Gửi các bạn một sản phẩm của các em học sinh PTNK: Chuyên đề toán học số 11.
Tag Archives: PTNK
Đề thi và lời giải chọn đội tuyển PTNK năm 2020
Chúc mừng các bạn đã đỗ vào Đội tuyển Toán PTNK thi VMO năm 2020-2021. Chúc các em có một chặng đường học tập và thi cử thành công.
Năm nay danh sách có 7 bạn 12, 2 bạn 11 và đặc biệt có một học sinh lớp 10.
Sau đây là đề bài và đáp án đề thi chọn đội tuyển năm nay, được thực hiện bởi thầy Lê Phúc Lữ, giáo viên tại trung tâm giáo dục STAR EDUCATION (và một số đồng nghiệp).
Đề thi thử vào lớp 10 PTNK – Đề toán chung – Lần 2
ĐỀ THI THỬ VÀO LỚP 10 PTN – NĂM 2020
Môn: Toán chung
THỜI GIAN LÀM BÀI: 120 PHÚT
Bài 1. (1.5 điểm)
a) Cho $a > 0, b \geq 0$ và $a \neq b$.
Đặt $A = \dfrac{\sqrt{a}}{a+b-2\sqrt{ab}} – \dfrac{\sqrt{b}}{a-b} ; \ B = a^2\sqrt{a}+b^2\sqrt{b}-a^2\sqrt{b}-b^2\sqrt{a}$.
Biết $AB = \dfrac{9}{2}ab$. Tính $\dfrac{b}{a}$.
b) Cho $x = \sqrt{2} + \sqrt{3}$. Chứng minh $x^4-10x^2+1 = 0$.
Bài 2. (2 điểm) Giải các phương trình và hệ phương trình sau:
a) $x+\dfrac{2x-6}{\sqrt{x-3}} = 6$
b) $\left\{\begin{array}{c} x(|x|+y) = 5|x|\\x^2+y^2+3xy=55 \end{array} \right.$
Bài 3. (1.5 điểm) Cho phương trình $\dfrac{(x-2)(x^2 – 4x – m)}{\sqrt{x}} = 0$.
a) Giải phương trình khi $m = 1$.
b) Tìm $m$ để phương trình có ba nghiệm phân biệt $x_1, x_2, x_3$.
c) Với điều kiện câu b, giả sử $x_1 < x_2 < x_3$.Tìm $m$ để $x_1^2 + 2x_2^2 + x_3^2 = 18$.
Bài 4. (2 điểm)
a) Thầy Vũ có một mảnh vườn hình thoi, độ dài đường chéo nhỏ bằng độ dài cạnh và bằng 30m. Người ta làm một con đường song song với đường chéo nhỏ ngang qua ngang mảnh đất và diện tích còn lại của mảnh đất là hai tam giác đều như hình vẽ có cạnh là 20m. Hỏi diện tích đất được đền bù so với phần còn lại thì nhiều hơn hay ít hơn? Giá mỗi mét vuông đất được đền bù là 1 triệu đồng và giá mỗi mét vuông đất còn lại là 10 triệu đồng và thầy Vũ muốn bán luôn để mua một căn chung cư 4 tỷ đồng thì có đủ tiền không? Tại sao?

b) Bình và An cùng chạy một đoạn đường dài 10 km. Họ xuất phát cùng một nơi, chạy lên ngọn đồi dài 5 km và trở lại điểm xuất phát bằng cùng một tuyến đường. An chạy trước Bình 10 phút và chạy lên đồi với vận tốc 15 km/h rồi xuống đồi với vận tốc 20 km/h. Còn Bình lên đồi với vận tốc 16 km/h rồi xuống đồi với vận tốc 22 km/h. Hỏi lúc họ gặp nhau theo hướng ngược lại thì họ cách đỉnh đồi bao xa?
Bài 5. (3 điểm) Cho tam giác $ABC$ có $\angle ABC = \angle ACB = 30^\circ$ nội tiếp đường tròn tâm $O$ bán kính $R$. Tiếp tuyến tại $A$ và $B$ của $O$ cắt nhau tại $D$. $CD$ cắt $OA$ tại $E$ và cắt $(O)$ tại $F$ khác $C$.
a) Tính $AB, AD$ theo $R$.
b) Tính $CD$ và chứng minh $OBFE$ nội tiếp.
c) $OA$ cắt $BD$ tại $K$. Tính góc $\angle DFK$ và chứng minh $KF$ qua trung điểm cạnh $AB$.
HẾT
ĐÁP ÁN -> PTNK_KC_2020_MOCK2
Bài làm gửi về email:
- hocthemstar20192020@gmail.com
- Bản scan -> pdf (không để các file hình rời rạc)
- Ghi đầy đủ họ tên lớp, trường.
- Đáp án sẽ post sau một thời gian.
- Bạn nào nộp bài trễ vẫn được nhận nhé.
Đề thi và đáp án thi vào trường Phổ thông Năng khiếu năm 2019
Download file -> 2019PTNKKC
Đáp án đề học kì môn toán 11 – PTNK năm học 2019 – 2020
Bài 1.
a) $\sin 3 x-\sqrt{3} \cos 3 x=2\left(\cos ^{2} x-\sin ^{2} x\right)$
b) $\dfrac{\sin 2 x+2 \sin 2 x \cos 4 x}{\cos 3 x}=1$
Bài 2.
a) Từ các chữ số 0,1,2,3,4,5,6,7,8 có bao nhiêu số tự nhiên có 4 chữ số khác nhau mà có đúng 1 chữ số lẻ?
b) Lớp X có 30hs trong đó có 3 bạn Mai, An, Bình. Để tham gia trò chơi kéo có cần 10 học sinh. Tính xác suất để trong 10 học sinh được chọn có ít nhất 2 trong 3 bạn Mai, An và Bình nói trên.
Bài 3. Cho số tự nhiên $n$ thỏa $A_{n}^{2}+3 C_{n+1}^{n}=38 .$ Tìm số hạng chứa $x^{5}$ trong khai triển $\left(\sqrt{x}-3 x^{3}\right)^{n}$
Bài 4. Cho cấp số cộng $u_{n}$ với công sai $d$ thỏa điều kiện:
$$
\left\{\begin{array}{l}
S_{20}-S_{15}=500 \\
u_{20}-u_{15}=75
\end{array} \right.$$
$S_{n}=u_{1}+u_{2}+\ldots+u_{n} $. Tìm $u_{1}, d$.
Bài 5. Trong mặt phẳng $O x y,$ cho các đường thẳng $d_{1}: 3 x-6 y-15=0$ và $d: y=x$. Gọi $d_{2}$ là ảnh của $d_{1}$ qua phép đối xứng trục $d$. Tìm tọa độ giao điểm của $d_{2}$ với trục tung.
Bài 6. Cho hình chóp $S . A B C D$ có đáy là hình bình hành tâm $O, M, N$ lần lượt là trung điểm $S A, C D$.
a) Tìm giao tuyến của măt phẳng $(S A C)$ và $(S B D) ;(S A D)$ và $(S B N)$.
b) Gọi $G$ là trọng tâm tam giác $A C D, K$ là trọng tâm tam giác $S B D$. Chứng minh: $G K |(S A D) . B K$ cắt $S D$ tại $I$. Chứng minh $I$ thuộc mặt phẳng $(O M N)$
c) Chứng minh: $SB \parallel (O M N)$ và tìm giao điểm của mặt phẳng $(A N K)$ với $S B$.
Lời giải
Bài 1.
a) $\sin 3 x-\sqrt{3} \cos 3 x=2\left(\cos ^{2} x-\sin ^{2} x\right)$
$\Leftrightarrow \dfrac{1}{2} \sin 3 x-\dfrac{\sqrt{3}}{2} \cos 3 x=\cos 2 x$
$\Leftrightarrow \cos \left(3 x+\dfrac{\pi}{6}\right)=\cos (2 x+\pi)$
$\Leftrightarrow\left[\begin{array}{c}x=\dfrac{5 \pi}{6}+k 2 \pi \ x=-\dfrac{7 \pi}{6}+\frac{k 2 \pi}{5}\end{array}(k \in \mathbb{Z}\right.$
b) $\dfrac{\sin 2 x+2 \sin 2 x \cos 4 x}{\cos 3 x}=1$
Điều kiện: $x \neq \dfrac{\pi}{6}+\dfrac{k \pi}{3}$
$\Leftrightarrow \sin 2 x+\sin 6 x-\sin 2 x=\cos 3 x$
$\Leftrightarrow \cos \left(\dfrac{\pi}{2}-6 x\right)=\cos 3 x$
$\Leftrightarrow\left[\begin{array}{l}x=\dfrac{\pi}{18}-\frac{k 2 \pi}{9} \ x=\dfrac{\pi}{6}-\dfrac{k 2 \pi}{3}\end{array}(k \in \mathbb{Z})\right.$
So sánh với điều kiện, ta được hoăc $\dfrac{5 \pi}{18}+\dfrac{k 2 \pi}{3}$
Bài 2.
$\quad$ a) Từ các chữ số 0,1,2,3,4,5,6,7,8 có bao nhiêu số tự nhiên có 4 chữ số khác nhau mà có đúng 1 chữ số lẻ? Gọi số cần tìm: $\overline{a b c d}$ +TH1: a là số lẻ, có 4 cách Ta có: $4 \times A_{5}^{3}$
+TH2: a là số chãn, có 4 cách Ta chọn ra 1 số lẻ rồi xếp vào 3 vị trí còn lại: $4 \times 3$ Nên có: $4 \times 4 \times 3 \times A_{4}^{2}$
Do đó, có tất cả: 816 số.
b) Lớp X có 30hs trong đó có 3 bạn Mai, An, Bình. Để tham gia trò chơi kéo có cần 10 học sinh. Tính xác suất để trong 10 học sinh được chọn có ít nhất 2 trong 3 bạn Mai, An và Bình nói trên. Không gian mẫu: $|\Omega|=C_{30}^{10}$ Xác suất để trong 10 học sinh được chọn có ít nhất 2 trong 3 bạn Mai, An và Bình là: $P=\dfrac{C_{27}^{7}+3 C_{27}^{8}}{C_{30}^{10}}=\dfrac{51}{203}$.
Bài 3.
Cho số tự nhiên $n$ thỏa $A_{n}^{2}+3 C_{n+1}^{n}=38 .$ Tìm số hạng chứa $x^{5}$ trong khai triển $\left(\sqrt{x}-3 x^{3}\right)^{n}$
Ta có: $A_{n}^{2}+3 C_{n+1}^{n}=38$
$\Leftrightarrow \dfrac{n !}{(n-2) !}+3 \cdot \dfrac{(n+1) !}{n !}=38$
$\Rightarrow n=5$
Nên $\left(\sqrt{x}-3 x^{3}\right)^{5}$ có $\mathrm{SHTQ}: C_{5}^{k}(-3)^{k} \cdot x^{\frac{5}{2}}(k+1)$
Theo ycbt ta được: $k=1$. Do đó, số hạng chứa $x^{5}$ là $-15 x^{5}$
Bài 4.
$$
\left\{\begin{array}{l}
S_{20}-S_{15}=500 \\
u_{20}-u_{15}=75
\end{array} \right.$$
Từ phương trình ( 2 ) ta được: $d=15$, thế vào ta được $u_{1}=-155$.
Bài 5. Trong mặt phẳng $O x y,$ cho các đường thẳng $d_{1}: 3 x-6 y-15=0$ và $d: y=x$. Gọi $d_{2}$ là ảnh của $d_{1}$ qua phép đối xứng trục $d$. Tìm tọa độ giao điểm của $d_{2}$ với trục tung. Gọi $M^{\prime}\left(x^{\prime} ; y^{\prime}\right)$ là ảnh của $M(x ; y) \in d_{1}$ qua phép đối xứng trục $d$. Ta có: $\left\{\begin{array}{l}x^{\prime}=y \\ y^{\prime}=x\end{array}\right.$
Nên ta có $d_{2}: 3 y^{\prime}-6 x^{\prime}-15=0$ hay $2 x-y+5=0$
Vậy giao điểm của $d_{2}$ và trục tung là $A(0 ; 5)$
Bài 6.
a) $+(S A C) \cap(S B D)=S O$
$+$ Gọi $B N \cap A D=E .(S A D) \cap(S B N)=S E$
b) Ta có: $\dfrac{O G}{O D}=\dfrac{O K}{S}=\frac{1}{3}$
$\Leftrightarrow D K | S D$
Nên $G K |(S A D)$
Ta có: $K$ là trọng tâm tam giác $S B D$ nên $I$ là trung điểm $S D \Rightarrow M I | A D$. Ta lại có: $(M N O) \cap(S A D)=M x|A D| O N$.
Do đó: $I \in M x$ nên $I \in(O M N)$.
c) Gọi $F=O N \cap A B,$ ta được $F$ là trung điểm $A B$. $\Rightarrow M F | S B$
$\Rightarrow S B |(O M N)$
$+$ Ta thấy $(A K N) \cap(S B D)=K G$
Gọi $T=K G \cap S B$
Do đó: $T=S B \cap(A K N)$.
Giải nhanh đề học kì 1 gửi đến các em học sinh, cảm ơn thầy Dương Trọng Đức đã đóng góp cho geosiro.com
Đề và lời giải thi chọn đội tuyển Toán PTNK năm 2019
Chúc mừng trường Phổ thông Năng khiếu đã thành lập được đội tuyển toán, gồm 4 bạn lớp 12 và 6 bạn lớp 11. Tất cả các bạn vào đội tuyển đều rất xứng đáng, có một vài trường hợp hơi tiếc, hy vọng các em vẫn còn đam mê để bức phá ở thời gian sau.
Hoàng Sơn 10 Toán đã có một ngày thi thứ nhất rất xuất sắc nhưng chưa đủ giúp em vào đội tuyển, hy vọng năm sau em sẽ tỏa sáng.
Đáp án đề ôn thi Chuyên Toán – Đề số 3
Bài 1.
1) a) a) Ta có $\Delta’ = {\left( {{m^2} + m + 1} \right)^2} – \left( {{m^4} + {m^2} + 1} \right) = \left( {{m^2} + m + 1} \right)2m \ge 0$\\
Mà ${m^2} + m + 1 = {\left( {m + \dfrac{1}{2}} \right)^2} + \dfrac{3}{4} > 0 \Rightarrow m \ge 0$\\
Khi đó theo định lý Viete ta có: $\left\{ \begin{array}{l}
{x_1} + {x_2} = 2\left( {{m^2} + m + 1} \right) \\
{x_1}{x_2} = {m^4} + {m^2} + 1 \\
\end{array} \right.$
Suy ra:
$\begin{array}{l}
A = \left( {{x_1} + {x_2}} \right)\left( {1 + \dfrac{1}{{{x_1}{x_2}}}} \right) = 2\left( {{m^2} + m + 1} \right)\left( {1 + \dfrac{1}{{{m^4} + {m^2} + 1}}} \right) \\
= 2\left( {{m^2} + m + 1 + \dfrac{1}{{{m^2} – m + 1}}} \right) \\
\end{array}$.
Ta có ${m^2} – m + 1 = {\left( {m – \dfrac{1}{2}} \right)^2} + \dfrac{3}{4} > 0$. \\
Theo bất đẳng thức Cauchy ta có ${m^2} – m + 1 + \frac{1}{{{m^2} – m + 1}} \ge 2$ và $m \ge 0$.
Do đó $A \geq 4$, đẳng thức xảy ra khi $m =0$. Vậy giá trị nhỏ nhất của A là 4 khi $m = 0$.
b) $B = \dfrac{{{{\left( {{x_1} + {x_2}} \right)}^2}}}{{4{x_1}{x_2}}} = \dfrac{{{{\left( {{m^2} + m + 1} \right)}^2}}}{{{m^4} + {m^2} + 1}} = \dfrac{{{m^2} + m + 1}}{{{m^2} – m + 1}}$;
Ta có $0 < \dfrac{{{m^2} + m + 1}}{{{m^2} – m + 1}} = 1 + \dfrac{{2m}}{{{m^2} – m + 1}} \le 3$\\
B là số tự nhiên nên $B = 1,2,3$.
Với $B = 1$ ta có $m =0$;
Với $B = 2$ (vô nghiệm) ;
Với $B = 3$ ta có $m = 1$.
Vậy các giá trị cần tìm là $m = 0$ và $m = 1$.
2) Ta có $\left\{ \begin{array}{l}
\left( {x + y} \right)\left( {x + z} \right) = – 4 \\
\left( {y + x} \right)\left( {y + z} \right) = 1 \\
\left( {z + x} \right)\left( {z + y} \right) = – 1 \\
\end{array} \right.$
Nhân 3 phương trình ta có:
${\left[ {\left( {x + y} \right)\left( {x + z} \right)\left( {y + z} \right)} \right]^2} = 4 \Rightarrow \left[ \begin{array}{l}
\left( {x + y} \right)\left( {x + z} \right)\left( {y + z} \right) = – 2 \\
\left( {x + y} \right)\left( {x + z} \right)\left( {y + z} \right) = 2 \\
\end{array} \right.$;
Trường hợp 1: $\left( {x + y} \right)\left( {y + z} \right)\left( {x + z} \right) = – 2 \Rightarrow \left\{ \begin{array}{l}
y + z = 1/2 \\
x + z = – 2 \\
x + y = 2 \\
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x = \frac{{ – 1}}{4} \\
y = \frac{9}{4} \\
z = \frac{{ – 7}}{4} \\
\end{array} \right.$
Trường hợp 2: $\left( {x + y} \right)\left( {y + z} \right)\left( {x + z} \right) = 2 \Rightarrow \left\{ \begin{array}{l}
y + z = – 1/2 \\
x + z = 2 \\
x + y = – 2 \\
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x = 1/4 \\
y = – 9/4 \\
z = 7/4 \\
\end{array} \right.$
Vậy hệ phương trình có hai nghiệm $\left( {x,y,z} \right):\left( {\frac{{ – 1}}{4},\frac{9}{4},\frac{{ – 7}}{4}} \right),\left( {\frac{1}{4},\frac{{ – 9}}{4},\frac{7}{4}} \right)$
Bài 2. Vì $abc > 1$ nên không thể có 3 số đều nhỏ hơn 1.
Vì $a + b + c < \dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c}$ nên không thể cùng lớn hơn 1.
Nếu có một số bằng 1, giả sử $a = 1$ ta có $bc > 1$ và $b + c < \dfrac{1}{b} + \dfrac{1}{c} = \dfrac{b+c}{bc}$ (vô lý).
Nên các số đều khác 1. Giả sử có hai số nhỏ hơn 1 là $a, b$ và $c > 1$.
Khi đó $ab < 1, ac \geq \dfrac{1}{b} > 1, bc \geq \dfrac{1}{a} > 1$.
Do đó: $(ab-1)(bc-1)(ac-1) < 0 \Leftrightarrow a^2b^2c^2 +ab+bc+ac -abc(a+b+c) – 1 < 0 (1)$.
Mặc khác $abc > 1, a+ b+ c < \dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c} \Leftrightarrow ab+bc+ac > abc(a+b+c) (2)$
Từ (1) và (2) ta có mâu thuẫn.
Vậy chỉ có đúng một số nhỏ hơn 1.
Bài 3.
a) Các ước của 12 là: 1, 2, 3, 4, 6, 12 ta có $1.2.3.4.6.12 = 12^3$. Nên 12 là số lập phương.
Các ước của 32 là $1, 2, 4, 8, 16, 32$, ta có $1.2.4.8.16.32 = 32^3$. Nên 32 là số lập phương.
b) Dễ tìm được $n = 5$.
c) Giả sử $n$ là số lập phương.
Nếu $n = 1$ thì $n$ là số lập phương. \\
Xét $n > 1$. Thì $n$ không là số nguyên tố vì nếu $n$ là số nguyên tố thì $n$ có các ước là $1, n$, mà $1.n \neq n^3$.
Suy ra $n$ là hợp số.
Trường hợp 1. Nếu $n$ có một ước nguyên tố là $p$, tức là: $n = p^k$ với $q$ là số nguyên tố. Khi đó các ước của $n$ là $1, p, p^2, …, p^{k-1}, p^k$. Khi đó $1. p.p^2…p^{k} = n^3 = p^{3k}$, suy ra $1 + 2 + …+ k = 3k$, suy ra $k = 5$. Vậy $n = p^5$ với $p$ nguyên tố. \\
Trường hợp 2. Nếu $n$ có 2 ước nguyên tố là $p, q$. Khi đó $n = p^m.q^k$. Nếu $m, k \geq 2$ thì ta có các ước của $n$ là $1, n, p^m, q^n, p, p.q^k, q, q.p^m$. Khi đó tích các ước sẽ lớn hơn $n^3$. Do đó $m, k$ không cùng lớn hơn hoặc bằng 2.
Nếu $m = k = 1$ thì các ước của $n$ là $1, p, q, n$ khi đó tích các ước là $1.p.q.n = n^2$, cũng không thỏa.
Nếu $m = 2, k = 1$ thì các ước của $n$ là $1, p, q, p^2, qp, n$. Khi đó $1.p.q.p^2.pq.n = n^3$ thỏa đề bài. \\ Vậy $n= p^2q$ với $p, q$ là các số nguyên tố là số lập phương.
Trường hợp 3. $n$ có nhiều hơn ba ước nguyên tố, khi đó số ước của $n$ lớn hơn hoặc bằng 8. Giả sử các ước là $1, d_1, d_2, …, d_k = n$ thì $1.d_1.d_{k-1}.d_2.d_{k-2}.d_3.d_{k-3}.n > n^3$, nên không thể là số lập phương.
Vậy các số lập phương là $1, p^5, p^2.q$ với $p, q$ là các số nguyên tố.
Cách khác: Ta có thể chứng minh số lập phương có đúng 6 ước số trước, rồi suy ra $n$.
Bài 4.

a) Ta có $ADBE$ là hình chữ nhật $S_{ABDE} = AD.AB$. Ta có $AD. AB \leq \dfrac{1}{2}(AD^2+BD^2) = 2R^2$. Đẳng thức xảy ra khi và chỉ khi $AD = BD$. Khi đó $AC = AB = 2R$.
Vậy diện tích tứ giác $ADBE$ nhỏ nhất bằng $2R^2$ khi $AC = AB = 2R$.
b) Ta có $\Delta MFA \sim \Delta MAD$, suy ra $MA^2 = MF.MD$.(1)
Ta có $BF.BG = BA^2, BD.BC = BA^2$, suy ra $BF.BG = BD.BC$, suy ra tứ giác $DFGC$ nội tiếp. Khi đó $\Delta MFG \sim \Delta MCD$, suy ra $MC.MG = MF.MD$. (2)
Từ (1) và (2) ta có $MA^2 = MC.MG$.
c) Gọi $H$ là giao điểm của $AD$ và $BF$. $CH$ cắt $AB$ tại $O’$.
Ta có $\angle CDG = \angle CFG = \angle BFE = \angle DBA$, suy ra $DG || AB$.
Qua $H$ vẽ đường thẳng song song với $AB$ cắt $AG, BD$ tại $P, Q$. Ta có $\dfrac{HP}{AB} = \dfrac{GH}{GB} = \dfrac{DH}{DA} = \dfrac{QH}{AB}$, suy ra $HP = HQ$.
Ta có $\dfrac{HP}{AO’} = \dfrac{CH}{CO’} = \dfrac{QH}{BO’}$, mà $HP = HQ$, suy ra $AO’ = BO’$, hay $O’ \equiv O$. Vậy các đường thẳng $AD, BF, CO$ đồng quy.
Bài 5.

a) Đặt $r_1 = a + b+ c, r_2 = d+e+f, r_3 = g + h + i$ và $c_1 = a+ d + g, c_2 = b + e + h, c_3 = c + f + i$. Ta có $r_1 + r_2 + r_3 = c_1 + c_2 + c_3$.
Khi đó $a = |r_1 – c_1| = |(r_2 +r_3) – (c_2 + c_3)| = |(r_2-c_2) + (r_3 – c_3)| = \pm (r_2-c_2) \pm (r_3-c_3) = \pm e \pm i$.
Vì các số đều không âm nên không thể xảy ra trường hợp $a = – e- i$. Do đó $a = e +i, e- i$ hoặc $i – e$.
Tương tự cho các trường hợp khác.
b) Tồn tại, xét bảng sau: với $x > 0$.

Đề thi: ôn vào lớp 10 chuyên toán
Bài 1. (2,5 điểm)
1) Cho phương trình ${x^2} – 2\left( {{m^2} + m + 1} \right)x + {m^4} + {m^2} + 1 = 0$ ($m$ là tham số).
a) Tìm $m$ đề phương trình có nghiệm $x_1, x_2$. Tìm giá trị nhỏ nhất của biểu thức: $A = \left( {{x_1} + {x_2}} \right)\left( {1 + \dfrac{1}{{{x_1}{x_2}}}} \right)$
b) Tìm $m$ để $\dfrac{{{{\left( {{x_1} + {x_2}} \right)}^2}}}{{4{x_1}{x_2}}}$ là một số tự nhiên.
2) Giải hệ phương trình $\left{ \begin{matrix} x(x+y+z)+yz = – 4 \hfill \cr y(x+y+z)+xz=1 \hfill \cr z(x+y+z) + xy = – 1 \end{matrix} \right.$
Bài 2. (1 điểm) Cho các số $a, b, c > 0$ thỏa $abc > 1$ và $a + b + c < \dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c}$.
Chứng minh rằng trong 3 số $a, b, c$ có đúng một số nhỏ hơn 1.
Bài 3. (2 điểm) Một số nguyên dương được gọi là số lập phương nếu tích các ước dương của nó bằng lập phương của số đó.
a) Chứng minh rằng 12 và 32 là các số lập phương
b) Tìm số tự nhiên $n$ để $2^n$ là số lập phương.
c) Tìm tất cả các số lập phương.
Bài 4. (3 điểm) Cho đường tròn tâm $O$ đường kính $AB = 2R$. Gọi $C$ là một điểm thay đổi trên tiếp tuyến tại $A$ của $(O)$,$BC$ cắt $(O)$ tại điểm $D$ khác $B$. $E$ là điểm đối xứng của $D$ qua $O$, $CE$ cắt $(O)$ tại $F$ và $BF$ cắt $AC$ tại $G$.
a) Tính $AC$ khi diện tích tứ giác $ADBE$ lớn nhất.
b) $DF$ cắt $AC$ tại $M$. Chứng minh $MA^2 = MG.MC$.
c) Chứng minh rằng các đường thẳng $AD, BF$ và $CO$ đồng quy.
Bài 5. (1, 5 điểm)Cho bảng vuông $3 \times 3$. Người ta điền vào các ô vuông các số không âm sao cho nếu tổng các số ở một dòng là $r$, tổng các số ở một cột là $c$ thì $|r-c|$ là bằng giá trị ô vuông giao giữa dòng và cột đó.
a) Chứng minh rằng với số ở mỗi ô vuông bằng tổng hoặc hiệu các số ở hai ô vuông khác.
b) Có tồn tại hay không một cách điền số mà các số đều là số dương?
Hết.
Đáp án -> Here
Đề thi thử THPTQG 2019 – Đề số 5
| [WpProQuiz 13] |