Tag Archives: TiepTuyen

Một số bài đường tròn và tiếp tuyến

Bài 1. Cho đường tròn tâm $O$ đường kính $A B$. $C$ là một điểm thuộc đường tròn. $d_1$ và $d_2$ lần lượt là tiếp tuyến tại $A$ và $B$ của $(O)$. Tiếp tuyến tại $C$ cắt $d_1, d_2$ lần lượt tại $D$ và $E$. $B C$ cắt $d_1$ tại $F$.
a) Chứng minh $d_1 | d_2$ và $D$ là trung điểm của $A F$.
b) Vẽ đường cao $C H$. Chứng minh rằng $A E, B D$ và $C H$ dồng quy tại trung điểm của $C H$.
c) Chứng minh $O F \perp A E$.

Lời giải.

a) $d_1$ là tiếp tuyến tại $A$ nên $O A \perp d_1, d_2$ là tiếp tuyến tại $B$ nên $d_2 \perp O B$, mà $O, A, B$ thẳng hàng, suy ra $d_1 / / d_2$.
Ta có $\angle A C B=90^{\circ}$, suy ra $\angle D C F+$ $\angle D C A=\angle D F C+\angle D A C=90^{\circ}$. (1)
Hơn nữa $D A=D C$ (t/c tiếp tuyến), tam giác $D A C$ cân tại $D$, suy ra $\angle D C A=$ $\angle D A C$. (2)
Từ (1) và (2) ta có $\angle D C F=\angle D F C$, tam giác $D C F$ cân tại $D$.
Vậy $D F=D C=D A$, hay $D$ là trung điểm của $A F$.
b) Gọi $I$ là giao điểm của $B D$ và $A E$. Ta có $A D / / B E$ nên $\frac{B I}{I D}=\frac{E B}{A D}(3)$.
Mặt khác do $A D=D C$ và $E B=E C$, suy ra $\frac{E B}{A D}=\frac{E C}{D C}$ (4).

Từ (3) và (4) ta có $\frac{B I}{I D}=\frac{E C}{D C}$, suy ra $I C / / A D$ (Thalet đảo).

Mà $A D \perp A B$ nên $C I \perp A B$, vậy $C, I, H$ thẳng hàng.

Do đó $A E, B E, C H$ đồng quy tại $I$.
Ta có $\frac{C I}{A D}=\frac{E I}{E A}, \frac{I H}{A D}=\frac{B I}{B D}$ và $\frac{E I}{E A}=$ $\frac{B I}{B D}$, nên $\frac{C I}{A D}=\frac{I H}{A D}$, suy ra $I C=I H$ hay
$I$ là trung điểm của $C H$.
c) Ta có $E B \cdot A D=E C \cdot C D=O C^2=R^2$, mà $A F=2 A D$ nên $E B \cdot A F=2 R^2$.

Suy ra $E B \cdot A F=A O \cdot A B$, suy ra $\frac{E B}{A B}=\frac{O A}{A F}$, do đó $\tan E A B=\tan A F O$, suy ra $\angle E A B=$ $\angle A F O$.
Mà $\angle E A B+\angle E A F=90^{\circ}$ nên $\angle E A B+$ $\angle A F O=90^{\circ}$. Do đó $O F \perp A E$.

Bài 2. Cho đường tròn tâm $O$ bán kính $R$. $A$ là một điểm nằm ngoài đường tròn, từ $A$ dựng các tiếp tuyến $A B, A C$ dến $(O)$ với $B, C$ là các tiếp điểm. Một cát tuyết qua $A$ cắt $(O)$ tại $D$ và $E$ trong đó $D$ nằm giữa $A$ và $E$.Gọi $H$ là giao điểm của $O A$ và $B C$.
a) Chứng minh $O H \cdot O A=R^2$.
b) Gọi $M$ là trung điểm của $D E$. Chứng minh 4 điểm $O, M, B, C$ cùng thuộc đường tròn.
c) Tiếp tuyến tại $D$ và $E$ của $(O)$ cắt nhau tại điểm $P$. Chứng minh $P, B, C$ thẳng hàng.

Lời giải.

a) Ta có $A B, A C$ là tiếp tuyến nên $A B=A C$, và $O B=O C=R$, suy ra $O A$ là trung trực của $B C$, suy ra $O A \perp B C$ tại $H$.
Tam giác $O A B$ có $\angle O B A=90^{\circ}$ (t/c tiệp tuyến) và $B H \perp O A$ nên $O H \cdot O A=O B^2=$ $R^2$.
b) $M$ là trung điểm $D E$, suy ra $O M \perp D E$.
Ta có $\angle O B A=\angle O M A=\angle O C A=90^{\circ}$, suy ra 5 diểm $O, M, B, A, C$ cùng thuộc đường tròn đường kính $O A$.
c) Ta chứng minh được $O P \perp D E$, suy ra $O, M, P$ thẳng hàng và $O M . O P=O D^2=$ $R^2$.
Suy ra $O M \cdot O P=O H \cdot O A$, suy ra $\frac{O M}{O H}=$ $\frac{O P}{O A}$.
Xét tam giác $O M A$ và tam giác $O H P$ có:
$\angle A O P$ chung $\frac{O M}{O H}=\frac{O P}{O A}$ $\angle O H P=\angle O M A=90^{\circ}$.
Ta có $B C, P H$ vuông góc với $O A$ tại $H$ nên $P, B, C$ thẳng hàng.

Bài 3. Cho tam giác $A B C$ vuông tại $A(A B<A C)$. Vẽ đường tròn tâm $O$ đường kính $A C$ cắt cạnh $B C$ tại $D$. Gọi $H$ và $K$ lần lượt là trung điểm của hai cạnh $A D$ và $C D$. Tia $O H$ cắt cạnh $A B$ tại $E$. Tia $O K$ cắt đường thẳng $E D$ tại $N$ và cắt đường tròn tâm $O$ tại $I$.
(a) Chứng minh $D E$ là tiếp tuyến của $(O)$.
(b) Chứng minh $O H D K$ là hình chữ nhật.
(c) Chứng minh tia $D I$ là tia phân giác của $\angle N D C$.
(d) Gọi $S$ là giao điểm của $O B$ với $A D$. Từ $S$ vẽ đường thẳng vuông góc với $A O$ và cắt tia $O H$ tại $Q$. Chứng minh 3 điểm $A, Q, N$ thẳng hàng.

Lời giải.

Hình 1

a) $OH$ là trung trực của $AD$, suy ra $EA = ED$. Từ đó $\triangle EDO = \triangle EAO (ccc)$, suy ra $\angle EDO = \angle EAO = 90^\circ$. Do đó $ED$ là tiếp tuyến của $(O)$.

b) Do $K$ là trung điểm $CD$ nên $OK \bot CD$, tứ giác $OHDK$ có $\angle D = \angle H = \angle K = 90^\circ$ nên là hình chữ nhật.

c) Ta có tam giác $ODI$ cân tại $O$ nên $\angle ODI = \angle OID$ (1)
Mà $\angle ODI = \angle ODK + \angle KDI, \angle OID = \angle OND + \angle NDI$ (2)
Và $\angle OND = \angle ODK$ (vì cùng phụ $\angle DON$) (3)
Từ (1), (2), (3) ta có $\angle KDI = \angle NDI$

d) Gọi $L$ là giao điểm $AQ$ và $OS$.
Trong tam giác $ASO$ có $AQ, SQ$ là các đường cao, nên $Q$ là trực tâm, suy ra $AQ \bot OS$ tại $L$. (4)
Ta có $OL \cdot OB = OA^2$
và $OK \cdot ON = OD^2 = OA^2$
Suy ra $\angle OK \cdot ON = OL \cdot OB$
Suy ra $\triangle OLN \backsim \triangle OKB$, suy ra $\angle OLN = \angle OKB = 90^\circ$ (5)
Từ (4), (5) ta có $A, L, N$ thẳng hàng, hay $A, Q, N$ thẳng hàng.

Bài 4. Cho đường tròn $(O ; R)$ và một điểm $S$ nằm ngoài đường tròn $(O)$. Vẽ hai tiếp tuyến $S B, S C$ đến $(O)$ với $B, C$ là hai tiếp điểm. Gọi $H$ là giao điểm của $S O$ với $B C$.
(a) Vẽ đường kính $B A$ của $(O)$. Chứng minh $A C || S O$ và $H B \cdot H C=H O \cdot H S$.
(b) Vẽ đường thẳng $d$ vuông góc vớ $A B$ tại $O$, đường thẳng $d$ cắt đường thẳng $A C$ tại $E$. Chứng minh $S E=R$.
(c) Vẽ $C K$ vuông góc với $A B$ tại $K$. Gọi $I$ là trung điểm của cạnh $C K$. Chứng minh 3 điểm $S, I, A$ thẳng hàng.

Lời giải.

a) Do $AB$ là đường kính của $(O)$ nên $\angle ACB = 90^\circ$. (1)

Ta có $SB = SC$ và $SO$ phân giác $\angle BSC$ nên $SO$ là trung trực của $BC$, do đó $OS \bot BC$ tại $H$.

Từ đó ta có $AC ||OS$ vì cùng vuông góc $BC$.

b) $\triangle AOE = \triangle OBS (gcg)$, suy ra $OE = BS$.

Tứ giác $OESB$ có $OE||BS$ (Cùng vuông góc $AB$), và $OE = BS$ nên $OESB$ là hình bình hành, hơn nữa có $\angle OBS= 90^\circ$ nên là hình chữ nhật, do đó $SE = OB = R$.

c) Ta có $OASE$ là hình bình hành, suy ra $AS$ cắt $OE$ tại trung điểm $T$ của mỗi đoạn.
$CK ||OE$
Gọi $I’$ là giao điểm của $AS$ và $CK$
Ta có $\dfrac{I’K}{OT} = \dfrac{AI’}{AT} = \dfrac{CI’}{ET}$
Mà $OT = ET$ nên $KI’ = CI’$, hay $I’ \equiv I$
Vậy $A, I, S$ thẳng hàng

Bài 5. Cho đường tròn $(O ; R)$ và điểm $M$ ở ngoài đường tròn $(O)$. Kẻ tiếp tuyến $M A, M B$ đến $(O)$ với $A, B$ là hai tiếp điểm. Đường thẳng $A B$ cắt $(O)$ tại $K$.
(a) Kẻ đường kính $A N$ của $(O), B H \perp A N$ tại $H$. Chứng $\operatorname{minh} M B \cdot B N=B H \cdot M O$.
(b) Đường thẳng $M O$ cắt đường tròn $(O)$ tại $C$ và $D(C$ nằm giữa $O$ và $M)$. Chứng minh $O K \cdot M K=C K \cdot D K$.
(c) $E$ đối xứng với $C$ qua $K$. Chứng minh $E$ là trực tâm của tam giác $A B D$.
(d) Chứng minh $\sin \angle M^{\circ} A B=\frac{C K}{A K}+\frac{C K}{A M}$

Lời giải.

a) Chứng minh tam giác $OMB$ và $NBH$ đồng dạng.
b) $OK \cdot MK = AK^2 = KC \cdot KD$
c) $ACBE$ là hình thoi, suy ra $BE||AC$, mà $AC \bot AD$ suy ra $BE \bot AD$
$DE \bot AB$
Do đó $E$ là trực tâm tam giác $ABD$.

d) $\angle CAK = \angle CAM$ (chứng minh ở bài trên)
Do đó $\dfrac{CK}{CM} = \dfrac{AK}{AM}$, suy ra $\dfrac{CK}{AK} = \dfrac{CM}{AM}$
Từ đó $VP = \dfrac{CK}{AK} + \dfrac{CK}{AM} = \dfrac{CM}{AM} + \dfrac{CK}{AM} = \dfrac{KM}{AM} = \sin MAB$

Bài 6. Cho hình vuông $A B C D$ cạnh $a, E$ là cung thuộc cung nhỏ $B D$ của đường tròn tâm tâm $A$ bán kính $a$. Tiếp tuyến tại $E$ cắt $C D$ tại $F$ và $B C$ tại $G$.
(a) Chứng minh chu vi tam giác $C F G$ bằng $2 a$.
(b) $A F, A G$ cắt $B D$ tại $I$ và $H$. Chứng minh $H E=$ $H B, I E=I D$

và $H I^2=D I^2+B H^2$
(c) Chứng minh $F H, G I$ và $A E$ đồng quy.

Lời giải.

a) $CD, CB, FG$ là tiếp tuyến của $(A;a)$
Suy ra $FE = FD, GE = GB$
$P_{CFG} = CF + FG + CG = CF + EF +EG+CG = CF+DF +GB+CG = CD+ CB = 2a$

b) $AF$ là trung trực $DE$, và $AG$ là trung trực $BE$
Suy ra $IE = ID, HB = HE$
$\triangle IEF = \triangle IDF \Rightarrow \angle IEF =\angle IDF = 45^\circ$
Tương tự cũng có $\angle HEG = 45^\circ$
Suy ra $\angle IEH = 90^\circ$
Áp dụng pitago cho tam giác $EIH$ ta có $IH^2 = IE^2 + HE^2 = ID^2 + HB^2$

c) Ta có $AF$ là phân giác $\angle DAE$, $AG$ là phân giác của $\angle BAE$
Suy ra $\angle FAG = \dfrac{1}{2} \angle BAD = 45^\circ$.
$\triangle AIH \backsim \triangle DIF (gg)$, suy ra $IA \cdot IF = ID \cdot IH$
Suy ra $\triangle IFH \backsim \triangle IDA \Rightarrow \angle IFH = \angle IDA = 45^\circ$
Suy $\angle AHF = 90^\circ$ hay $FH \bot AG$.
Chứng minh tương tự $GI \bot AF$.
Tam giác $FG$ có $AE, FH, GI$ là các đường cao nên đồng quy.

Bài 7. (Cuối khóa 1 – Star Education 2018) Cho đường tròn $(O ; R)$ và điểm $A$ nằm ngoài đường tròn. Từ $A$ vẽ các tiếp tuyến $A B, A C$ dến $(O)$ ( $B, C$ là các tiếp điểm). $O A$ cắt $B C$ tại $H$.
a) Chứng minh $O H \cdot O A=R^2$ và 4 điểm $O, A, B, C$ cùng thuộc một đường tròn.
b) Đường tròn tâm $I$ đường kính $A B$ cắt $(O)$ tại điểm $D$ khác $B$. Chứng minh $I D$ là tiếp tuyến của $(O)$.
c) Tiếp tuyến tại $H$ và tại $A$ của $(I)$ cắt nhau tại $P$. Chứng minh $B, D, P$ thẳng hàng.

d) Tiếp tuyến tại $H$ của $(I)$ cắt $O B$ tại $M$; gọi $N$ là trung điểm $P M$, đường thẳng qua $P$ song song $B N$ cắt $A B$ tại $K$. Chứng minh $H K, A M$ và $B D$ đồng quy.

Lời giải.

a)

Xét $\triangle A B O$ vuông tại $B$ có:

$B H$ là đường cao $\Rightarrow O H \cdot O A=O B^2=R^2$ (Hệ thức lượng)

Ta có: $\triangle A B O$ vuông tại $B \Rightarrow A, B, O$ thuộc đường tròn đường kính $A O$. (1)

Lại có $\triangle A C O$ vuông tại $C \Rightarrow A, C, O$ thuộc đường tròn đường kính $A O$. (2)

Từ (1) và (2) suy ra $A, B, O, C$ thuộc đường tròn đường kính $A O$.

b)

Ta có: $\triangle A B D$ nội tiếp đường tròn đường kính $A B \Rightarrow \triangle A B D$ vuông tại $D$

Mà $I$ là trung điểm cạnh huyền $A B \Rightarrow I B=I D$
Ta có: $I B=I D, O B=O D$ nên $I O$ là trung trực của $B D$ $\Rightarrow \angle I B O=\angle I D O=90^{\circ}$ nên $I D$ là tiếp tuyến của $(O)$.

c) Tiếp tuyến tại $H$ và tại $A$ của $(I)$ cắt nhau tại $P$. Chứng minh $B, D, P$ thẳng hàng.

Gọi $E=I P \cap A H$ và $F=I O \cap B D$.
Sử dụng tính chất hai tiếp tuyến cắt nhau và hệ thức lượng, ta chứng minh được
$$
I E \cdot I P=I A^2=I D^2=I F \cdot I O \Rightarrow \frac{I F}{I P}=\frac{I E}{I O}
$$

Từ đó, chứng minh được $\triangle I F P \backsim \triangle I E O$ (c.g.c)
$$
\Rightarrow \angle I E O=\angle I F P=90^{\circ} \text {. }
$$

Ta có: $B D$ đi qua $F$ và vuông góc $I O, F P$ đi qua $F$ và vuông góc $I O$ nên hai đường thẳng này trùng nhau. $\Rightarrow B, D, P$ thẳng hàng.

d)

Chứng minh $I H$ là đường trung bình của $\triangle A B C \Rightarrow I H || A C$. Mà $I H \perp P M$ và $A C \perp O C$.

Suy ra: $H M || O C$. Lại có $H$ là trung điểm $B C$ nên $M$ là trung điểm $O B$.

Gọi $Q$ là giao điểm của $P K$ và $B O$.
Ta có: $B N || P Q$ và $N$ là trung điểm của $P M$ nên suy ra $B$ là trung điểm của $Q M$.

Gọi $J=B P \cap A M$.
Ta có :
$ B Q ||A P \Rightarrow \frac{B K}{K A}=\frac{B Q}{P A}=\frac{B M}{P A} . $
$B M || A P \Rightarrow \frac{B M}{P A}=\frac{B J}{J P}$
Suy ra: $\frac{B K}{K A}=\frac{B J}{J P}$ nên $K J || A P$. Chứng minh tương tự $J H ||A P$. Từ đó ta có $K, J, H$ thẳng hàng.

Vậy $H K, B P, A M$ dồng quy tại $J$.

Bài tập luyện tập.

Bài 6. Cho tam giác $A B C$ nhọn. Các đường cao $A D, B E$ và $C F$ cắt nhau tại $H$. Gọi $M, N$ lần lượt là trung điểm của $B C$ và $A H$.
(a) Chứng minh $N E, N F$ là tiếp tuyến của đường tròn ngoại tiếp tam giác $B C E$.
(b) Chứng minh 5 điểm $D, E, F, M, N$ cùng thuộc một đường tròn.
(c) Gọi $G$ là giao điểm của $A D$ và $E F$. Chứng minh $N G \cdot N D=N A^2$.

Bài 7. Cho nửa đường tròn tâm $O$ đường kính $A B=2 R$. Trên tiếp tuyến tại $A$ của $(O)$ lấy điểm $C$ sao cho $A C=A B$. Từ $C$ vẽ tiếp tuyến $C D$ dến $(O)$ cắt tiếp tuyến tại $B$ ở điểm E.
(a) Tính $B E$.
(b) Đường cao $D F$ của tam giác $A B D$ cắt $B C$ tại $G$. Chứng minh rằng $A, G, E$ thẳng hàng.
(c) Gọi $H$ là giao điểm của $O C$ và $A D$. Tính $\angle D H B$.
(d) Gọi $I$ là giao điểm của $B C$ và $(O)$. Tứ giác $I D B H$ là hình gì? Tại sao?

Bài 8. Cho tam giác $A B C$ nhọn nội tiếp đường tròn $(O) . M$ là trung điểm $B C$. Từ $A$ dựng các tiếp tuyến đến đường tròn $(O ; O M)$ cắt $B C$ tại $D$ và $E$ sao cho $D$ và $C$ khác phía đối với $M ; E, B$ khác phía đối với $M$. Chứng minh rằng các tam giác $A D C$ và $A B E$ cân.

Bài 9. Cho tam giác $A B C$ vuông tại $A, A B=a, B C=2 a$. Đường cao $A H$. Từ $B, C$ vẽ các tiếp tuyến $B D, C E$ dến đường tròn tâm $A$ bán kính $A H$.
(a) Tính $A H$ và số đo $\angle A B C$.
(b) Chứng minh $D, A, E$ thẳng hàng.
(c) Chứng minh $E D$ là tiếp tuyến của đường tròn đường kính $B C$.
(d) Chứng minh $D C, B E$ và $A H$ dồng quy.

Bài 10. Cho hình vuông $A B C D$ cạnh $2 a$, tâm $O$. Đường tròn tâm $O$ bán kính $a$ tiếp xúc với $A B$ và $B C$ tại $E$ và $F$. Gọi $P$ là một điểm trên cung nhỏ $E F$. Tiếp tuyến tại $P$ cắt $A B, B C$ tại $M$ và $N$. Đặt $M B=c, B N=y$.
(a) Chứng minh rằng $x+y+\sqrt{x^2+y^2}=2 a$.
(b) Chứng minh rằng $A M \cdot C N=2 a^2$.
(c) Gọi $K$ là trung điểm của $A D$. Chứng minh rằng $M K |$ $D N$.

Tính chất hai tiếp tuyến cắt nhau

Định lý. Nếu hai tiếp tuyến của một đường tròn cắt nhau tại một điểm thì:

  • Điểm đó cách đều hai tiếp điểm.
  • Tia kẻ từ điểm đố qua tâm đường tròn là tia phân giác của góc tạo bởi hai tiếp tuyến.
  • Tia kẻ từ tâm đi qua điểm đó là tia phân giác của góc tạo bởi hai bán kính đi qua các tiếp điểm.

Ví dụ 1. Cho đường tròn $O$ bán kính $R$ và điểm $A$ nằm ngoài đường tròn. Từ $A$ vẽ các tiếp tuyến $AB, AC$ đến $O$ với $B, C$ là các tiếp điểm. Gọi $H$ là giao điểm của $OA$ và $BC$. Chứng minh rằng :

  1. Bốn điểm $O, A, B, C$ cùng thuộc một đường tròn.
  2. $OA$ là đường trung trực của $BC$.
  3. $OH.OA = R^2$.

Gợi ý

1.Ta có $AB, AC$ là tiếp tuyến nên $OB \bot AB,OC \bot AC$. \\

  • Gọi $M$ là trung điểm của $OA$. Tam giác $OAB$ vuông tại $B$ có $BM$ là trung tuyến nên $BM = \dfrac{1}{2}OA = MA = MO$.
  • Tam giác $OCA$ vuông tại $C$ có $CM$ là trung tuyến nên $CM = \dfrac{1}{2}OA$.
  • Từ đó ta có $MA = MO = MB = MC$, do đó 4 điểm $O, A, B, C$ cùng thuộc một đường tròn tâm $M$ đường kính $OA$.

2. Ta có $AB, AC$ là hai tiếp tuyến của $(O)$ nên $AB = AC$, mặt khác $OB = OC = R$, suy ra $OA$ là đường trung trực của đoạn $BC$.

3. $OA$ là trung trực của $BC$ nên $OA \bot BC$ tại $H$.
Tam giác $OBA$ vuông tại $B$ có $BH$ là đường cao nên $OH\cdot OA = OB^2 = R^2$.

Ví dụ 2. Cho đường tròn tâm $O$ đường kính $AB=2R$. $d_1$ là tiếp tuyến tại $A$ và $d_2$ là tiếp tuyến tại $B$. $C$ là một điểm thuộc đường tròn $(O)$, tiếp tuyến tại $C$ cắt $d_1$ và $d_2$ lần lượt tại $D, E$.
1. Chứng minh $DE = AD + BE$.
2. Chứng minh $\angle DOE = 90^\circ$ và $CD\cdot CE = R^2$.

Gợi ý

1.

  • Ta có tiếp tuyến tại $C$ và $A$ cắt nhau tại $D$ nên $DC = DA$.
  • Tiếp tuyến tại $C$ và tiếp tuyến tại $B$ cắt nhau tại $E$ nên $CE = BE$.
    Suy ra $DE = CD + CE = AD + BD$.

2.

  • Ta có $OD$ là phân giác của $\angle CAO$, $OE$ là phân giác của của $\angle BOC$ (t/c hai tiếp tuyến cắt nhau).
  • Mà $\angle CAO$ và $\angle BOC$ là hai góc kề bù, suy ra $OD \bot OE$.
  • Ta có $OC \bot DE$ (t/c tiếp tuyến). Tam giác $DOE$ vuông tại $O$ có $OC$ là đường cao nên $CD.CE = OC^2 = R^2$.

Bài tập.

1.Cho đường tròn tâm $O$ bán kính $R$. Dây cung $AB = R\sqrt{3}$. Tiếp tuyến tại $A$ và $B$ cắt nhau tại $P$. $OP$ cắt $AB$ tại $K$.

a. Chứng minh $OK \bot AB$. Tính $OK$.
b.Tính $PA, PB$. Chứng minh tam giác $PAB$ đều.

2. Cho tam giác $ABC$ vuông tại $A$, đường cao $AH$. Gọi $D, E$ là hình chiếu vuông góc của $H$ trên $AB, AC$.

a.Chứng minh 4 điểm $A, D, H, E$ cùng thuộc đường tròn. Xác định tâm $I$ của đường tròn.
b.Chứng minh $BC$ là tiếp tuyến của $(I)$.
c.Gọi $M, N$ lần lượt là trung điểm $BH, CH$. Chứng minh rằng $DE$ là tiếp tuyến của đường tròn đường kính $MN$.

3. Cho nửa đường tròn tâm O đường kính $AB = 2R$. Trên tiếp tuyến tại $A$ của nửa đường tròn lấy điểm $D$ sao cho $\angle ABD = 30^\circ$, $BD$ cắt $(O)$ tại $C$. Từ $D$ vẽ tiếp tuyến $DE$ đến $(O)$.

a.Tính $BD, AC$.
b. Tính $DE$.
c.Gọi $F$ là trung điểm của $AD$. Chứng minh $CF$ là tiếp tuyến của $(O)$.
d.Gọi $M$ là giao điểm của $OD$ và $AE$, chứng minh $FM \bot OE$.

4. Cho nửa đường tròn tâm $O$ đường kính $AB$, $C$ là một điểm thuộc nửa đường tròn sao cho $AC = R$. Gọi $D$ là điểm đối xứng của $O$ qua $C$.

a. Chứng minh rằng $DA$ là tiếp tuyến của $(O)$.
b. Từ $D$ vẽ tiếp tuyến $DE$ đến $(O)$ ($E$ khác $A$). Tính $DE$ và chứng minh tam giác $ADE$ đều.
c. Tứ giác $OACE$ là hình gì? Tại sao?
d.$DB$ cắt $(O)$ tại $F$. Tính $DF$. Chứng minh $\angle DBE =\angle DEF$.

5. Cho đường tròn tâm $O$, điểm $E$ nằm ngoài đường tròn. Kẻ các tiếp tuyến $EM, EN$ với đường tròn ($M, N$ là các tiếp điểm).
a.Chứng minh $OE$ vuông góc với $MN$.
b.Vẽ đường kính $NB$ của đường tròn $(O)$. Biết $OE \bot MN$ tại $H$. Chứng minh tứ giác $OBMH$ là hình thang.
c. Biết $OM = 2, OE = 4$. Tính độ dài các cạnh của tam giác $EMN$.
d.Tính diện tích tam giác $EMN$.

 

 

Tiếp tuyến của đường tròn.

Định nghĩa. Đường thẳng $a$ là tiếp tuyến của $(O)$ nếu $a$ và $(O)$ có một điểm chung.

Phương pháp chứng minh tiếp tuyến. Để chứng minh đường thẳng $a$ là tiếp tuyến của đường tròn $(O)$ ta có thể làm theo các cách sau:

Cách 1: Vẽ $OH \bot $a$. Chứng minh $OH$ bằng bán kính.

Cách 2: Nếu $a$ và $(O)$ có điểm chung là $H$. Chứng minh $OH \bot a$.

Ví dụ 1. Cho tam giác $ABC$ vuông tại $A$, đường cao $AH$. Gọi $D, E$ là hình chiếu vuông góc của $H$ trên $AB, AC$.

  1. Chứng minh 4 điểm $A, D, H, E$ cùng thuộc đường tròn. Xác định tâm $I$ của đường tròn.
  2. Chứng minh $BC$ là tiếp tuyến của $(I)$.
  3. Chứng minh $DE$ là tiếp tuyến của đường tròn đường kính $HC$.

Gợi ý

1.Gọi $I$ là giao điểm của $DE$ và $AH$.

Tứ giác $ADHE$ có $\angle A = \angle D = \angle E = 90^\circ$, suy ra $ADHE$ là hình chữ nhật, do đó $IA = ID = IE = IH$.

Vậy 4 điểm $A, D, H, E$ cùng thuộc đường tròn tâm $I$ (trung điểm AH).

2. Ta có $IH \bot BC$ và $H$ thuộc (I) nên $BC$ là tiếp tuyến của $(I)$.

3. Gọi $M$ là trung điểm đoạn $HC$ thì $M$ là tâm đường tròn đường kính $HC$.

Xét tam giác $IEM$ và tam giác $IHM$ có: $IM$ chung, $IE = IH, ME = MH$, nên $\Delta IEM = \Delta IHM$ (c.c.c), suy ra $\angle IEM = \angle IHM$.

Ta có $DE \bot ME$ và $E$ thuộc $(M)$ nên $DE$ là tiếp tuyến của đường tròn $(M)$.

Ví dụ 2.  Cho hình thang vuông $ABCD$ có $\angle A = \angle D = 90^\circ, CD = AD =2a, AB = a$. Đường tròn tâm $I$ đường kính $CD$ cắt cạnh $BC$ tại điểm $E$ khác $C$. Chứng minh $AE$ là tiếp tuyến của $(I)$.

Gợi ý

  • Tứ giác $ABCI$ có $AB ||IC$ và $AB = IC = a$ nên là hình bình hành, suy ra $IA||BC$.
  • Tam giác $DCE$ có $IA ||CE$ và $I$ là trung điểm $CD$ nên $IA$ qua trung điểm của $DE$.
  • Hơn nữa $CE \bot DE$, suy ra $IA \bot DE$. Do đó $IA$ là trung trực của $DE$.
  • Từ đó $\Delta IEA = \Delta IDA$, suy ra $\angle IEA = \angle IDA = 90^\circ$.
  • Vì $IE \bot EA$ và $E \in (I)$ nên $AE$ là tiếp tuyến của $ (I)$ .

Bài tập. 

1.Cho tam giác $ABC$ nhọn, các đường cao $BE, CE$ cắt nhau tại $H$. Gọi $M$ là trung điểm cạnh $BC$. Chứng minh $MD, ME$ là tiếp tuyến của đường tròn ngoại tiếp tam giác $ADE$.

2. Cho tam giác $ABC$ vuông tại $A$, đường cao $AH$. Gọi $D, E$ là hình chiếu vuông góc của $H$ trên $AB, AC$.

a.Chứng minh 4 điểm $A, D, H, E$ cùng thuộc đường tròn. Xác định tâm $I$ của đường tròn. \item Chứng minh $BC$ là tiếp tuyến của $(I)$.

b. Gọi $M, N$ lần lượt là trung điểm $BH, CH$. Chứng minh rằng $DE$ là tiếp tuyến của đường tròn đường kính $MN$.

3. Cho đường tròn tâm $O$ đường kính $AB$, trên tiếp tuyến tại $A$ và $B$ lấy các điểm $D, E$ sao cho $D, E$ cùng phía đối với $AB$ và $AD.BE = \dfrac{1}{4}AB^2$. Chứng minh $DE$ là tiếp tuyến của $(O)$.

Vị trí tương đối giữa đường thẳng và đường tròn

Định lý. Cho đường tròn $(O;R)$ và đường thẳng $a$. Gọi $d$ là khoảng cách từ $O$ đến $a$.

  • Nếu $d > R$, thì $a$ và $(O)$ không có điểm chung, ta nói $a$ ngoài $(O)$.
  • Nếu $d = R$, thì $a$ và $(O)$ có 1 điểm chung, ta nói $a$ là tiếp tuyến của $(O)$. Điểm chung của $a$ và $(O)$ được gọi là tiếp điểm.
  • Nếu $d < R$, thì $a$ và $(O)$ có 2 điểm chung, ta nói $a$ cắt $(O)$.

Ví dụ 1. Cho đường tròn $(O;6cm)$, điểm $A$ nằm ngoài đường tròn sao cho $OA = 10cm$. Một đường thẳng qua $A$ sao cho cắt $(O)$ tại $B, C$, với $B$ nằm gần $A$ hơn, biết khoảng cách từ $O$ đến $BC$ bằng $3cm$.

a. Tính $BC$.

b. Gọi $D$ là điểm đối xứng của $C$ qua $O$. Tính $AD$ lấy 2 chữ số thập phân.

Gợi ý

 

a. Gọi $M$ là trung điểm của $BC$, khi đó ta có $OM \bot BC$.

Tam giác $OMC$ vuông tại $M$ nên:

  • $OM^2 + MC^2 = OC^2$
  • $MC^2  = OC^2 – OM^2$
  • $MC^2 = 6^2 – 3^2 $
  • $MC^2 = 27$
  • $MC = 3\sqrt{3}$
  • $BC = 2MC = 6\sqrt{3}$.

b.

  • Tam giác $BCD$ có $OM$ là đường trung bình nên $DM = 2OM = 6$.
  • $CD$ là đường kính nên $\angle BDC = 90^\circ$.
  • Tam giác $OAM$ vuông tại $M$ nên $AM^2 = OA^2 – OM^2 = 100-9 = 91$, $AM = \sqrt{91}$
  • Suy ra $AB = AM – BM = \sqrt{91} – 3\sqrt{3} \approx 4.34$.
  • Tam giác $ABD$ vuông tại $B$ nên $AD = \sqrt{AB^2+BD^2} \approx 7.41$.

Ví dụ 2. Cho đường tròn $(A;3cm)$ và điểm $B$ thuộc $(O)$.  Trên tiếp tuyến tại $B$ của $(A)$ lấy $C$ sao cho $BC = 4cm$.  Vẽ $BE \bot AC$ với $E$ thuộc $AC$

a. Tính $AC, BE$.

b. Trên tia đối tia $EB$ lấy $F$ sao cho $EF = 4cm$. Tính $CF$.

c. Xét vị trí tương đối của $CF$ và $(A)$.

Gợi ý

a. Ta có $BC$ là tiếp tuyến nên $AB \bot BC$.

Tam giác $ABC$ vuông tại $B$ nên:

  • $AC^2 = AB^2 + BC^2 = 3^2 + 4^2$
  • $AC^2 = 25$
  • $AC = 5 cm$.

Ta có

  • $BE.AC = AB.BC$
  • $BE.5 = 3.4$
  • $BE = 2.4 cm$.

b. Tam giác $ABC$ vuông tại $B$, đường cao $BE$ nên

  • $CE.CA = CB^2$
  • $CE.5 = 4^2$
  • $CE = 3.2 cm$.
  • Tam giác $CEF$ vuông tại $E$ nên $CF^2 = CE^2 + EF^2 = 3.2^2 + 4^2 = 26.24$, suy ra $CF \approx 5.12$.

c. Vẽ $AG \bot CF$.

  • Ta có $CF.AG = FE.OC$
  • $OG =\dfrac{FE.OC}{CF} = \dfrac{4.5}{5.12} \approx = 3.9cm$
  • Ta có $OG > 3$ nên $CF$ nằm ngoài đường tròn $(A;3cm)$.

Tứ giác nội tiếp tạo bởi hai tiếp tuyến cắt nhau.

Đề bài. Cho đường tròn tâm $O$ và điểm $A$ nằm ngoài đường tròn. Từ $A$ dựng các tiếp tuyến $AB, AC$ đến $(O)$ với $B, C$ là các tiếp điểm. $OA$ cắt $BC$ tại $H$. (a) Chứng minh rằng tứ giác $OBAC$ nội tiếp. (b) Một đường thẳng qua $A$ cắt $(O)$ tại $D$ và $E$ sao cho $E$ nằm giữa $A$ và $D$. Chứng minh rằng $O, H, D, E$ cùng thuộc một đường tròn.

Gợi ý

(a)Vì $AB, AC$ là tiếp tuyến của $(O)$ tại B và C nên $\angle OBA = \angle OCA = 90^\circ$, suy ra $\angle OBA + \angle OCA = 180^\circ$, nên tứ giác $OBAC$ nội tếp.

Vì $AB, AC$ là tiếp tuyến của $(O)$ tại B và C nên $\angle OBA = \angle OCA = 90^\circ$, suy ra $\angle OBA + \angle OCA = 180^\circ$, nên tứ giác $OBAC$ nội tếp.

(b) Ta có $AB = AC$ (t/c tiếp tuyến) và $OB = OC$, suy ra $OA$ là trung trực của $BC$, suy ra $OA \bot BC$ tại $H$.

Tam giác $ABO$ vuông có $BH$ là đường cao nên $AH.AO = AB^2$. (1)

Mặt khác $\Delta ABD \backsim AEB (g.g)$, suy ra $AD.AE = AB^2$ (2)

Từ (1) và (2), suy ra $AD.AE = AH.AO$, suy ra $\dfrac{AH}{AD} = \dfrac{AE}{AO}$.

Xét tam giác AHE và tam giác EDO có $\angle DAO$ chung và $\dfrac{AH}{AD} = \dfrac{AE}{AO}$ nên $\Delta AHE \backsim \Delta ADO$, suy ra $\angle AHE = \angle ADO$, suy ra tứ giác $OHED$ nội tiếp.

Chú ý. Tứ giác $ABCD$ có hai cạnh bên $AD, BC$ cắt nhau tại P, hai đường chéo cắt nhau tại $Q$. Khi đó $ABCD$ nội tiếp khi và chỉ khi:

  1. $PA.PD = PB.PC$.
  2. $QA.QC = QB.QD$.

Bài giảng Tứ giác nội tiếp