfrac{4}{3}$ và $x \neq \dfrac{-4}{3}$.
b) $\dfrac{{2x – 1}}{{{x^2} – 4x + 4}}$

Phân thức có nghĩa khi:

$x^2-4x+4 \neq 0$

$(x-2)^2\neq 0$

$x-2  \neq 0$

$x \neq 2$.

c)  $\dfrac{x}{x^2-3y^2+2xy}$.

Phân thức có nghĩa khi:

$x^2-3y^2+2xy \neq 0$

$x^2+2xy+y^2-4y^2\neq 0$

$(x+y)^2-4y^2  \neq 0$

$(x+y-2y)(x+y+2y) \neq 0$

$(x-y)(x+3y) \neq 0$

$x-y \neq 0$ và $x+3y \neq 0$

$x \neq y$ và $x \neq -3y$.

2.  Chứng minh các phân thức sau luôn có nghĩa với mọi giá trị của biến.

a) $\dfrac{{3x – 5}}{{{{(x – 1)}^2} + 2}}$
b)  $\dfrac{4x^2-y^2}{x^2-2x+1+y^2+4x+5}$

Giải

a) $\dfrac{{3x – 5}}{{{{(x – 1)}^2} + 2}}$

Phân thức có nghĩa khi

$(x-1)^2+2 \neq 0$

Vì $(x-1)^2 \geq 0$ với mọi $x$

Nên $(x-1)^2+2 > 0$ với mọi $x$.
b)  $\dfrac{4x^2-y^2}{x^2-2x+1+y^2+4x+5}$

Phân thức có nghĩa khi

$x^2-2x+1+y^2+4x+5 \neq 0$

$(x^2-2x+1)+(y^2+4x+4)+1 \neq 0$

$(x-1)^2+(y+2)^2+1 \neq 0$

Vì $(x-1)^2 \geq 0$ với mọi $x$ và $(y+2)^2  \geq 0$ với mọi $y$

Nên $(x-1)^2+(y+2)^2+1 > 0$ với mọi $x,y$.

Bài tập

Bài 1. Tìm điều kiện của biến để phân thức có nghĩa.

a) $\dfrac{{{x^2} – 4}}{{{x^2} – 1}}$
b)  $\dfrac{{5x – 3}}{{2{x^2} – x}}$
c)  $\dfrac{{{x^2} – 5{\rm{x}} + 6}}{{{x^2} – 1}}$
d)  $\dfrac{2}{{(x + 1)(x – 3)}}$
e) $\dfrac{{2{\rm{x}} + 1}}{{{x^2} – 5{\rm{x}} + 6}}$.

Bài 2. Tìm điều kiện của biến để phân thức có nghĩa.

a) $\dfrac{1}{{{x^2} + {y^2}}}$
b)  $\dfrac{{{x^2}y + 2x}}{{{x^2} – 2x + 1}}$
c) $\dfrac{{5x + y}}{{{x^2} + 6x + 10}}$
d) $\dfrac{{x + y}}{{{{(x + 3)}^2} + {{(y – 2)}^2}}}$.

Bài 3. Chứng minh các biểu thức sau luôn có nghĩa

a) $\dfrac{3}{{{x^2} + 1}}$
b)  $\dfrac{{5x + 1}}{{{x^2} + 2x + 4}}$
c)  $\dfrac{{{x^2} – 4}}{{ – {x^2} + 4{\rm{x}} – 5}}$
d) $\dfrac{{x + 5}}{{{x^2} + x + 7}}$.

 

Các hằng đẳng thức đáng nhớ

Với $A,B$ là các biểu thức tùy ý, ta có:

  • $(A+B)^2=A^2+2AB+B^2$
  • $(A-B)^2=A^2-2AB+B^2$
  • $A^2-B^2=(A-B)(A+B)$
  • $(A+B)^3=A^3+3A^2B+3AB^2+B^3$
  • $(A-B)^3=A^3-3A^2B+3AB^2-B^3$
  • $A^3+B^3=(A+B)(A^2-AB+B^2)$
  • $A^3-B^3=(A-B)(A^2+AB+B^2)$

Ví dụ 1. Khai triển các biểu thức sau:

a) $(x+3)^2$
b) $(2x-1)^2$
c) $(4x-6)^2$
d) $(x-2y)^2$.

Giải

a) $(x+3)^2$

$=x^2+2.x.3+3^2$

$=x^2+6x+9$
b) $(2x-1)^2$

$=(2x)^2-2.2x.1+1^2$

$=4x^2-4x+1$
c) $(4x-6)^2$

$=(4x)^2-2.4x.6+6^2$

$=16x^2-48x+36$
d) $(x-2y)^2$

$=x^2-2.x.2y+(2y)^2$

$=x^2-4xy+4y^2$.

 

Ví dụ 2. Khai triển các biểu thức sau:

a) $(x+2)^3$
b) $(2x-1)^3$
c) $(x+2y)^3$.

Giải

a) $(x+2)^3$

$=x^3+3x^2.2+3x.2^2+2^3$

$=x^3+6x^2+12x+8.$
b) $(2x-1)^3$

$=(2x)^3-3.(2x)^2.1+3.2x.1^2-1^3$

$=8x^2-12x^2+6x-1$
c) $(x+2y)^3$

$=x^3+3x^2.2y+3x.(2y)^2+(2y)^3$

$=x^3+6x^2y+12xy^2+8y^3$.

 

Ví dụ 3. Viết lại các biểu thức sau thành bình phương của một biểu thức:

a) $x^2+4x+4$
b) $4x^2-4x+1$
c) $4x^2-12xy+9y^2$.

Giải

a) $x^2+4x+4$

$=x^2+2.2x+2^2$

$=(x+2)^2$
b) $4x^2-4x+1$

$=(2x)^2-2.2x.1+1^2$

$=(2x-1)^2$
c) $4x^2-12xy+9y^2$

$=(2x)^-2.2x.3y+(3y)^2$

$=(2x-3y)^2$.

Ví dụ 4. Viết lại các biểu thức sau dưới dạng lập phương của một biểu thức:

a) $x^3-3x^2+3x-1$
b) $x^3+6x^2+12x+8$
c) $8x^3-12x^2y+6xy^2-y^3$.

Giải

a) $x^3-3x^2+3x-1$

$=x^3-3x^2.1+3x.1^2-1^3$

$=(x-1)^3$
b) $x^3+6x^2+12x+8$

$=x^3+3.x^2.2+3.x.2^2+2^3$

$=(x+2)^3$
c) $8x^3-12x^2y+6xy^2-y^3$

$=(2x)^3-3.(2x)^2.y+3.2x.y^2-y^3$

$=(2x-y)^3.$

 

Ví dụ 5. Rút gọn các biểu thức sau:

a) $(x-2y)(x^2+2xy+4y^2)$
b) $(3x+5y)(9x^2-15xy+25y^2)$
c) $(2x-y)(4x^2+2xy+y^2) - (2x+y)(4x^2-2xy+y^2)$.

Giải

a) $(x-2y)(x^2+2xy+4y^2)$

$=(x-2y)[x^2+x.2y+(2y)^2]$

$=x^3-8y^3.$

b) $(3x+5y)(9x^2-15xy+25y^2)$

$=(3x+5y)[(3x)^2-3x.5y+(5y)^2]$

$=27x^3+125y^3$
c) $(2x-y)(4x^2+2xy+y^2) – (2x+y)(4x^2-2xy+y^2)$

$=(2x-y)[(2x)^2+2xy+y^2] – (2x+y)[(2x)^2-2xy+y^2]$

$=8x^3-y^3-(8x^3+y^3)$

$=0$.

 

Bài tập cơ bản

Bài 1. Thực hiện các phép tính

a)$ 2x(x-3). $
b)$ (2x-5)x.$
c)$ \dfrac{1}{2}x(-2x^2+5). $
d)$ -2x^3y(2x^2-3y+5yz). $
e)$ \dfrac{2}{3}x^2y(3xy-x^2+y). $

Bài 2. Thực hiện các phép tính

a) $ x^2 \left(5x^3 - x^2 +y\right)\dfrac{2}{3}x^2y. $
b) $ (4x^3 - 5xy +2x)\left(-\dfrac{1}{2}xy\right) .$
c) $ 3x(5x^2 - 2x- 1). $
d) $ (x^2 + 2xy -3)(-xy). $
e) $ \dfrac{1}{2}x^2y\left(2x^3 - \dfrac{2}{5}xy^2 -1\right). $

Bài 3. Thực hiện các phép tính

a) $x^2(x+1)-x(x^2-3x+1)$.
b) $y(2y^2+3y-4)-y^2(y^3-4y^2-1)$.
c) $\dfrac{1}{2}x(4x^2+6x+2)-x^2(4x-1)$.
d) $-4x^2(x+2)+x^3(x^2+4)$.

Bài 4. Tính (Rút gọn nếu có thể)

a) $-4x^5(x^3-4x^2+7x-3)$
b) $-5x^2y^4(3x^2y^3-2x^3y^2-xy)$
c) $\dfrac{1}{2}x^3y(2x^4y^3-4xy-6)$
d) $-3x^5y^7\left( \dfrac{2}{3}x^4y-y^3+\dfrac{1}{2}\right) $
e $-4x^2+2x-4x(x-5)$.

Bài 5. Tính (Rút gọn nếu có thể)

a) $3x^4-4x^3+2x(-x^2+3x-5)$
b) $4x(x^2-x+1)-x(3x^2-2x-5)$
c) $ \left(3x^3y - \dfrac{1}{2}x^2 + \dfrac{1}{5}xy\right)\cdot 6xy^3. $
d) $ x(2x^2-3) - x^2 ( 5x+1) + x^2. $
e) $ 3x(x-2) - 5x(1-x) - 8(x^2-3). $

Bài 6. Thực hiện phép nhân, rút gọn rút gọn rồi tính giá trị của biểu thức sau.

a) $ x(x-y) + y(x+y) $ tại $ x= -6 $ và $ y =8 $.
b) $ x(x^2-y)- x^2(x+y) + y(x^2 -x) $ tại $ x = \dfrac{1}{2} $ và $ y =-100. $
c) $ x(2x- y) -2x(y-x) $ tại $ x= 5 $ và $ y = 29 $.

Bài 7. Thực hiện phép nhân, rút gọn rút gọn rồi tính giá trị của biểu thức sau.
a) $ xy(x-2) - x(xy+ y) $ tại $ x= 4 $ và $ y = 5. $
b) $ 5x(x^2-3) + x^2 (7-5x) - 7x^2 $ tại $ x= -5 $.
c) $ x(x-y) + y(x-y) $ tại $ x= 1,5 $ và $ y =10. $

Bài 8. Tính giá trị biểu thức

a) $A=7x(x-5)+3(x-2)$ tại $x=0$
b) $B=4x^2-2x+3x(x-5)$ tại $x=-1$
c) $C=-3x^2+4x-5(x-2)$ tại $x=1$
d) $D=4x(2x-3)-5x(x-2)$ tại $x=2$.

Bài 9. Tính (rút gọn)

a) $(3x+5)(2x-7)$
b)  $(x-5)(-x^2+x-1)$
c)  $\left( \dfrac{3}{2}x-1\right) (-4x^2+2x-6)$
d) $5x-3+(x-5)(x+4)-7$.

Bài 10. Tính (rút gọn)

a) $x^2-2x+5-(x-7)(x+2)$
b) $x(x^2-5x+2)-(x+3)(x^2-2)$
c) $5x(x-3)(x-1)-4x(x^2-2x)$
d) $4x(x^2-x+3)-(x-6)(x-5)$.

Bài 11. Chứng minh giá trị của các biểu thức sau không phụ thuộc vào biến

a) $A=-3x(x-5)+3(x^2-4x)-3x+10$
b) $B=4x(x^2-7x+2)-4(x^3-7x^2+2x-5)$
c) $C=5x(x^2-x)-x^2(5x-5)-15$
d) $D=7(x^2-5x+3)-x(7x-35)-24$
e) $E=x^2-4x-x(x-4)-15$.

Bài 12.  Tìm $ x $ biết

a) $ 2x(x-3) - x(2x+3) = 18. $
b) $ x(5x^2 - 2) + 5x(1-x^2) = 3^4. $
c) $ (x-5)(x+2) + (x+1)(2-x) = 15. $
d) $ (2x-3)(x+5) - (x-2)(2x+1) =3. $

Bài 13. Tìm $x$ biết

a) $ 2x(x-5) - x(3+2x) = 26. $
b) $ 3x(12x-4) -9x(4x-3)= 30. $
c) $ x(5-2x) + 2x(x-1)= 15. $
d) $ (12x-5)(4x-1)+(3x-7)(1-16x) = 81. $

Bài 14. Thực hiện các phép nhân đa thức sau:

a) $(a+2b)(b-2a)$
b) $(a+b)(a^2+3ab-b^2)$
c) $(a-b)(a^2+ab+b^2)$
d) $(3x-2y)(3x-2y+1)$

Bài 15.Thực hiện các phép nhân đa thức sau:

a) $(a-2b)(a^2-2ab+4b^2)$
b) $(a+b)(b+c)(c+a)$
c) $(a+b+c)(ab+bc+ac)$.

Bài 16. Chứng minh các hằng đẳng thức sau:

a) $(a-b)(a+b) = a^2-b^2$
b) $(a+b)^2=a^2+2ab+b^2$
c) $(a-b)^2=a^2-2ab+b^2$
d) $(a+b)^3=a^3+3a^2b+3ab^2+b^3$.

Bài 17. Chứng minh các đẳng thức sau:

a) $(a-b)^3=a^3-2a^2b+3ab^2-b^3$
b) $(a-b)(a^2+ab+b^2)=a^3-b^3$
c) $(a+b)(a^2-ab+b^2)=a^3+b^3$
d) $(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ac$.

Bài 18. Chứng minh rằng:

a) $ a^3 + b^3 = (a+b)^3 - 3ab(a+b). $
b) $ a^3 - b^3 = (a-b)^3 + 3ab(a-b). $\
\textit{Áp dụng: }Tính $ a^3 + b^3 $, biết $ a\cdot b = 6 $ và $ a+b = -5. $

Bài 19. Khai triển, hoặc rút gọn các biểu thức sau:

a) $ (x+2)^2. $
b) $ (2x+3)^2. $
c) $ (x+7)(x-7) $
d) $ (5x-1)(5x+1). $

Bài 20. Khai triển, hoặc rút gọn các biểu thức sau:

a) $ (x+2)^3. $
b) $ (2x-5)^3. $
c) $ (x+2)(x^2 -2x+4). $
d) $ (1-x)(1+x+x^2). $
e) $ (2+xy)^2. $

Bài 21. Khai triển, hoặc rút gọn các biểu thức sau:

a) $ (5-3x)^2. $
b) $ (5-x^2)(5+x^2). $
c) $ (5x-1)^3. $
d) $ (2x-y)(4x^2 + 2xy + y^2). $
e) $ (x+3)(x^2 -3x +9). $

Bài 22. Rút gọn và tính giá trị của các biểu thức sau:

a) $A=(3x-y)^2-(x+2y)(x^2-2xy+4y^2)+(3+x)^2$ tại $x=1; y=2$
b) $B=(x-2)^3-(y-3)^2+(x-y)(x^2+xy+y^2)-(x+y)^3$ tại $x=1; y=\dfrac{1}{2}$
c) $C=(3x+1)^3-(y-2)^2+(y-1)^3-(x+y)^2$ tại $x=\dfrac{1}{3}; y=-3$
d) $D=(2x+1)(4x^2-2x+1)-(2x-1)^3-(x-3y)^2$ tại $x=-\dfrac{1}{2}; y=\dfrac{1}{3}$.

Bài 23. Rút gọn và tính giá trị của các biểu thức sau:

a) $E=(5x-2y)^2-(x+3y)^3+(2x+y)^2-(x-2y)^3$ tại $x=\dfrac{1}{5};y=-\dfrac{1}{3}$
b) $F=(2x+3)(4x^2-6x+9)-(2x-1)^3+(x+5)^2$ tại $x=-3$
c) $G=(3x+2y)^3-3x(3x-2)^2+2(x-y)(2x+y)$ tại $x=\dfrac{1}{2}; y=-\dfrac{1}{3}$.

Bài 24. Cho các số $a,b$ thỏa $a+b=1, ab = - 2$. Tính

a) $P = a^2+b^2$
b) $Q = a^3+b^3$.

Bài 25. Tính giá trị của các biểu thức sau biết $x + y = 2$.

a) $A = x^2 + y^2 - x^2y - xy^2+4xy - 5 $.
b) $B = x^3 + y^3 +6xy - 3x - 3y +1$.
c) $C = x^2 - y^2 + 4y + 1$.

Bài 26. Chứng minh các biểu thức sau không phụ thuộc vào biến $ x $:

a) $ (2x+3)(4x^2 -6x +9) -2(4x^3 -3). $
b) $ (4x-1)^3 -(4x-3)(16x^2 +3). $

Bài 27. Tìm x, biết:

a) $ (2x+1)^2 - (3-2x)^2 +4=0. $
b) $ (x-1)^3 +(2-x)(4+3x+x^2) +3x(x+2)=17. $
c) $ (x+2)(x^2-2x+4) -x(x^2-2) =15. $

Bài 28. Viết các biểu thức sau dưới dạng tổng của hai bình phương

a) $x^2-2x+2+4y^2+4y$
b) $4x^2+y^2+12x+4y+13$
c) $5x^2+y^2+z^2+4xy-2xz$
d) $x^2+4y^2+4x-4y+5$.

Bài 29. Viết các biểu thức sau dưới dạng tổng của hai bình phương

a) $a^2-4ab+5b^2-4bc+4c^2$
b) $4x^2+9y^2-4x+6y+2$
c) $4y^2+12y+25+8x+x^2$
d) $x^2+20+9y^2+8x-12y$
e) $4y^2-12x+12y+9x^2+13$.

Bài 30. Tìm $ x $, biết:

a) $ (2x+1)^2 -(3-2x)^2 +4 =0. $
b) $ (x-1)^3 +(2-x)(4+2x+x^2) +3x(x+2)=17. $
c) $ (x+2)(x^2 -2x+4) -x(x^2-2)=15. $

Bài 31. Tìm $x$  và  $y$, biết:

a) $x^2-2x+5+y^2-4y=0$
b) $4x^2+4x-6y+9y^2+2=0$
c) $ x^2+y^2+2x-6y +10 =0 $
d) $ 4x^2 +y^2 -4x +10y +26 =0 $.

Bài 32. Tìm $x$  và  $y$, biết:

a) $9x^2+12x+4y^2+8y+8=0$
b) $y^2+2y+5-12x+9x^2=0$
c) $16x^2+5+8x-4y-y^2=0$
d) $4y^2-12x+12y+9x^2+13=0$.

Bài 33. Tìm $x$  và  $y$, biết:

a) $4x^2+25-12x-8y+y^2=0$
b) $4y^2+12y+25+8x+x^2=0$
c) $x^2+20+9y^2+8x-12y=0$.

Bài 34. Chứng tỏ rằng:

a) $ x^2 -6x +10> 0 $ với mọi $ x $.
b) $ 4x-x^2 -5 < 0 $ với mọi $ x $.

Bài 35. Tìm giá trị nhỏ nhất của biểu thức sau:

a) $ M= x^2 + 4x +5. $
b) $ N = 9x^2 - 6x+6. $
c) $ P = x^2 -2x +5. $
d) $ Q = 2x^2 -6x. $

Bài 36. Tìm giá trị nhỏ nhất của biểu thức sau:

a) $ K = x^2 +y^2 -x +6y +10. $
b) $ A= x^2 - 6x+11. $
c) $ B = x^2 -20x +101. $
d) $ C = x^2 -2x + y^2 + 4y +8. $

Bài 37. Tìm giá trị lớn nhất của biểu thức sau:

a) $ A= 5-2x-x^2. $
b) $ B= 5 + 6x-9x^2. $
c) $ C= 4x -x^2 +3. $
d) $ D = x-x^2. $

Bài 38. Tìm giá trị lớn nhất của biểu thức sau:

a) $ E = 2x - 2x^2 -5. $
b) $ G = 5x-x^2. $
c) $ H = -x^2 + 6x -11. $
d) $ K = 5-8x -x^2 $.

 

 

 

 

Phép chia đa thức cho đơn thức

  1. Chia đơn thức cho đơn thức

Quy tắc

Muốn chia đơn thức $A$ cho đơn thức $B$ (trường hợp $A$  chia hết cho $B$) ta làm như sau:

  • Chia hệ số của đơn thức $A$ cho hệ số của đơn thức $B$.
  • Chia lũy thừa của từng biến trong $A$ cho lũy thừa của cùng biến đó trong $B$.
  • Nhân các kết quả vừa tìm được với nhau.

Ví dụ. Thực hiện phép chia

a) $ 8x^2 : 4x $
b)  $ 5x^4 : 2x^2. $
c)  $ (-8x^2 ): 4x. $
d) $ xy^3z^4 : (-3xyz). $

Giải

a) $ 8x^2 : 4x=\dfrac{8}{4}\cdot \dfrac{x^2}{x}=2x^{2-1}=2x. $
b)  $ 5x^4 : 2x^2=\dfrac{5}{2}\cdot \dfrac{x^4}{x^2}=\dfrac{5}{2}x^{4-2}=\dfrac{5}{2}x^2. $
c)  $ 3xy^3z^4 : (-3xyz)=\dfrac{3}{-3}\cdot \dfrac{x}{x}\cdot \dfrac{y^3}{y}\cdot \dfrac{z^4}{z}=-y^2z^3. $

2. Chia đa thức cho đơn thức

Quy tắc

Muốn chia đa thức $A$ cho đơn thức $B$ (trường hợp các hạng tử của $A$ đều chia hết cho $B$), ta chia mỗi hạng tử của $A$ cho $B$ rồi cộng các kết qủa với nhau.

Ví dụ. Thực hiện phép tính.
a) $ (-2x^5 +3x^2 – 4x^3) :2x^2. $
b)  $ (x^3 -2x^2y + 3xy^2): \left(-\dfrac{1}{2}x\right) $
c)  $ (3x^2y^2 +6x^2y^3 -12xy) : 3xy. $

Giải

a) $ (-2x^5 +3x^2 – 4x^3) :2x^2$

$=\dfrac{-2x^5}{2x^2}+\dfrac{3x^2}{2x^2} +\dfrac{- 4x^3}{2x^2}$

$=-x^3+\dfrac{3}{2}-2x.$
b)  $ (x^3 -2x^2y + 3xy^2): \left(-\dfrac{1}{2}x\right)$

$=\dfrac{x^3}{-\dfrac{1}{2}x}+\dfrac{-2x^2y}{-\dfrac{1}{2}x} +\dfrac{3xy^2}{-\dfrac{1}{2}x}$

$=-2x^2+4x^3y-6y^2 $
c)  $ (3x^2y^2 +6x^2y^3 -12xy) : 3xy$

$=\dfrac{3x^2y^2}{3xy}+\dfrac{6x^2y^3}{3xy} +\dfrac{-12xy}{3xy}$

$=xy+2xy^2-4. $

3. Bài tập

Bài 1. Thực hiện phép chia

a) $ \dfrac{2}{3}x^3y^4 : \left(-\dfrac{4}{9}x^2y^3\right) .$
b) $ x^2yz:xyz. $
c) $ x^3y^4 : x^3y. $
d) $ \left(\dfrac{5}{7}x^2y\right)^3 : \left(\dfrac{1}{7}xy\right)^3 $.

Bài 2. Thực hiện phép chia

a) $ 5x^2y^4: 10x^2y. $
b) $ \dfrac{3}{4}x^3y^3 : \left(-\dfrac{1}{2}x^2y^2\right) $
c) $ (-xy)^{10} : (-xy)^5. $
d) $ 15x^4y^3z^3 : 5xy^2z^2. $

Bài 3. Thực hiện phép chia

a) $(4x^4 +2x^3 – 2x^2 + 6x) : 2x$
b) $(12x^4 + 6x^3 – 24x) : 6x$
c) $(2x^3 – 2x^2 + 3x) : 4x$
d) $(2x^2y + 3xy^2 + 4xy) : xy$.

Bài 4. Thực hiện phép chia

a) $(4x^4y^2-5x^2y^3 + x^2y^2) : x^2y$
b)  $ (18x^7 +12x^5 – 24x^3): 6x^3. $
c)  $ (15x^3y^5 – 8x^2y^2 – 5x^4y^4) : 5x^2y. $
d) $ (20x^5 – 15x^3 +10x^2): 5x^2 $.

Phân tích đa thức thành nhân tử – Hằng đẳng thức

Cách thực hiện: Vận dụng các hằng đẳng thức  để đưa đa thức về dạng tích các đa thức hay dạng lũy thừa của một đa thức

$A^2 \pm 2AB +B^2=(A \pm B)^2$

$A^2-B^2=(A+B)(A-B)$

$A^3 \pm 3A^2B+3AB^2 \pm B^3= (A \pm B)^3$

$A^3 \pm B^3=(A \pm B)(A^2 \mp AB+B^2)$

Ví dụ 1. Phân tích đa thức thành nhân tử.

a) $ x^2 – 9 $
b) $ 4x^2 – 25$
c) $ x^6 – y^6$

$(3x+1)^2-(2x+3)^2$

Giải

a) $ x^2 – 9 =x^2-3^2=(x-3)(x+3) $
b) $ 4x^2 – 25=(2x)^2-5^2=(2x-5)(2x+5) $
c) $ x^6 – y^6=(x^2)^3-(y^2)^3=(x^2-y^2)(x^4+x^2y^2+y^4$
d) $(3x+1)^2-(2x+3)^2=(3x+1-2x-3)(3x+1+2x+3)=(x-2)(5x+4)$

Ví dụ 2. Phân tích đa thức thành nhân tử.

a) $ x^2 – 9 $
b) $ 4x^2 – 25$
c) $ x^6 – y^6$
d) $ 9x^2 + 6xy + y^2$
e) $ 6x -9 -x^2 $

Giải

a) $x^2-4x+4=x^2-2.2x+2^2=(x-2)^2$
b) $ x^2 +6x + 9=x^2+2.3x+3^2=(x+3)^2$
c)  $ 9x^2 + 6xy + y^2=(3x)^2+2.3xy+y^2=(3x+y)^2 $
d) $ 6x -9 -x^2=-(x^2-6x+9)=-(x^2-2x.3+3^2)=-(x-3)^2. $

Ví dụ 3. Phân tích đa thức thành nhân tử.

a) $ 27 -125x^3. $

b)  $ x^3 + \dfrac{1}{27}. $
c) $ x^3 – 9x^2+ 27x – 27. $
d) $x^3+3x^2+3x+1$

Giải

a) $x^2-4x+4=x^2-2.2x+2^2=(x-2)^2$
b) $ x^2 +6x + 9=x^2+2.3x+3^2=(x+3)^2$
c)  $ 9x^2 + 6xy + y^2=(3x)^2+2.3xy+y^2=(3x+y)^2 $
d) $ 6x -9 -x^2=-(x^2-6x+9)=-(x^2-2x.3+3^2)=-(x-3)^2. $

 

Bài tập

Bài 1. Phân tích đa thức thành nhân tử

a) $x^3 – y^6$
b) $x^3 + y^3z^3$
c) $(x-1)^2 – (y-3)^2$
d) $x^4 – 4x^2 + 4$

Daie) $x^2 – 8x + 16$.

Bài 2. Phân tích đa thức thành nhân tử

a) $x^3+8$
b)  $x^3 – 27$
c) $x^3 – 6x^2 + 12x- 8$
d)  $(a^2 + 4ab+ 4b^2) – x^2 $
e)  $x^2 – y^4$.

Bài 3. Phân tích đa thức thành nhân tử

a) $4a^2-b^2$
b) $121-a^2$
c) $196a^2-4b^2$
d) $(a-b)^2-c^2$

Bài 4. Phân tích đa thức thành nhân tử

a) $81(x+7)^2-(3x+8)^2$
b)  $x^2+14x+49$
c) $25x^2-20xy+4y^2$

Bài 5. Phân tích đa thức thành nhân tử

a) $x^10-4x^8+4x^6$
b) $m^3+27$
c) $8x^6-27y^3$
d) $x^12-y^4$.

Bài 6. Phân tích đa thức thành nhân tử

a) $x^3+6x^2+12x+8$
b) $27-27m+9m^2-m^3$
c)  $27a^3-54ab+36ab^2-8b^2$

Bài 7. Phân tích đa thức thành nhân tử

a) $ x^2 + 4y^2 + 4xy. $
b) $ (x+y)^2 – (x-y)^2. $
c) $ (3x+1)^2 – (x+1)^2. $
d) $ x^3 + y^3 +z^3 -3xyz. $
e) $ x^3 – \dfrac{1}{4}x. $

Bài 8. Phân tích các đa thức sau thành nhân tử:

a) $ \dfrac{1}{25}x^2 – 64y^2 $
b)  $ x^3 + \dfrac{1}{27}. $
c)  $ (a+b)^3 – (a-b)^3. $
d)  $ (a+b)^3 + (a-b)^3. $

Bài 9. Phân tích các đa thức sau thành nhân tử:

a) $ 8x^3 +12x^2y + 6xy^2 + y^3. $
b)  $ -x^3 + 9x^2- 27x + 27. $
c) $4x^2-12xy+9y^2$.
d) $x^3+3x^2+3x+1$.

Bài 10. Phân tích các đa thức sau thành nhân tử:

a) $x^4-4x^2y^2+4y^4$.
b)  $ 25x^2 – 16y^2. $
c) $ 27 -125x^3. $

Bài 11. Phân tích các đa thức sau thành nhân tử:

a) $x^2-y^2$
b) $4x^2-9y^2$
c) $(x+1)^2-(y-3)^2$
d) $(2x+1)^2-(2y-1)^2$.

Bài 12. Phân tích các đa thức sau thành nhân tử:

a) $x^3-y^3$
b) $x^3+y^3$
c) $8x^3+27y^3$
d) $x^3-(y+1)^3$.

Bài 13. Tìm $ x $, biết.

a) $ x^3 – 0,25x =0 .$
b)  $ x^2 -10x = -25. $
c)  $ 2-25x^2 =0 .$
d) $ x^2 – x+ \dfrac{1}{4} =0. $

Bài 14. Phân tích các đa thức sau thành nhân tử:

a) $8x^3-6x^2+12x-1$
b)  $27x^3+27x^2+9x+1$
c) $x^3-6x^2y+12xy^2-8y^3$
d) $8x^3-48x^2y+96xy^2+64y^3$

Bài 15. Phân tích các đa thức sau thành nhân tử:

a) $(3x+1)^3-(3x-5)^3$
b) $(2x+1)^3+(5-2x)^3$.

Bài 16. Phân tích các đa thức sau thành nhân tử:

a) $x^8 – y^4$
b) $x^3 + y^6$.

Phân tích đa thức thành nhân tử – Phương pháp đặt ẩn phụ

  1. Đặt ẩn phụ dạng đa thức

Ví dụ: Phân tích đa thức thành nhân tử

a) $ 4x^4 -37x^2+9 .$
b) $ (x-y)^2 +4x-4y -12. $
c)  $ (x^2 + 3x)^2 + 7x^2 +21x +10 $

Giải

a) $ 4x^4 -37x^2+9 $

Đặt $t=x^2, t \geq 0$

Ta có:

$4t^2-37t+9$

$=4t^2-t-36t+9$

$=t(4t-1)-9(4t-1)$

$=(4t-1)(t-9)$

Vậy

$ 4x^4 -37x^2+9$

$=(4x^2-1)(x^2-9)$

$=(2x-1)(2x+1)(x-3)(x+3). $

b) $ (x-y)^2 +4x-4y -12=(x-y)^2+4(x-y)-12$

Đặt $t=x-y$

Ta có:

$(x-y)^2+4(x-y)-12$

$=t^2+4t-12$

$=t^2-2t+6t-12$

$=t(t-2)+6(t-2)$

$=(t-2)(t+6)$

Vậy

$ (x-y)^2 +4x-4y -12$

$=(x-y)^2+4(x-y)-12$

$=(x-y-2)(x-y+6).$

c)  $ (x^2 + 3x)^2 + 7x^2 +21x +10 =(x^2 + 3x)^2+7(x^2 + 3x)+10 $

Đặt $t=x^2 + 3x$

Ta có:

$t^2+7t+10$

$=t^2+2t+5t+10$

$=t(t+2)+5(t+2)$

$=(t+2)(t+5)$

Vậy

$ (x^2 + 3x)^2 + 7x^2 +21x +10$

$=(x^2 + 3x)^2+7(x^2 + 3x)+10$

$=(x^2 + 3x+2)(x^2 + 3x+5).  $

2. Đặt ẩn phụ dạng $ (x+a)(x+b)(x+c)(x+d)+e $ với $ (a+d = b+c). $

Ví dụ: Phân tích đa thức thành nhân tử

a) $(x+1)(x+2)(x+3)(x+4) – 24$.
b)  $ (x+2)(x+4)(x+6)(x+8)+16. $
c)$ (x^2 + 6x +8)(x^2+8x+15) -24. $

Giải

a) $(x+1)(x+2)(x+3)(x+4) – 24$

$=(x+1)(x+4)(x+2)(x+3)-24$

$=(x^2+5x+4)(x^2+5x+6)-24$

Đặt $t=x^2+5x+5$

Suy ra

$(x^2+5x+4)(x^2+5x+6)-24$

$=(t-1)(t+1)-24$

$=t^2-1-24$

$=t^2-25=(t-5)(t+5)$

Vậy $(x^2+5x+4)(x^2+5x+6)-24$

$=(x^2+5x+5-5)(x^2+5x+5+5)$

$=(x^2+5x)(x^2+5x+10)$

$=x(x+5)(x^2+5x+10)$

b)  $ (x+2)(x+4)(x+6)(x+8)+16$

$=(x+2)(x+8)(x+4)(x+6)+16$

$=(x^2+10x+16)(x^2+10x+24)+16 $

Đặt $t=x^2+10x+20$

Suy ra

$(x^2+10x+16)(x^2+10x+24)+16$

$=(t-4)(t+4)+16$

$=t^2-16+16=t^2 $

Vậy

$(x^2+10x+16)(x^2+10x+24)+16$

$=(x^2+10x+20)^2 $
c)$ (x^2 + 6x +8)(x^2+8x+15) -24$

$=(x+2)(x+4)(x+3)(x+5)-24$

$=(x+2)(x+5)(x+3)(x+4)-24$

$=(x^2+7x+10)(x^2+7x+12)-24 $

Đặt $t=x^2+7x+11$

Suy ra

$(x^2+7x+10)(x^2+7x+12)-24$

$=(t-1)(t+1)-24$

$=t^2-1-24$

$=t^2-25$

$=(t-5)(t+5)$

Vậy

$(x^2+7x+10)(x^2+7x+12)-24$

$=(x^2+7x+11-5)(x^2+7x+11+5)$

$=(x^2+7x+6)(x^2+7x+16)$

 

3. Đặt biến phụ dạng đẳng cấp.

Ví dụ: Phân tích các đa thức sau thành nhân tử:
a)  $ (x^2 + 1)^2 + 3x(x^2+1) +2x^2. $
b)  $ (x^2 +4x +8)^2 +3x(x^2 + 4x+ 8) + 2x^2. $
c)  $ 4(x^2 +x +1)^2 + 5x(x^2 + x + 1)+ x^2. $

Giải

a)  $(x^2 + 1)^2 + 3x(x^2+1) +2x^2$

Đặt $ t=x^2+1$, ta được:

$t^2+3xt+2x^2$

$=(t^2+xt)+(2xt+2x^2)$

$=t(t+x)+2x(t+x)$

$=(t+x)(t+2x)$

Vậy

$ (x^2 + 1)^2 + 3x(x^2+1) +2x^2$

$=(x^2+1+x)(x^2+1+2x)$.

b)  $ (x^2 +4x +8)^2 +3x(x^2 + 4x+ 8) + 2x^2. $

Đặt $ t=x^2+4x+8$, ta được:

$t^2+3xt+2x^2$

$=(t^2+xt)+(2xt+2x^2)$

$=t(t+x)+2x(t+x)$

$=(x+t)(t+2x)$

Vậy

$ (x^2 +4x +8)^2 +3x(x^2 + 4x+ 8) + 2x^2$

$=(x+x^2+4x+8)(x^2+4x+8+2x)$

$=(x^2+5x+8)(x^2+6x+8)$.
c)  $ 4(x^2 +x +1)^2 + 5x(x^2 + x + 1)+ x^2. $

Đặt $ t=x^2+x+1$, ta được:

$4t^2+5xt+x^2$

$=(4t^2+4xt)+(xt+x^2)$

$=4t(t+x)+x(t+x)$

$=(x+t)(4t+x)$

Vậy

$ 4(x^2 +x +1)^2 + 5x(x^2 + x + 1)+ x^2$

$=(x^2 +x +1+x)[4(x^2 +x +1)+x]$

$=(x+1)^2(4x^2+5x+4)$.

 

4. Đặt biến phụ dạng hồi quy $ ax^4 + bx^3 + cx^2 + dx + e = 0. \left(\dfrac{a}{e} =\left( \dfrac{b}{d}\right)^2\right) $. Hay $ e = \left(\dfrac{d}{b}\right)^2. $

Cách giải:  Đặt biến phụ $ t = x^2 + \dfrac{d}{b} $ và biến đổi đa thức trên về dạng chứa hạng tử $ t^2 +bxy + zx^2 $ rồi sử dụng hằng đẳng thức.

Ví dụ: Phân tích các đa thức sau thành nhân tử.
a)  $ x^4 + 6x^3 +11x^2 + 6x+1 $
b) $ x^4 + 5x^3 -12x^2 + 5x +1. $
c) $ 6x^4 + 5x^3 -38x^2 + 5x+ 6. $

Giải

a)  $ x^4 + 6x^3 +11x^2 + 6x+1$

$=x^2\left(x^2+6x+11+\dfrac{6}{x}+\dfrac{1}{x^2}\right)$

$=x^2\left[\left(x^2+\dfrac{1}{x^2}\right)+6\left(x+\dfrac{1}{x}\right)+11\right]$

Đặt $t=x+\dfrac{1}{x} \Rightarrow t^2=\left(x+\dfrac{1}{x}\right)^2 \Rightarrow x^2+\dfrac{1}{x^2}=t^2-2$

$x^2\left[\left(x^2+\dfrac{1}{x^2}\right)+6\left(x+\dfrac{1}{x}\right)+11\right]$

$=x^2(t^2-2+6t+11)$

$=x^2(t^2+6t+9)$

$=x^2(t+3)^2$

$=x^2\left(x+\dfrac{1}{x}+3\right)^2.$
b) $ x^4 + 5x^3 -12x^2 + 5x +1. $

$=x^2\left(x^2+5x-12+\dfrac{5}{x}+\dfrac{1}{x^2}\right)$

$=x^2\left[\left(x^2+\dfrac{1}{x^2}\right)+5\left(x+\dfrac{1}{x}\right)-12\right]$

Đặt $t=x+\dfrac{1}{x} \Rightarrow t^2=\left(x+\dfrac{1}{x}\right)^2 \Rightarrow x^2+\dfrac{1}{x^2}=t^2-2$

$=x^2\left[\left(x^2+\dfrac{1}{x^2}\right)+5\left(x+\dfrac{1}{x}\right)-12\right]$

$=x^2(t^2-2+5t-12)$

$=x^2(t^2+5t-14)$

$=x^2(t^2-2t+7t-14)$

$=x^2[t(t-2)+7(t-2)]$

$=x^2(t-2)(t+7)$

$=x^2\left(x+\dfrac{1}{x}-2\right)\left(x+\dfrac{1}{x}+7\right).$

c) $ 6x^4 + 5x^3 -38x^2 + 5x+ 6. $

$=x^2\left(6x^2+5x-38+\dfrac{5}{x}+\dfrac{6}{x^2}\right)$

$=x^2\left[6\left(x^2+\dfrac{1}{x^2}\right)+5\left(x+\dfrac{1}{x}\right)-38\right]$

Đặt $t=x+\dfrac{1}{x} \Rightarrow t^2=\left(x+\dfrac{1}{x}\right)^2 \Rightarrow x^2+\dfrac{1}{x^2}=t^2-2$

$=x^2\left[6\left(x^2+\dfrac{1}{x^2}\right)+5\left(x+\dfrac{1}{x}\right)-38\right]$

$=x^2[6(t^2-2)+5t-38]$

$=x^2(6t^2-12+5t-38)$

$=x^2(6t^2+5t-50)$

$=x^2(6t^2-15t+20t-50)$

$=x^2(2t-5)(3t+10)$

$=x^2\left[2\left(x+\dfrac{1}{x}\right)-5\right]\left[3\left(x+\dfrac{1}{x}\right)+10\right].$

 

5. Đặt biến phụ dạng $(x+a)(x+b)(x+c)(x+d)+ex^2 $ với $ (ad= bc) .$

Ví dụ: Phân tích đa thức thành nhân tử

a) $ (x+1)(x-4)(x+2)(x-8) + 4x^2. $
b)  $ (x-1)(x+2)(x+3)(x-6)+32x^2. $
c) $ (x+2)(x-4)(x+6)(x-12) +36x^2. $

Giải

a) $ (x+1)(x-4)(x+2)(x-8) + 4x^2. $

$=(x+1)(x-8)(x-4)(x+2)+4x^2$

$=(x^2-7x-8)(x^2-2x-8)+4x^2$

Đặt $t=x^2-8 $

$(x^2-7x-8)(x^2-2x-8)+4x^2$

$=(t-7x)(t-2x)+4x^2$

$=t^2-9xt+14x^2+4x^2$

$=t^2-9xt+18x^2$

$=t^2-3xt-6xt+18x^2$

$=t(t-3x)-6x(t-3x)$

$=(t-3x)(t-6x)$

$=(x^2-8-3x)(x^2-8-6x).$
b)  $ (x-1)(x+2)(x+3)(x-6)+32x^2. $

$=(x-1)(x-6)(x+2)(x+3)+32x^2$

$=(x^2-7x+6)(x^2+5x+6)+32x^2$

Đặt $t=x^2+6 $

$(x^2-7x+6)(x^2+5x+6)+32x^2$

$=(t-7x)(t+5x)+32x^2$

$=t^2-2xt-35x^2+32x^2$

$=t^2-2xt-3x^2$

$=t^2+xt-3xt-3x^2$

$=t(t+x)-3x(t+x)$

$=(t+x)(t-3x)$

$=(x^2+6+x)(x^2+6-3x).$

c) $ (x+2)(x-4)(x+6)(x-12) +36x^2. $

$=(x+2)(x-12)(x-4)(x+6)+36x^2$

$=(x^2-10x-24)(x^2+2x-24)+36x^2$

Đặt $t=x^2-24 $

$=(x^2-10x-24)(x^2+2x-24)+36x^2$

$=(t-10x)(t+2x)+36x^2$

$=t^2-8xt-20x^2+36x^2$

$=t^2-8xt+16x^2$

$=(t-4x)^2$

$=(tx^2-24-4x)^2$.

 

Bài tập

Bài 1. Phân tích  các đa thức sau thành nhân tử:

a)  $ (x^2 +5x)^2 +10x^2 + 50x +24. $
b) $ x^2 + 6xy + 9y^2 – 3(x+3y)+1. $
c)  $ (x^2 +x + 1)(x^2 +x +2) -12. $
d) $(x^2+2x)^2-4(x^2+2x)+3.$
e)$(x^2+x+1)^2-4(x^2+x+1) – 5.$

Bài 2. Phân tích các đa thức sau thành nhân tử

a)  $(x^2+x-2)(x^2+9x+18) – 28$
b) $(x-1)(x-3)(x-5)(x-7)-20 $
c) $(x^2 + 5x+6)(x^2 -15x+56)-144 $
d)$x(x+1)(x+2)(x+3)+1$
e) $(x^2-11x+28)(x^2-7x+10)-72$c

Bài 3. Phân tích các đa thức sau thành nhân tử

a) $(x-3)(x-5)(x-6)(x-10) – 24x^2 $
b) $(x-1)(x+2)(x+3)(x-6) + 32x^2 $
c) $(x+2)(x+3)(x+8)(x+12)- 4x^2 $
d) $(x^2+1)^2 + 3x(x^2 + 1)+2x^2 $
e) $(x^2 -x+2)^4 – 3x^2(x^2-x+2)^2 + 2x^4$
Bài 4. Phân tích đa thức thành nhân tử

a) $x^3 – x^2 + x + 3$
b) $x^3 – 3x^2 – 5x +1$
c) $x^3 + 4x^2 – 2x -5$
d)  $2x^3 – 3x^2 – x + 4$
e)  $3x^3 – 2x^2 +5$
f) $-x^3 – 4x^2 + 2x +5$

Bài 5. Phân tích các đa thức sau thành nhân tử

a) $(x-1)(x-3)(x-5)(x-7)-20 $
b) $(x^2 + 5x+6)(x^2 -15x+56)-144 $
c) $x(x+1)(x+2)(x+3)+1$
d) $(x^2-11x+28)(x^2-7x+10)-72$
e) $(x^2+x-2)(x^2+9x+18) – 28$

 

 

Phân tích đa thức thành nhân tử – Phương pháp thêm bớt (tách) hạng tử

  1. Phương pháp tách hạng tử

Cách thực hiện: Với tam thức bậc hai: $ ax^2 + bx + c. $

  • Xét tích: $ a\cdot c $.
  • Phân tích $ a\cdot c $ thành tích của hai số nguyên.
  • Xét xem tích nào có tổng của chúng bằng $ b $, thì ta tách $ b $ thành 2 số đó, cụ thể như sau:
    $ b_1+b_2 = b$ và $ a \cdot c = b_1 \cdot b_2. $

Ví dụ 1 : Phân tích đa thức thành nhân tử.

a)  $ x^2 -7x +12. $
b)  $ x^2 – 5x -14. $
c) $ 4x^2 – 3x -1. $

Giải

a)  $ x^2 -7x +12=x^2-3x-4x+12$

$= (x^2-3x)-(4x-12)=x(x-3)-4(x-3)$

$=(x-3)(x-4).$
b)  $ x^2 – 5x -14=x^2-7x+2x-14$

$=(x^2-7x)+(2x-14)=x(x-7)+2(x-7)$

$=(x+2)(x-7) $
c) $ 4x^2 – 3x -1=4x^2-4x+x-1$

$=(4x^2-4x)+(x-1)=4x(x-1)+(x-1)$

$=(x-1)(4x+1). $

Với dạng $ax^2+bxy+cy^2$ ta cũng làm tương tự.

Ví dụ. Phân tích đa thức thành nhân tử:

a) $3x^2+10xy+3y^2$

b) $2x^2-9xy + 9y^2$.

Giải

a) $3x^2 + 10xy + 3y^2 = 3x^2 + xy + 9xy+3y^2$

$= x(3x+y) + 3y(3x+y)$

$=(3x+y)(x+3y)$.

b) $2x^2-9xy+9y^2 = 2x^2-3xy -6xy + 9y^2$

$=x(2x-3y) – 3y(2x-3y)$

$=(2x-3y)(x-3y)$.

2. Phương pháp thêm bớt cùng một hạng tử

Một số trường hợp ta thêm bớt để được hằng đẳng thức $(a+b)^2$ hoặc $a^3-b^3$.

Ví dụ 1. Phân tích đa thức thành nhân tử.
a) $ x^4 +4$
b)  $ 64x^4 +1. $
c)  $ 81x^4 +4. $

Giải

a) Phân tích: Ta thấy $x^4 + 4 = (x^2)^2 + 2^2$, để có hằng đẳng thức ta thêm bớt hạng tử $2.2x^2 = 4x^2$, khi đó ta có biến đổi sau:

$ x^4 +4=x^4+4x^2+4-4x^2$

$=(x^4+4x^2+4)-4x^2=(x^2+2)^2-(2x)^2$

$=(x^2+2+2x)(x^2+2-2x) $

Tương tự ta có thể làm cho các bài sau.
b)  $ 64x^4 +1=64x^4+16x^2+1-16x^2$

$=(8x^2+1)^2-(4x)^2$

$=(8x^2+1-4x)(8x^2+1+4x) $
c)  $ 81x^4 +4=81x^4+36x^2+4-36x^2$

$=(81x^4+36x^2+4)-36x^2$

$=(9x^2+2-6x)(9x^2+2+6x) $

 

Ví dụ 2. Phân tích đa thức $ x^5 + x +1 $ thành nhân tử

Giải

$ x^5 + x +1=x^5+x^4-x^4+x^3-x^3+x^2-x^2+x+1$

$=(x^5+x^4+x^3)-(x^4+x^3+x^2)+(x^2+x+1)$

$=x^3(x^2+x+1)-x^2(x^2+x+1)+(x^2+x+1)$

$=(x^2+x+1)(x^3-x^2+1).$

Bài tập

Bài 1. Phân tích thành nhân tử:

a) $x^2+4x+3$
b) $x^2+6x+5$
c) $2x^2+5x+2$
Bài 2.  Phân tích đa thức sau thành phân tử

a) $ x^2 – 3x + 2 .$
b) $ x^2 + 5x + 6. $
c)   $ x^4 +4. $

Bài 3. Phân tích thành nhân tử

a) $2x^2+7x^2+5y^2$

b) $x^2-4xy-5y^2$.

Bài 4. Phân tích đa thức thành nhân tử

a)  $x^5 + x^4 + x^3 + x^2 + x+ 1$
b)  $ x^3 + x^2 – x+ 2$
c) $ x^5 – x^2 + x^3 – 1$
d)   $x^5 + x^4+ 1$