Tag Archives: TPHCM

ĐỀ THI VÀO LỚP 10 CHUYÊN TOÁN TP.HCM NĂM 2019

Bài 1. Cho $a, b, c$ là ba số thực thỏa mãn điều kiện $a+b+c=1$. Tính giá trị của biểu thức

$A=a^{3}+b^{3}+c^{3}-3(a b+c)(c-1)$

Bài 2. (a) Giải phương trình:

$5 \sqrt{x-1}-\sqrt{x+7}=3 x-4$

(b) Giải hệ phương trình:

$\left\{\begin{array}{l}2(x+y)-x y=4 \\x y(x+y-4)=-2\end{array}\right.$

Bài 3. Đường tròn nội tiếp tam giác $A B C$ tiếp xúc với các cạnh $B C, C A, A B$ lần lượt tại $M, N, P$. Gọi $K$ là hình chiếu vuông góc của $M$ lên $N P$. Chứng minh rằng $K M$ là phân giác của góc $\angle B K C$.

Bài 4. Cho $x, y, z$ là các số thực thuộc đoạn $[0,2]$ thỏa mãn điều kiện $x+y+z=3$.

(a) Chứng minh rằng

$x^{2}+y^{2}+z^{2}<6$

(b) Tìm giá trị lớn nhất của biểu thức

$P=x^{3}+y^{3}+z^{3}-3 x y z$

Bài 5. Cho tam giác đều $A B C$. Gọi $M, N$ là hai điểm nằm trên cạnh $B C$ sao cho $\angle M A N=30^{\circ}(M$ nằm giữa $B$ và $N)$. Gọi $K$ là giao điểm của hai đường tròn $(A B N)$ và $(A C M)(K$ khác $A)$. Chứng minh rằng:

(a) Hai điểm $K$ và $C$ đối xứng với nhau qua $A N$.

(b) Đường thẳng $A K$ đi qua tâm đường tròn $(A M N)$.

Bài 6. Cho $m, n$ là hai số nguyên. Chứng minh rằng, nếu $7(m+n)^{2}+2 m n$ chia hết cho 225 thì $m n$ cũng chia hêt cho 225 .

 

LỜI GIẢI

 

Bài 1.Cho $a, b, c$ là ba số thực thỏa mãn điều kiện $a+b+c=1$. Tính giá trị của biểu thức

$A=a^{3}+b^{3}+c^{3}-3(a b+c)(c-1)$

Lời giải. $A=(a+b)^{3}-3 a b(a+b)+c^{3}+3(a b+c)(a+b)$

$=(a+b)^{3}+c^{3}+3(a+b) c $

$=(a+b)^{3}+c^{3}+3(a+b) c(a+b+c) $

$=(a+b+c)^{3}=1$

Bài 2.

a) Giải phương trình:

$5 \sqrt{x-1}-\sqrt{x+7}=3 x-4$

b) Giải hệ phương trình:

$\left\{\begin{array}{l}2(x+y)-x y=4 \\ x y(x+y-4)=-2\end{array}\right.$

Lời giải.

a) Điều kiện $x \geq 1.5 \sqrt{x-1}-\sqrt{x+7}=3 x-4$

$\Leftrightarrow \frac{25(x-1)-(x+7)}{5 \sqrt{x-1}+\sqrt{x+7}}=3 x-4 $

$\Leftrightarrow \frac{8(3 x-4)}{5 \sqrt{x-1}+\sqrt{x+7}}=3 x-4 $

$3 x-4=0$ (1) hoặc $5 \sqrt{x-1}+\sqrt{x+7}=8(2) $

$(1) \Leftrightarrow x=\frac{4}{3}(\text { nhận }) $

$(2)  64=25(x-1)+x+7+10 \sqrt{(x-1)(x+7)} $

$\Leftrightarrow 82-26 x=10 \sqrt{\left(x^{2}+6 x-7\right)}$

Giải ra được nghiệm $x=2$.

Vậy phương trình có hai nghiệm $S=(2, \frac{4}{3})$.

b) Từ phương trình (1) ta có $(x-2)(y-2)=0 \Leftrightarrow x=2$ hoặc $y=2$. Với $x=2$ thế vào $(2)$ ta có $y=1$. Ta có nghiệm $(x ; y)$ là $(2 ; 1)$.

Với $y=2$ thế vào $(2)$ ta có $y=1$. Ta có nghiệm $(x ; y)$ là $(1 ; 2)$.

Vậy hệ phương trình có hai nghiệm $(x ; y)$ là $(2 ; 1)$ và $(1 ; 2)$.

Bài 3. Đường tròn nội tiếp tam giác $A B C$ tiếp xúc với các cạnh $B C, C A, A B$ lần lượt tại $M, N, P$. Gọi $K$ là hình chiếu vuông góc của $M$ lên $N P$. Chứng minh rằng $K M$ là phân giác của góc $\angle B K C$.

Lời giải. Vẽ $B X, C Y$ vuông góc với $P N$ tại $X, Y$. Ta có $\angle A P=A N$ nên tam giác $A P N$ cân.

Suy ra $\angle A P N=\angle A N P ;$ mà $\angle B P X=\angle A P N, \angle C N Y=\angle A N P$ nên $\angle B P X=\angle C N Y$. Do đó $\triangle B P X \backsim \triangle C N Y$, suy ra $\frac{B X}{C Y}=\frac{B P}{C N}$.

Mà $B P=B M, C N=C M$ suy ra $\frac{B P}{C N}=\frac{B M}{C M}=\frac{X K}{Y K}$.

Do đó $\frac{B X}{C Y}=\frac{X K}{Y K}$.

suy ra $\triangle B X K \backsim \triangle C Y K$ do đó $\angle X K B=\angle C K Y$ mà $M K \perp X Y$ nên $K M$ là phân giác $\angle B K C$.

Bài 4.Cho $x, y, z$ là các số thực thuộc đoạn $[0,2]$ thỏa mãn điều kiện $x+y+z=3$.

a) Chứng minh rằng

$x^{2}+y^{2}+z^{2}<6$

b) Tìm giá trị lớn nhất của biểu thức

$P=x^{3}+y^{3}+z^{3}-3 x y z$

Lời giải.

a) Ta có $x, y, z \in[0 ; 2]$ nên $x(2-x) \geq 0 \Leftrightarrow x^{2} \leq 2 x$, tương tự $y^{2} \leq 2 y$, $z^{2} \leq 2 z$. Suy ra $x^{2}+y^{2}+z^{2} \leq 2(x+y+z)=6$. Đẳng thức xảy ra khi $x=0$ hoặc $x=2$, $y=0$ hoặc $y=2, z=0$ hoặc $z=2$ và $x+y+z=3$ (vô nghiệm).

Vậy $x^{2}+y^{2}+z^{2}<6$.

b) $x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-z y-z x\right)=3\left(x^{2}+y^{2}+\right.$ $\left.z^{2}\right)-\frac{3}{2}\left((x+y+z)^{2}-x^{2}-y^{2}-z^{2}\right)=\frac{9}{2}\left(x^{2}+y^{2}+z^{2}\right)-\frac{27}{2}$.

Không mất tính tổng quát, giả sử $z=\max x, y, z$, suy ra $z \geq 1$.

Ta có $x^{2}+y^{2}+z^{2}=(x+y)^{2}+z^{2}-2 x y=(3-z)^{2}+z^{2}-2 x y=2 z^{2}-6 z+$ $9-2 x y=2(z-1)(z-2)-2 x y+5 \leq 5$.

Đẳng thức xảy ra khi $z=2, x=0, y=1$.

Do đó $x^{3}+y^{3}+z^{3}-3 x y z \leq 9$, đẳng thức xảy ra khi $z=2, x=0, y=1$. Vậy giá trị lớn nhất của biểu thức $x^{3}+y^{3}+z^{3}-3 x y z$ là 9 .

Bài 5. Cho tam giác đều $A B C$. Gọi $M, N$ là hai điểm nằm trên cạnh $B C$ sao cho $\angle M A N=30^{\circ}(M$ nằm giữa $B$ và $N)$. Gọi $K$ là giao điểm của hai đường tròn $(A B N)$ và $(A C M)(K$ khác $A)$. Chứng minh rằng:

a) Hai điểm $K$ và $C$ đối xứng với nhau qua $A N$.

b) Đường thẳng $A K$ đi qua tâm đường tròn $(A M N)$.

Lời giải.

a) Gọi $K$ là điểm đối xứng của $C$ qua $A N$. Có

$\angle A K^{\prime} N=\angle A C N=\angle A B N$

nên tứ giác $A B K^{\prime} N$ nội tiếp. Suy ra $K^{\prime} \in(A B N)$. Có

$\angle M A K^{\prime}+\angle N A C=\angle M A K^{\prime}+\angle K^{\prime} A N=30^{\circ}$

$\angle B A M+\angle N A C=30^{\circ}$

suy ra $\angle M A K^{\prime}=\angle B A M$.

Suy ra $\triangle A B M=\triangle A K^{\prime} M(c-g-c)$ nên $\angle A K^{\prime} M=\angle A B C=\angle A C B$ ta thu được $K^{\prime} \in(A M C)$. Vậy $K \equiv K^{\prime}$ ta có điều phải chứng minh.

b) Gọi $O$ là tâm $(A M N)$.

Có $\angle M K A=\angle M C A=\angle A K N=60^{\circ}$ nên $\angle M K N=120^{\circ}$. Mà $\angle M O N=$ $2 \angle M A N=60^{\circ}$ nên tứ giác $M O N K$ nội tiếp.

Lại có $O M=O N$ nên $\angle O K N=\angle O K M=60^{\circ}$ và $\angle A K N=60^{\circ}$ nên $A, O, K$ thẳng hàng.

Bài 6. Cho $m, n$ là hai số nguyên. Chứng minh rằng, nếu $7(m+n)^{2}+2 m n$ chia hết cho 225 thì mn cũng chia hết cho 225 .

Lời giải. Đặt $A=7(m+n)^{2}+2 m n$, ta có $2 A=14(m+n)^{2}+4 m n=15(m+n)^{2}-(m-$ $n)^{2}$ chia hết cho 225 , suy ra $(m-n)^{2}$ chia hết cho 15 .

Ta có $(m-n)^{2}$ chia hết cho 3,5 suy ra $m-n$ chia hết cho 3 và 5 (do 3,5 là số nguyên tố), do đó $m-n$ chia hết cho 15 , suy ra $(m-n)^{2}$ chia hết cho 225 .

Khi đó $15(m+n)^{2}$ chia hết cho 225 , suy ra $(m+n)^{2}$ chia hết cho 15 , tương tự trên thì $(m+n)^{2}$ chia hết cho 225 .

Khi đó $4 m n=(m+n)^{2}-(m-n)^{2}$ chia hết cho 225 , mà $(4,225)=1$ nên $m n$ chia hết cho $225 .$

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ĐỀ THI VÀO LỚP 10 CHUYÊN TOÁN TP.HCM NĂM 2017

Bài 1. (a) Cho các số thực $a, b, c$ sao cho $a+b+c=3, a^{2}+b^{2}+c^{2}=29$ và $a b c=11$. Tính $a^{5}+b^{5}+c^{5}$

(b) Cho biểu thức $A=(m+n)^{2}+3 m+n$ với $m, n$ là các số nguyên dương. Chứng minh rằng nếu $A$ là một số chính phương thì $n^{3}+1$ chia hết cho $m$.

Bài 2. (a) Giải hệ phương trình: $2(x+2) \sqrt{3 x-1}=3 x^{2}-7 x-3$

(b) Giải hệ phương trình: $\left\{\begin{array}{l}x+\frac{1}{y}-\frac{10}{x}=-1 \\ 20 y^{2}-x y-y=1\end{array}\right.$

Bài 3. Cho tam giác $A B C$ có $A B<A C<B C$. Trên các cạnh $B C, A C$ lần lượt lấy các điểm $M, N$ sao cho $A N=A B=B M$. Các đường thẳng $A M$ và $B N$ cắt nhau tại $\mathrm{K}$. Gọi $H$ là hình chiếu của $K$ lên $\mathrm{AB}$. Chứng minh rằng:

(a) Tâm đường tròn nội tiếp tam giác $A B C$ nằm trên $K H$.

(b) Các đường tròn nội tiếp các tam giác $A C H$ và $B C H$ tiếp xúc với nhau.

Bài 4. Cho $x, y$ là 2 số thực dương. Tìm giá trị nhỏ nhất của biếu thức:

$P=\frac{16 \sqrt{x y}}{x+y}+\frac{x^{2}+y^{2}}{x y}$

Bài 5. Cho tam giác $A B C$ có góc $B$ tù. Đường tròn $(O)$ nội tiếp tam giác $A B C$ tiếp xúc với các cạnh $A B, C A, B C$ lần lượt tại $L, H, J$.

(a) Các tia $B O, C O$ cắt $L H$ lần lượt tại $M, N$. Chứng minh 4 điểm $B, C, M, N$ cùng thuộc một đường tròn.

(b) Gọi $d$ là đường thẳng qua $O$ và vuông góc với $A J$; $d$ cắt $A J$ và đường trung trực của cạnh $B C$ lần lượt tại $D$ và $F$. Chứng minh 4 điểm $B, D, F, C$ cùng thuộc một đường tròn.

Bài 6. Trên một đường tròn có 9 điểm phân biệt, các điểm này được nối với nhau bởi các đoạn thẳng màu xanh hoặc màu đỏ. Biết rằng mỗi tam giác tạo bởi 3 trong 9 điểm chứa ít nhất một cạnh màu đỏ. Chứng minh rằng tồn tại 4 điểm sao cho 6 đoạn thẳng nối chúng đều có màu đỏ.

LỜI GIẢI

Bài 1.

a) Cho các số thực $a, b, c$ sao cho $a+b+c=3, a^{2}+b^{2}+c^{2}=29$ và $a b c=11$. Tính $a^{5}+b^{5}+c^{5}$

b) Cho biểu thức $A=(m+n)^{2}+3 m+n$ với $m, n$ là các số nguyên dương. Chứng minh rằng nếu $A$ là một số chính phương thì $n^{3}+1$ chia hết cho $m$.

Lời giải.

a) Đặt $S_{2}=a^{2} b^{2}+b^{2} c^{2}+a^{2} c^{2} ; S_{3}=a^{3}+b^{3}+c^{3} ; S_{5}=a^{5}+b^{5}+c^{5}$

  • $(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2(a b+b c+a c) $

$\quad\quad\Rightarrow 9=29+2(a b+b c+a c) $

$\quad\quad\Rightarrow a b+b c+a c=-10 $

  • $(a+b+c)\left(a^{2}+b^{2}+c^{2}\right)=a^{3}+b^{3}+c^{3}+a^{2} b+a b^{2}+b^{2} c+b c^{2}+a^{2} c+a c^{2} $

$\quad\quad\Rightarrow 3.29=S_{3}+a b(a+b)+b c(b+c)+a c(a+c) $

$\quad\quad\Rightarrow 87=S_{3}+(a+b+c)(a b+b c+a c)-3 a b c $

$\quad\quad \Rightarrow S_{3}=87-3 \cdot(-10)+3.11=150 $

  • $(a b+b c+a c)^{2}=a^{2} b^{2}+b^{2} c^{2}+a^{2} c^{2}+2 a b c(a+b+c) $

$\quad\quad \Rightarrow 100=S_{2}+2.11 .3 \Rightarrow S_{2}=34 $

  • $\left(a^{2}+b^{2}+c^{2}\right)\left(a^{3}+b^{3}+c^{3}\right)=a^{5}+b^{5}+c^{5}+a^{2} b^{3}+a^{3} b^{2}+b^{2}c^{3}+b^{3}c^{2}+a^{3} c^{2}+a^{2} c^{3} $

$\quad\quad\Rightarrow 29.150=S_{5}+a^{2} b^{2}(a+b)+b^{2} c^{2}(b+c)+a^{2} c^{2}(a+c) $

$\quad\quad \Rightarrow 29.150=S_{5}+(a+b+c)\left(a^{2} b^{2}+b^{2} c^{2}+a^{2} c^{2}\right)-a b c(a b+b c+a c) $

$\quad\quad\Rightarrow S_{5}=29.150-3.34+11 .(-10)=4138$

Nhận xét thêm: Trên thực tế, phương trình bậc 3 nhận $a, b, c$ làm nghiệm chỉ có một nghiệm thực, mà đề thi cho 3 số $a, b, c$ thực.

b) Do $m, n$ là số nguyên dương nên ta có: $A=(m+n)^{2}+3 m+n>(m+n)^{2}$ $A=(m+n)^{2}+3 m+n=m^{2}+n^{2}+3 m+n+2 m n<m^{2}+n^{2}+4+4 m+4 n+$ $2 m n=(m+n+2)^{2}$

Mà $\mathrm{A}$ là số chính phương nên $A=(m+n+1)^{2}$

$\Rightarrow(m+n)^{2}+3 m+n=(m+n+1)^{2} $

$\Rightarrow m^{2}+n^{2}+2 m n+3 m+n=m^{2}+n^{2}+1+2 m+2 n+2 m n $

$\Rightarrow m=n+1 .$

Lại có $n^{3}+1=(n+1)\left(n^{2}-n+1\right) \vdots(n+1) \Rightarrow n^{3}+1 \vdots m$

Bài 2.

a) Giải hệ phương trình: $2(x+2) \sqrt{3 x-1}=3 x^{2}-7 x-3$

b) Giải hệ phương trình: $\left\{\begin{array}{l}x+\frac{1}{y}-\frac{10}{x}=-1 \\ 20 y^{2}-x y-y=1\end{array}\right.$

Lời giải.

a) Điều kiện: $x \geq \frac{1}{3}$

$2(x+2) \sqrt{3 x-1}=3 x^{2}-7 x-3 $

$\Leftrightarrow x^{2}+4 x+4+2(x+2) \sqrt{3 x-1}+3 x-1=4 x^{2} $

$\Leftrightarrow(x+2+\sqrt{3 x-1})^{2}=(2 x)^{2} $

$\Leftrightarrow x+2+\sqrt{3 x-1}=2 x \quad\left(\text { vì } x \geq \frac{1}{3}\right) $

$\Leftrightarrow \sqrt{3 x-1}=x-2(x \geq 2) $

$\Leftrightarrow 3 x-1=x^{2}-4 x+4 $

$\Leftrightarrow x^{2}-7 x+5=0\Leftrightarrow\left[\begin{array}{rl}x & =\frac{7+\sqrt{29}}{2}(n) \\ x & =\frac{7-\sqrt{29}}{2}(l)\end{array}\right.$

$\left\{\begin{array}{l}x+\frac{1}{y}-\frac{10}{x}=-1 \\ 20 y^{2}-x y-y=1\end{array}\right.$

Điều kiện: $y \neq 0, x \neq 0$

Chia 2 vế của (2) cho $y$ ta được:

$20 y-x-1=\frac{1}{y}$

$\Rightarrow 20 y-x=\frac{1}{y}+1$

Mà $\frac{1}{y}+1=\frac{10}{x}-x$ nên

$20 y-x=\frac{10}{x}-x$

$\Rightarrow x y=\frac{1}{2}$

Thay vào (2) ta được:

$20 y^{2}-\frac{1}{2}-y=1 \Rightarrow 40 y^{2}-2 y-3=0 \Rightarrow\left[\begin{array}{l}y=\frac{3}{10} \Rightarrow x=\frac{5}{3} \\ y=-\frac{1}{4} \Rightarrow x=-2\end{array}\right.$

Vậy nghiệm của hệ phương trình là $(x ; y) \in[(-2 ;-\frac{1}{4}),(\frac{5}{3} ; \frac{3}{10})]$

Bài 3. Cho tam giác $A B C$ có $A B<A C<B C$. Trên các cạnh $B C, A C$ lần lượt lấy các điểm $M, N$ sao cho $A N=A B=B M$. Các đường thẳng $A M$ và $B N$ cắt nhau tại $\mathrm{K}$. Gọi $H$ là hình chiếu của $K$ lên $\mathrm{AB}$. Chứng minh rằng:

a) Tâm đường tròn nội tiếp tam giác $A B C$ nằm trên $K H$.

b) Các đường tròn nội tiếp các tam giác $A C H$ và $B C H$ tiếp xúc với nhau.

Lời giải.

a) Gọi $I$ là tâm đường tròn nội tiếp tam giác $A B C$.

Tam giác $A B N$ cân tại $A$ nên phân giác góc $B A C$ cũng là đường cao, suy ra $A I \perp B N$.

Tam giác $A B M$ cân tại $B$ nên phân giác góc $A B C$ cũng là đường cao, suy ra $B I \perp A M$.

Suy ra $I$ là trực tâm tam giác $A B K$, mà $K H \perp A B$ nên $K, I, H$ thẳng hàng.

Vậy tâm đường tròn nội tiếp tam giác $A B C$ nằm trên $K H$.

b) Gọi $D$ là tiếp điểm của $(J)$ với $C H$. TA có $D H=\frac{H A+H C-A C}{2}$.

Gọi $E$ là tiếp điểm của $(L)$ với $C H$. Ta có $H E=\frac{H C+H B-B C}{2}$

Gọi $P$ và $Q$ lần lượt là tiếp điểm của $(I)$ với $A C$ và $B C$ $H D-H E=\frac{H A-A C-H B+B C}{2}=\frac{B C-A C+H A-H B}{2}$ $=\frac{B Q+C Q-A P-C P+H A-H B}{2}=0$ (vì $H$ là tiếp điểm của $(I)$ với $A B$ nên $A H=A P, B H=B Q$

Do đó $D$ trùng $E$. nên hai đường tròn $(J)$ và $(L)$ tiếp xúc nhau

Bài 4. Cho $x, y$ là 2 số thực dương. Tìm giá trị nhỏ nhất của biếu thức:

$P=\frac{16 \sqrt{x y}}{x+y}+\frac{x^{2}+y^{2}}{x y}$

Lời giải.  $P=\frac{16 \sqrt{x y}}{x+y}+\frac{x^{2}+y^{2}}{x y} $

$=\frac{16 \sqrt{x y}}{x+y}+\frac{(x+y)^{2}}{x y}-2 $

$=\frac{8 \sqrt{x y}}{x+y}+\frac{8 \sqrt{x y}}{x+y}+\frac{(x+y)^{2}}{x y}-2 $

$\geq 3 \sqrt[3]{64}-2=10$

Dấu ” $=$ “xảy ra khi và chỉ khi $x=y$ Vậy $P_{\min }=10 \Leftrightarrow x=y$

Bài 5. Cho tam giác $A B C$ có góc $B$ tù. Đường tròn $(O)$ nội tiếp tam giác $A B C$ tiếp xúc với các cạnh $A B, C A, B C$ lần lượt tại $L, H, J$.

a) Các tia $B O, C O$ cắt $L H$ lần lượt tại $M, N$. Chứng minh 4 điểm $B, C, M, N$ cùng thuộc một đường tròn.

b) Gọi $d$ là đường thẳng qua $O$ và vuông góc với $A J ; d$ cắt $A J$ và đường trung trực của cạnh $B C$ lần lượt tại $D$ và $F$. Chứng minh 4 điểm $B, D, F, C$ cùng thuộc một đường tròn.

Lời giải.

a) $N, O$ nằm trên đường trung trực của đoạn $H J$ nên $N H=N J, O H=O J$ $\Rightarrow \triangle N H O=\triangle N J O \Rightarrow \angle N H O=\angle N J O$.

Mà $\angle N H O=\angle N L O$ nên $\angle N J O=\angle N L O \Rightarrow L N O J$ nội tiếp.

Lại có $B L O J$ nội tiếp nên 5 điểm $B, J, O, N, L$ cùng nằm trên một đường tròn.

Suy ra $B N O J$ là tứ giác nội tiếp, suy ra $\angle B N O=90^{\circ}$.

$M, O$ nằm trên đường trung trực của đoạn $L J$ nên $M L=M J, O L=O J \Rightarrow$ $\triangle M O L=\triangle M O J \Rightarrow \angle O L M=\angle O J M$

Mà $\angle O L H=\angle O H L$ nên $\angle O H L=\angle O J M \Rightarrow O H M J$ nội tiếp.

Lại có $O H C J$ nột tiếp nên $O, H, M, C$, $J$ cùng thuộc một đường tròn nên $O M H C$ nội tiếp $\Rightarrow \angle O M C=\angle O H C=90^{\circ}$

$\angle B N C=\angle B M C=90^{\circ} \Rightarrow B M N C$ nội tiếp.

b) Gọi $E$ là giao điểm của $\mathrm{MN}$ và $B C$. Ta chứng minh $O E \perp A J$.

Ta có $O K . O A=O H^{2}=O J^{2}$, suy ra tam giác $O K J$ và $O J A$ đồng dạng, suy ra $\angle O K J=\angle O J A$.

Mặt khác tứ giác $O K E J$ nội tiếp nên $\angle O K J=\angle O E J$.

Do đó $\angle O J A=\angle O E J$, suy ra $O E \perp A J$. Khi đó $O E$ cắt $A J$ tại $D$ và cắt trung trực $B C$ tại $F$.

Xét tam giác $T B C$ chứng minh được $M, N, Q, J$ cùng thuộc đường tròn.

Ta có $E D . E F=E J . E Q=E M . E N=E B . E C$

Suy ra $B D F C$ nội tiếp.

Bài 6. Trên một đường tròn có 9 điểm phân biệt, các điểm này được nối với nhau bởi các đoạn thẳng màu xanh hoặc màu đỏ. Biết rằng mỗi tam giác tạo bởi 3 trong 9 điểm chứa ít nhất một cạnh màu đỏ. Chứng minh rằng tồn tại 4 điểm sao cho 6 đoạn thẳng nối chúng đều có màu đỏ.

Lời giải. Giả sử không tồn tại 4 điểm nào sao cho 6 đoạn thẳng nối chúng đều có màu đỏ.

$-$ Nếu tồn tại một điểm nối ít nhất 4 điểm khác để tạo thành đoạn thẳng màu xanh, giả sử $A$ nối với $B, C, D, E$ tạo thành đoạn màu xanh, khi đó:

$-$ Nếu có hai trong 4 điểm $B, C, D, E$ nối với nhau tạo thành đoạn màu xanh thì mâu thuẫn

$-$ Nếu 4 điểm này đôi một không nối với nhau tạo thành đoạn màu xanh thì cũng mâu thuẫn.

$-$ Nếu mỗi điểm chỉ nối tối đa với 3 điểm khác để tạo thành đoạn màu xanh. Giả sử $A$ nối với $B, C, D$ tạo thành đoạn màu xanh thì $B C, C D, B D$ màu đỏ và còn lại 5 điểm $M, N, P, Q, R$ nối với $A$ tạo thành đoạn màu đỏ.

$-$ Nếu trong 5 điểm đó, điểm nào cũng nối với 2 điểm trong đó tạo thành đoạn màu xanh, khi đó, mỗi điểm chỉ tạo thêm được đoạn màu xanh với 1 điểm nữa khác 5 điểm $M, N, P, Q, R$. Mà 5 điểm này đều phải tạo với một trong 3 điểm $B, C, D$ tạo thành đoạn màu xanh nên có ít nhất hai điểm cùng tạo với 1 điểm trong $B, C, D$ tạo thành đoạn màu xanh, giả sử đoạn $D M$ và $D N$ màu xanh. Khi đó đoạn $M N$ màu đỏ và $M, N$ nối với $B, C$ tạo thành đoạn màu đỏ. Do đó $B, C, M, N$ là 4 điểm khi nối nhau tạo thành 6 đoạn màu đỏ nên mâu thuẫn.

$-$ Nếu trong 5 điểm $M, N, P, Q$, $R$ có 1 điểm nối với 1 trong 4 điểm còn lại tạo thành đoạn màu xanh, giả sử $M N$ màu xanh. Khi đó $P M, Q M, R M$ màu đỏ. Nếu $P Q, Q R, P R$ đều màu xanh thì mâu thuẫn, nếu 1 trong 3 đoạn màu đỏ, giả sử $P Q$ màu đỏ. Khi đó $A, M, P, Q$ là 4 điểm khi nối nhau tạo thành 4 đoạn màu đỏ. (mâu thuẫn).

$-$ Nếu mỗi điểm chỉ nối tối đa với 2 điểm khác tạo thành đoạn màu xanh, giả sử $A B$, $A C$ màu xanh. Khi đó 6 điểm còn lại $M, N, P, Q, R, T$ khi nối $A$ tạo thành màu đỏ. Giả sử $M B$ màu xanh thì $M$ nối được với 1 điểm nữa trong 5 điểm còn lại tạo thành đoạn màu xanh, giả sử $M N$ màu xanh. Khi đó $M P, M Q, M R, M T$ màu đỏ. Trong 4 điểm $P, Q, R, T$ tồn tại 2 điểm nối nhau tạo thành màu đỏ, giả sử $P Q$ màu đỏ. Khi đó $A, M, P, Q$ là 4 điểm nối nhau tạo thành 6 đoạn màu đỏ. Giả sử $M B, M C$ đều màu đỏ thì $M$ tạo được với tối đa 2 điểm nữa trong 5 điểm còn lại thành đoạn màu xanh. Giả sử $M N, M P$ màu xanh thì $M Q, M R, M T$ màu đỏ, trong 3 điểm $Q, R, T$ tồn tại 2 điểm nối nhau tạo thành đoạn màu đỏ, giả sử $Q R$ màu đỏ thì $A, M, Q, R$ là 4 điểm nối nhau tạo thành 6 đoạn màu đỏ (mâu thuẫn).

Vậy tồn tại 4 điểm sao cho 6 đoạn thẳng nối chúng đều có màu đỏ.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Đề thi và đáp án tuyển sinh vào 10 TPHCM 2020

Đề thi vào lớp 10 TPHCM năm 2020

Bài 1. Cho parabol $ (P): y=\dfrac{1}{4}x^2$ và đường thẳng $ (d): y=-\dfrac{1}{2}x+2 $

a) Vẽ $ (P) $ và $ (d) $ trên cùng hệ trục tọa độ.

b) Tìm tọa độ giao điểm của $ (P) $ và $ (d) $ bằng phép tính.

Giải

a) Bảng giá trị của $(d)$:

Bảng giá trị của $(P)$:

Đồ thị:

b) Phương trình hoành độ giao điểm của $(P)$ và $(d)$:

$\dfrac{1}{4}x^2 = -\dfrac{1}{2}x +2 \Leftrightarrow \dfrac{1}{4}x^2 +\dfrac{1}{2}x-2=0\Leftrightarrow \left[ \begin{array}{l} x=2\Rightarrow y=1\\ x=-4\Rightarrow y=4 \end{array}\right. $

Vậy tọa độ giao điểm $\left( 2;\, 1\right) $, $\left( -4;\, 4\right) $

Bài 2. Cho phương trình: $ 2x^2-5x-3=0 $ có 2 nghiệm $ x_1; x_2 $.

Không giải phương trình, hãy tính giá trị của biểu thức: $ A=(x_1+2x_2)(x_2+2x_1) $.

Giải

Ta có: $\Delta = \left( -5\right) ^2-4\cdot 2\cdot (-3)=49>0\Rightarrow $ Phương trình có hai nghiệm phân biệt.

Áp dụng định lý Viete ta có: $\left\{ \begin{array}{l} S=x_1+x_2=\dfrac{5}{2}\\ P=x_1x_2=-\dfrac{3}{2} \end{array} \right. $

Ta có: $A=\left( x_1+2x_2\right) \left( x_2+2x_1\right)=2\left( x_1^2 +x_2^2\right) +5x_1x_2=2\left( S^2-2P\right) +5P=11 $

Vậy $A=11$

Bài 3. Quy tắc sau đây cho ta biết CAN, CHI của năm X nào đó.

Để xác định CAN, ta tìm số dư $ r $ trong phép chia $X$ cho $10$ và tra vào bảng $1$.

Để xác định CHI, ta tìm số dư $ s $ trong phép chia $X$ cho $12$ và tra vào bảng $2$.

Ví dụ: năm $2020$ có CAN là Canh, có CHI là Tí.

Bảng 1

Bảng 2

a) Em hãy sử dụng quy tắc trên để xác định CAN, CHI của năm $2005$?

b) Bạn Hằng nhớ rằng Nguyễn Huệ lên ngôi hoàng đế, hiệu là Quang Trung vào năm Mậu Thân nhưng không nhớ rõ đó là năm bao nhiêu mà chỉ nhớ là sự kiện trên xảy ra vào cuối thế kỉ $18$. Em hãy giúp Hằng xác định chính xác năm đó là năm bao nhiêu?

Giải

a) Năm $2005$ có CAN là Ất, có CHI là Dậu.

b) Vì năm hoàng đế Nguyễn Huệ lên ngôi là cuối thế kỉ $18$ nên năm đó có dạng $\overline{17ab}$ với $a,\ b\in \mathbb{N}$ và $0\le a,\ b\le 9$

Năm đó có CAN là Mậu nên ta có $\overline{17ab}$ chia $10$ dư $8$ suy ra chữ số tận cùng $b=8$

Năm đó có CHI là Thân nên ta có $\overline{17a8}$ chia hết cho $12$. Suy ra $\overline{17a8}$ chia hết cho $3$.

Khi đó: $1+7+a+8= 16+a\ \vdots \ 3 \Rightarrow a\in \left\{ 2;\ 5;\ 8\right\} $

Với $a=2\Rightarrow 1728$ chia $10$ dư $8$ và $1728$ chia $12$ dư $0$.

Với $a=5\Rightarrow 1758$ chia $10$ dư $8$ và $1758$ chia $12$ dư $6$ (loại).

Với $a=8\Rightarrow 1788$ chia $10$ dư $8$ và $1788$ chia $12$ dư $0$.

Vì sự kiện xảy ra vào cuối thế kỉ $18$ nên năm đó là năm $1788$.

Bài 4. Cước điện thoại $ y $ (nghìn đồng) là số tiền mà người sử dụng điện thoại cần trả hàng tháng, nó phụ thuộc vào lượng thời gian gọi $ x $ (phút) của người đó trong tháng. Mối liên hệ giữa hai đại lượng này là một hàm số bậc nhất $ y=ax+b. $ Hãy tìm $ a,b $ biết rằng nhà bạn Nam trong tháng $5$ đã gọi $100$ phút với số tiền là $40$ nghìn đồng và trong tháng $6$ đã gọi $40$ phút với số tiền $28$ nghìn đồng.

Giải

Với $x=100$ và $y=40$ ta có $40=100a+b$

Với $x=40$ và $y=28$ ta có $28=40a+b$

Ta có hệ phương trình: $\left\{ \begin{array}{l} 100a+b=40\\ 40a+b=28 \end{array}\right. $ $\Leftrightarrow \left\{ \begin{array}{l} a=\dfrac{1}{5}\\ b=20  \end{array}\right. $

Vậy $a=\dfrac{1}{5}$ và $b=20$

Bài 5. Theo quy định của cửa hàng xe máy, để hoàn thành chỉ tiêu trong $1$ tháng, mỗi nhân viên phải bán được trung bình một chiếc xe máy trong một ngày. Nhân viên nào hoàn thành chỉ tiêu trong một tháng thì nhận được lương cơ bản là $8 000 000$ đồng. Nếu trong tháng nhân viên nào bán vượt chỉ tiêu thì được hưởng thêm $8\%$ tiền lời của số xe máy bán vượt chỉ tiêu đó. Trong tháng $5$ (có $31$ ngày), anh Thành nhận được số tiền là $9 800 000$ đồng (bao gồm cả lương cơ bản và tiền thưởng thêm của tháng đó). Hỏi anh Thành đã bán được bao nhiêu chiếc xe máy trong tháng $5$, biết rằng mỗi xe máy bán ra thì cửa hàng thu lời được $2 500 000$ đồng.

Giải

Tháng $5$ có $31$ ngày nên số xe máy tiêu chuẩn phải bán được là $31$ xe.

Gọi $x$ ($x>0$) là số xe máy anh Thành đã bán vượt chỉ tiêu.

Số tiền anh Thành được thưởng thêm là: $8\% \cdot 2\, 500\, 000 \cdot x = 200\, 000x$

Ta có phương trình: $200\, 000x = 9\, 800\, 000 -8\, 000\, 000 \Rightarrow x=9$

Vậy anh Thành đã bán được $40$ xe máy trong tháng $5$.

Bài 6. Anh Minh vừa mới xây một cái hồ trữ nước cạnh nhà có hình dạng hộp chữ nhật có kích thước $2m \times 2 m \times 1 m$. Hiện hồ chưa có nước nên anh Minh phải ra sông lấy nước. Mỗi lần ra sông anh gánh được $1$ đôi nước đầy gồm $2$ thùng hình trụ bằng nhau có bán kính đáy $0,2 \ m$, chiều cao $0,4 \ m$.

a)Tính lượng nước ($m^3$) anh Minh đổ vào hồ sau mỗi lần gánh (ghi kết quả làm tròn đến $2$ chữ số thập phân). Biết trong quá trình gánh nước về thì lượng nước bị hao hụt khoảng $10\%$ và công thức tính thể tích hình trụ là $V = \pi R^2h$.

b) Hỏi anh Minh phải gánh ít nhất bao nhiêu lần để đầy hồ? Bỏ qua thể tích thành hồ.

Giải

a) Thể tích nước anh gánh được trong hai thùng là: $V = 2\cdot \pi R^2h =\dfrac{4\pi }{125}$ ($m^3$)

Lượng nước anh Minh đổ vào hồ sau mỗi lần gánh là: $90\% \cdot V=\dfrac{18\pi }{625}\approx 0,09$ ($m^3$)

b) Thể tích hồ trữ nước là: $V_{\text{hồ}}=2\cdot 2\cdot 1=4$ ($m^3$)

Ta có: $\dfrac{V_{\text{hồ}}}{V}\approx 44,21 $

Vậy anh Minh phải gánh ít nhất $45$ lần để đổ nước đầy hồ.

Bài 7. Sau buổi sinh hoạt ngoại khóa nhóm bạn của Thư rủ nhau đi ăn kem ở một quán gần trường. Do quán mới khai trương nên có khuyến mãi, bắt đầu từ ly thứ $5$ giá mỗi ly kem được giảm $1 500$ đồng so với giá ban đầu. Nhóm của Thư mua $9$ ly kem với số tiền là $154 500$ đồng. Hỏi giá của một ly kem ban đầu?

Giải

Gọi $x$ (đồng) là giá tiền của một ly kem khi chưa giảm (ĐK: $x \geq 1 500$ đồng)

$ \Rightarrow$ Giá tiền ly kem từ ly thứ 5 trở đi là: $x-1 500$ (đồng)

Theo bài ra ta có:  $4.x+5 (x- 1500)= 154 500 \Leftrightarrow x=18 000$ ( đồng)

Vậy giá tiền ly kem ban đầu là: $18000$ đồng.

Bài 8. Cho đường tròn tâm $O$; bán kính $R$ và điểm $A$ nằm ngoài đường tròn sao cho $OA>2R$. Từ $A$ kẻ $2$ tiếp tuyến $AD$; $AE$ đến đường tròn ($O$) ($D$; $E$ là hai tiếp điểm). Lấy điểm $M$ nằm trên cung nhỏ $DE$ sao cho $MD >ME$. Tiếp tuyến của đường tròn (O) tại $M$ cắt $AD$; $AE$ lần lượt tại $I$; $J$. Đường thẳng $DE$ cắt $OJ$ tại $F$ .

a) Chứng minh: $OJ$ là đường trung trực của đoạn thẳng $ME$ và $\angle OMF=\angle OEF$.

b) Chứng minh: tứ giác $ODIM$ nội tiếp và $5$ điểm $I;\ D; \ O;\ F;\ M$ cùng nằm trên một đường tròn.

c) Chứng minh: $\angle JOM=\angle IOA$ và $\sin \angle IOA=\dfrac{MF}{IO}$

Giải

a)

  • Ta có: $ \left\lbrace \begin{array}{l} OM=OE (=R)\\ MJ=EJ \end{array} \right. \Rightarrow OJ$ là đường trung trực của đoạn $ME$
  • Ta có: $OJ$ là tia phân giác của góc $\angle EOM \Rightarrow \angle EOJ =\angle MOJ$

Xét $\triangle EOF $ và $\triangle MOF$ ta có: $OF$ chung, $OM=OE$, $\angle EOF= \angle MOF$

$\Rightarrow \triangle EOF = \triangle MOF \Rightarrow \angle OMF =\angle OEF$.

b)

  • Tứ giác $ODIM$ có: $\angle ODI +\angle OMI =90^{\circ} +90^{\circ}= 180^{\circ}$

$\Rightarrow $ Tứ giác $ODIM$ là tứ giác nội tiếp $(1)$.

  • Ta có: $\angle ODE =\angle OED$ và $\angle OEF =\angle OMF$

$ \Rightarrow \angle ODF =\angle OMF \Rightarrow $ Tứ giác $ODMF$ là tứ giác nội tiếp $(2)$.

Từ $(1)$, $(2)$ ta có: $5$ điểm $I,D,O,F,M$ cùng thuộc một đường tròn.

c)

  • Tứ giác $IDFM$ nội tiếp nên ta có: $\angle IOF =\angle IDF = \dfrac{1}{2}$ sđ cung $IF$ $(3)$

Tứ giác $ADOE$ nội tiếp nên : $\angle ADE =\angle AOE$ $(4)$

Từ $$(3)$, $(4)$ ta có: $\angle IOF =\angle AOE$

Mà ta có: $ \angle IOF =\angle IOA+ \angle AOF$

$ \angle AOE=\angle AOF +\angle EOF$

Suy ra: $ \angle EOF =\angle IOA$

Mặt khác $\angle EOF =\angle JOM$ ( do $OJ$ là tia phân giác$ EOM$ )

Vậy $\angle JOM =\angle IOA$ $(5)$

  • Ta có: $\triangle JMF \backsim \triangle JOI$ (g.g) $\Rightarrow \dfrac{JM}{JO} =\dfrac{MF}{OI}$ $(6)$

Xét tam giác $OMJ$ vuông tại $M$ nên: $\sin \angle JOM =\dfrac{MJ}{OJ}$ (7)

Từ $(5), (6), (7)$ suy ra: $ \sin \angle IOA=\dfrac{MF}{IO}$

Đề thi và đáp án tuyển sinh vào 10 TPHCM 2019

Đề thi vào lớp 10 TPHCM năm 2019

Bài 1. Cho parabol $(P): y= -\dfrac{1}{2} x^2 $ và đường thẳng $(d): y= x-4$.

a) Vẽ $(P)$ và $(d)$ trên cùng hệ trục tọa độ.

b) Tìm tọa độ giao điểm của $(P)$ và $(d)$ bằng phép tính.

Giải

a) Bảng giá trị:

  • $y=x-4$

  • $y=-\dfrac{1}{2}x^2$

(Học sinh tự vẽ)

b) Phương trình hoành độ giao điểm của $(P)$ và $(d)$:

$-\dfrac{1}{2}x^2 = x-4 \Leftrightarrow x^2 +2x-8=0 \Leftrightarrow (x+4)(x-2)=0 \Leftrightarrow \left[ \begin{array}{l} x=-4 \Rightarrow y=-8 \\ x=2 \Rightarrow y=-2 \end{array} \right. $

Vậy tọa độ giao điểm của $(P)$ và $(d)$ là $(-4;-8)$ và $(2;-2)$.

Bài 2. Cho phương trình: $2x^2 -3x-1 =0$ có 2 nghiệm là $x_1$, $x_2$.

Không giải phương trình, hãy tính giá trị của biểu thức: $A=\dfrac{x_1-1}{x_2+1} + \dfrac{x_2-1}{x_1+1}$

Giải

Ta có: $\Delta = 9+8=17 >0$

$\Rightarrow $ Phương trình đã cho luôn có hai nghiệm phân biệt $x_1$, $x_2$.

Theo định lý Viete, ta có: $\left\{ \begin{array}{l} x_1 + x_2 = \dfrac{3}{2} \\ x_1x_2 = – \dfrac{1}{2} \end{array} \right. $

$A= \dfrac{x_1-1}{x_2+1} + \dfrac{x_2 -1}{x_1 +1}$

$= \dfrac{x_1^2 -1 + x_2^2-1}{x_1x_2 +x_1+x_2+1} $

$= \dfrac{\left( x_1 + x_2 \right) ^2 – 2x_1x_2 -2}{-\dfrac{1}{2}+ \dfrac{3}{2}+ 1} $

$= \dfrac{\dfrac{9}{4}+1-2}{2} = \dfrac{5}{8} $

Bài 3. Quy tắc sau đây cho ta biết được ngày $n$, tháng $t$, năm $2019$ là ngày thứ mấy trong tuần. Đầu tiên, ta tính giá trị của biểu thức $T=n+ H$, ở đây $H$ được xác định bởi bảng sau:

Sau đó, lấy $T$ chia cho $7$ ta được số dư $r$ ($0 \le r \le 6$)

Nếu $r=0$ thì ngày đó là ngày thứ Bảy.

Nếu $r=1$ thì ngày đó là ngày Chủ Nhật.

Nếu $r=2$ thì ngày đó là ngày thứ Hai.

Nếu $r=6$ thì ngày đó là ngày thứ Sáu.

Ví dụ: Ngày $31/12/2019$ có $n=31$; $t=12$; $H=0 \Rightarrow T=31+0=31$; số $31$ chia cho $7$ có số dư là $3$, nên ngày đó là thứ Ba.

a) Em hãy sử dụng quy tắc trên để xác định các ngày $02/09/2019$ và $20/11/2019$ là thứ mấy?

b) Bạn Hằng tổ chức sinh nhật của mình trong tháng $10/2019$. Hỏi sinh nhật của bạn Hằng là ngày mấy? Biết rằng ngày sinh nhật của Hằng là một bội số của $3$ và là thứ Hai.

Giải

a)

  • Ngày $02/09/2019$ có $n=2$, $t=9$; $H= 0$ suy ra $T= 2+0= 2$; 2 chia $7$ dư $2$ nên đó là ngày thứ Hai.
  • Ngày $20/11/2019$ có $n=20$, $t= 11$, $H=-2$ suy ra $T= 20 -2 =18$; $18$ chia $7$ dư $4$ nên đó là ngày thứ Tư.

b) $t=10$; $H=2$ suy ra $T= n+2$

Vì sinh nhật Hằng là thứ Hai nên $T$ chia $7$ dư $2$, suy ra $n$ chia hết cho $7$

Suy ra $n \in \left\{ 7;14;21;28 \right\} $

Lại có $n$ chia hết cho $3$ nên $n=21$

Vậy sinh nhật của Hằng là $21/10/2019$.

Bài 4. Tại bề mặt đại dương, áp suất nước bằng áp suất khi quyển và là $1$ atm (atmosphere). Bên dưới mặt nước, áp suất nước tăng thêm $1$ atm cho mỗi $10$ mét sâu xuống. Biết rằng mối liên hệ giữa áp suất $y$ (atm) và độ sâu $x$ (m) dưới mặt nước là một hàm số bậc nhất có dạng $y=ax+b$

a) Xác định các hệ số $a$ và $b$

b) Một người thợ lặn đang ở độ sâu bao nhiêu nếu người ấy chịu một áp suất là $2,85$ atm?

Giải

a) Ta có: $y= 1+ \dfrac{x}{10}$

Vậy $a= \dfrac{1}{10}$ và $b=1$

b) Ta có: $2,85= 1+ \dfrac{x}{10} \Rightarrow x= 18,5$ (m)

Vậy người thợ lặn ở độ sâu $18,5$ mét.

Bài 5. Một nhóm gồm $31$ bạn học sinh tổ chức một chuyến đi du lịch (chi phí chuyển đi được chia đều cho mỗi bạn tham gia). Sau khi đã hợp đồng xong, vào giờ chót có $3$ ban bận việc đột xuất không đi được nên họ không đóng tiền. Cả nhóm thống nhất mỗi bạn còn lại sẽ đóng thêm $18 000$ đồng so với dự kiến ban đầu để bù lại cho $3$ bạn không tham gia. Hỏi tổng chi phí chuyến đi là bao nhiêu?

Giải

Tổng số tiền $28$ bạn còn lại đã đóng thêm:

$$ 18000 \cdot 28 = 504000 \text{ (đồng)}$$

Số tiền trên chính là tổng số tiền $3$ bạn phải đóng lúc đầu nếu vẫn đi du lịch, nên số tiền mỗi bạn phải đóng lúc đầu nếu đi đủ $31$ bạn là:

$$ 504000 : 3= 168000 \text{ (đồng)}$$

Tổng chi phí chuyến đi là:

$$ 168000 \cdot 31 = 5208000 \text{ (đồng)}$$

Bài 6. Cuối năm học, các bạn lớp $9A$ chia làm hai nhóm, mỗi nhóm chọn một khu vườn sinh thái ở Bắc bán cầu để tham quan. Khi mở hệ thống định vị GPS, họ phát hiện một sự trùng hợp khá thú vị là hai vị trí mà nhóm chọn đều nằm trên cùng một kinh tuyến và lần lượt ở các vĩ tuyến $47^\circ $ và $72^\circ $.

a) Tính khoảng cách (làm tròn đến hàng trăm) giữa hai vị trí đó, biết rằng kinh tuyến là một cung tròn nối liền hai cực của trái đất và có độ dài khoảng $20 000$ km.

b) Tính (làm tròn đến hàng trăm) độ dài bán kính và đường xích đao của trái đất. Từ kết quả của bán kính (đã làm tròn), hãy tính thể tích của trái đất, biết rằng trái đất có dạng hình cầu và thể tích của hình cầu được tính theo công thức $V= \dfrac{4}{3} \cdot 3,14 \cdot R^3$ với $R$ là bán kính hình cầu.

Giải

a) Ta có: $\angle AOB = 72^\circ – 47^\circ = 25^\circ $

Khoảng cách giữa hai vị trí tham quan: $20000 \cdot \dfrac{25}{180} \approx 2800$ (km)

b) Gọi $R$ là bán kính trái đất.

Độ dài đường xích đạo bằng $2$ lần độ dài đường kinh tuyến và bằng: $40000$ km

$\Rightarrow 2R \cdot 3,14 = 40000 \Rightarrow R \approx 6400$ (km)

Thể tích trái đất: $V = \dfrac{4}{3} \cdot 3,14 \cdot R^3 = 1097509546667 \; (km^3)$

Bài 7. Bạn Dũng trung bình tiêu thụ $15$ ca-lo cho mỗi phút bơi và $10$ ca-lo cho mỗi phút chạy bộ. Hôm nay, Dũng mất $1,5$ giờ cho cả hai hoạt động trên và tiêu thụ hết $1200$ ca-lo. Hỏi hôm nay bạn Dũng mất bao nhiêu thời gian cho mỗi hoạt động?

Giải

$1,5$ giờ $= 90$ phút

Gọi $x$, $y$ (phút) lần lượt là thời gian Dũng mất cho việc bơi và chạy bộ. ($x,y>0$)

Ta có hệ phương trình:

$\left\{ \begin{array}{l} x+ y =90 \\ 15x+ 10y= 1200 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x= 60 \\ y=30 \end{array} \right. $

Vậy Dũng đã bơi $60$ phút và chạy bộ $30$ phút.

Bài 8. Cho tam giác nhọn $ABC$ ($AB<AC$) nội tiếp đường tròn $(O)$. Hai đường cao $BD$ và $CE$ của tam giác $ABC$ cắt nhau tại $H$. Đường thẳng $AH$ cắt $BC$ và $(O)$ lần lượt tại $F$ và $K$ ($K\ne A$). Gọi $L$ là hình chiếu của $D$ lên $AB$.

a) Chứng minh rằng tứ giác $BEDC$ nội tiếp và $BD^2 = BL \cdot BA$

b) Gọi $J$ là giao điểm của $KD$ và $(O)$ ($J \ne K$). Chứng minh $\angle BJK = \angle BDE$

c) Gọi $I$ là giao điểm của $BJ$ và $ED$. Chứng minh tứ giác $ALIJ$ nội tiếp và $I$ là trung điểm của $ED$.

Giải

a) Tứ giác $BEDC$ có $\angle BEC= \angle BDC = 90^\circ$ nên tứ giác $BEDC$ nội tiếp đường tròn đường kính $BC$.

Tam giác $BDA$ vuông tại $D$ có $DL \bot BA$ nên ta có $BD^2=BL \cdot BA$

b) Có $ \angle BJK = \angle BCK =\angle BAK$ mà tứ giác $ADHE$ nội tiếp đường tròn đường kính $AH$ nên $\angle EAH= \angle BDE$ suy ra $\angle BJK =\angle BDE$.

c) Có $\angle BJK=\angle BDE$ suy ra $\Delta BDI \sim \Delta BJD (g-g)$ ta thu được $BD^2=BI \cdot BJ$

mà theo câu a) ta có $BD^2=BL \cdot BA$ nên $\Delta BIL \sim \Delta BAJ (c-g-c)$ suy ra $\angle BLI = \angle BJA$ do đó tứ giác $ALIJ$ nội tiếp.

Có $\angle LEI=\angle ACB=\angle AJB =\angle ELI$ suy ra tam giác $LEI$ cân tại $I$ nên $IL=IE$.

Tương tự $IL=ID$ suy ra $IE=ID (dpcm)$.

 

Đề thi và đáp án tuyển sinh vào 10 TPHCM 2018

Đề thi vào lớp 10 TPHCM năm 2018

 

Bài 1.  Cho parabol $(P):y=x^2$ và đường thẳng $(d):y=3x-2$.

a) Vẽ $(P)$ và $(d)$ trên cùng hệ trục tọa độ.

b) Tìm tọa độ giao điểm của $(P)$ và $(d)$ bằng phép tính.

Giải

a) Học sinh tự vẽ hình.

b) Phương trình hoành độ giao điểm của $(P)$ và $(d)$ là:

$x^2=3x-2 \Leftrightarrow x^2 -3x+2 =0 \Leftrightarrow (x-1)(x-2)=0 \Leftrightarrow \left[ \begin{array}{l} x=1 \\ x=2 \end{array} \right. $

  • Với $x=1$, suy ra $y=1$
  • Với $x=2$, suy ra $y=4$

Vậy giao điểm của $(P)$ và $(d)$ là $(1;1)$ và $(2;4)$

Bài 2. Cho phương trình: $3x^2-x-1=0$ có hai nghiệm $x_1$, $x_2$.

Không giải phương trình, hãy tính giá trị của biểu thức $A=x_1^2+x_2^2$.

Giải

$3x^2-x-1=0$

Ta có: $\Delta = 1-4.3.(-1)=13>0$ nên phương trình trên luôn có hai nghiệm $x_1$, $x_2$.

Theo định lý Viete, ta có: $\left\{ \begin{array}{l} S=x_1+x_2=-\dfrac{b}{a}=\dfrac{1}{3} \\ P=x_1.x_2= \dfrac{c}{a}= -\dfrac{1}{3} \end{array} \right. $

$A=x_1^2 + x_2^2 = \left( x_1 +x_2 \right) ^2 -2x_1x_2 = \left( \dfrac{1}{3} \right) ^2 -2. \dfrac{-1}{3} = \dfrac{7}{9}$

Bài 3. Mối quan hệ giữa thang đo nhiệt độ $F$ (Fahrenheit) và thang đo nhiệt độ $C$ (Celsius) được cho bởi công thức $T_F=1,8T_C +32$, trong đó $T_C$ là nhiệt độ tính theo độ $C$ và $T_F$ là nhiệt độ tính theo độ $F$.

Ví dụ: $T_C= 0^\circ C$ tương ứng với $T_F=32^\circ F$.

a) Hỏi $25^\circ C$ ứng với bao nhiêu độ $F$?

b) Các nhà khoa học đã tìm ra mối liên hệ giữa $A$ là số tiếng kêu của một con dế trong một phút và $T_F$ là nhiệt độ cơ thể của nó bởi công thức: $A=5,6.T_F-275$, trong đó nhiệt độ $T_F$ tính theo độ $F$. Hỏi nếu con dế kêu $106$ tiếng trong một phút thì nhiệt độ của nó khoảng bao nhiêu độ $C$? (làm tròn đến hàng đơn vị)

Giải

a) Với $T_C= 25^\circ C$ thì: $T_F=1,8.25+32=77 \left( ^\circ F \right) $

b) Nếu con dế kêu 106 tiếng trong một phút thì ta có:

$106=5,6.T_F-275 \Leftrightarrow T_F=\dfrac{1905}{28} \left( ^\circ F \right) $

Nhiệt độ con dế tính theo độ $C$:

$T_F = 1,8. T_C +32 \Leftrightarrow \dfrac{1905}{28}=1,8 .T_C +32 \Leftrightarrow T_C \approx 20,02 \left( ^\circ C \right) $

Bài 4. Kim tự tháp Kheops – Ai Cập có dạng hình chóp đều, đáy là hình vuông, các mặt bên là tam giác cân chung đỉnh (hình vẽ). Mỗi cạnh bên của kim tự tháp dài $214 \; m$, cạnh đáy của nó dài $230 \; m$.

a) Tính theo mét chiều cao $h$ của kim tự tháp (làm tròn đến chữ số thập phân thứ nhất).

b) Cho biết thể tích của hình chóp được tính theo công thức $V=\dfrac{1}{3}S.h$, trong đó $S$ là diện tích mặt đáy, $h$ là chiều cao của hình chóp. Tính theo $m^3$ thể tích của kim tự tháp này (làm tròn đến hàng nghìn).

Giải

a) Xét $\triangle BCD$ vuông tại $C$, ta có:

$BD^2 = BC^2 + CD^2$

$\Leftrightarrow BD^2 = 230^2 + 230^2 $

$\Leftrightarrow BD = 230\sqrt{2} \; (m)$ $

$\Rightarrow DO = \dfrac{BD}{2}= 115\sqrt{2} \; m$

$\triangle  SOD$ vuông tại $O$ có:

$SO^2 + OD^2 = SD^2 $

$\Leftrightarrow h^2 + \left( 115\sqrt{2} \right) ^2 = 214^2 $

$\Leftrightarrow h^2 = 19346 \Leftrightarrow h \approx 139,1 \; m$

Vậy $h \approx 139,1 \; m$

b) $S_{ABCD} = BC^2 = 230^2 \; \left( m^2 \right) $

Suy ra: $V_{ABCD} = \dfrac{1}{3}. S_{ABCD}.h= \dfrac{1}{3}. 230^2 .\sqrt{19346} \approx 2453000 \; \left( m^3 \right) $

Bài 5. Siêu thị $A$ thực hiện chương trình giảm giá cho khách hàng mua loại túi bột giặt $4kg$ như sau: Nếu mua $1$ túi thi được giảm $10 000$ đồng so với giá bán niêm yết. Nếu mua $2$ túi thì túi thứ nhất được giảm $10 000$ đồng và túi thứ hai được giảm $20 000$ đồng so với giá niêm yết. Nếu mua từ $3$ túi trở lên thì ngoài $2$ túi đầu được hưởng như chương trình giảm giá như trên, từ túi thứ ba trở đi, mỗi túi sẽ được giảm $20\%$ so với giá niêm yết.

a) Bà Tư mua $5$ túi bột giặt loại $4kg$ ở siêu thị $A$ thì phải trả số tiền là bao nhiêu, biết rằng loại túi bột giặt bà Tư mua có giá niêm yết là $150 000$ đồng/túi.

b) Siêu thị $B$ lại có hình thức giảm giá khác cho loại túi bột giặt nêu trên là: nếu mua từ $3$ túi trở lên thì sẽ giảm giá $15\%$ cho mỗi túi. Nếu bà Tư mua $5$ túi bột giặt thì bà Tư nên mua ở siêu thị nào để số tiền phải trả là ít hơn? Biết rằng giá niêm yết của hai siêu thị là như nhau.

Giải

a) Giá bà Tư phải trả cho túi thứ nhất:

$$ 150 000-10000=140000 \text{ (đồng)} $$

Giá bà Tư phải trả cho túi thứ hai:

$$ 150 000-20000=130000 \text{ (đồng)} $$

Giá bà Tư phải trả cho từ túi thứ 3 đến túi thứ 5:

$$3. 150 000. \left( 100\% -20\% \right) =360000 \text{ (đồng)} $$

Tổng số tiền bà Tư phải trả ở siêu thị $A$:

$$ 140000+130000+360000=630000 \text{ (đồng)}$$

b) Số tiền bà Tư phải trả khi mua 5 túi ở siêu thị $B$:

$$5.150000.\left( 100\% -15\% \right) = 637500 \text{ (đồng)}$$.

Vậy bà Tư nên mua ở siêu thị $A$.

Bài 6. Nhiệt độ sôi của nước không phải lúc nào cũng là $100^\circ C$ mà phụ thuộc vào độ cao của nơi đó so với mực nước biển. Chẳng hạn, Thành phố Hồ Chí Minh có độ cao xem như ngang mực nước biển ($x=0m$) thì nước sôi ở nhiệt độ là $y=100^\circ C$, nhưng ở thủ đô La Paz của Bolivia, Nam Mỹ có độ cao $x=3600m$ so với mực nước biển thì nhiệt độ sôi của nước là $y=87^\circ C$. Ở độ cao trong khoảng vài $km$, ngườu ta thấy mối liên hệ giữa hai đại lượng này là một hàm số bậc nhất $y=ax+b$ có đồ thị như sau:

trong đó $x$ là đại lượng biểu thị cho độ cao so với mực nước biển, $y$ là đại lượng biểu thị cho nhiệt độ sôi của nước.

a) Xác định các hệ số $a$ và $b$.

b) Thành phố Đà Lạt có độ cao $1500m$ so với mực nước biển. Hỏi nhiệt độ sôi của nước ở thành phố này là bao nhiêu?

Giải

a) Ta có: $y=ax+b$ $(1)$.

Dựa vào đồ thị, ta có:

  • Với $x=0$ thì $y=100$, thay vào $(1)$, ta có:

$100=a.0+b \Leftrightarrow b=100$

Suy ra hàm số: $y=ax+100$ $(2)$

  • Với $x=3600$ thì $y=87$, thay vào $(2)$, ta có:

$87=a.3600+100 \Leftrightarrow a=\dfrac{-13}{3600}$

Vậy mối liên hệ là hàm số: $y=-\dfrac{13}{3600}x+100$, hay $a=-\dfrac{13}{3600}$ và $b=100$

b) Nhiệt độ sôi ở Đà Lạt ($x=1500$) là:

$y=-\dfrac{13}{3600}.1500+100 \approx 94,6 \; \left( ^\circ C \right) $

Bài 7. Năm học $2017-2018$, Trường THCS Tiến Thành có ba lớp $9$ gồm $9A$, $9B$, $9C$ trong đó lớp $9A$ có $35$ học sinh và lớp $9B$ có $40$ học sinh. Tổng kết cuối năm học, lớp $9A$ có $15$ học sinh đạt danh hiệu học sinh giỏi, lớp $9B$ có $12$ học sinh đạt danh hiệu học sinh giỏi, lớp $9C$ có $20\%$ đạt danh hiệu học sinh giỏi và toàn khối $9$ có $30\%$ đạt danh hiệu học sinh giỏi. Hỏi lớp $9C$ có bao nhiêu học sinh?

Giải

Gọi $x$ (học sinh) là số học inh của lớp $9C$. ($x\in \mathbb{N}^*$)

Tổng số học sinh giỏi của khối $9$ là: $15+12+x.20\% = 27 + \dfrac{x}{5}$ (học sinh)

Tổng số học sinh của khối $9$: $35+40+x=75+x$ (học sinh)

Ta có:  $\dfrac{27+\dfrac{x}{5}}{75+x}=30\% $

$\Leftrightarrow 27 + \dfrac{x}{5} = \dfrac{3}{10} \left( 75+x \right) $

$\Leftrightarrow 27 + \dfrac{x}{5}= \dfrac{45}{2}+ \dfrac{3}{10}x $

$\Leftrightarrow \dfrac{1}{10}x= \dfrac{9}{2} $

$\Leftrightarrow x=45$ (nhận)

Vậy lớp $9C$ có $45$ học sinh.

Bài 8. Cho tam giác $ABC$ có $BC=8cm$. Đường tròn tâm $O$ đường kính $BC$ cắt $AB$, $AC$ lần lượt tại $E$ và $D$. Hai đường thẳng $BD$ và $CE$ cắt nhau tại $H$.

a) Chứng minh: $AH$ vuông góc với $BC$.

b) Gọi $K$ là trung điểm của $AH$. Chứng minh tứ giác $OEKD$ nội tiếp.

c) Cho $\angle BAC = 60^\circ $. Tính độ dài đoạn $DE$ và tỉ số diện tích hai tam giác $AED$ và $ABC$.

Giải

a) $\triangle ABC$ có:  $\left. \begin{array}{l} CH\bot AB \\ BH \bot AC \end{array} \right\} \Rightarrow H$ là trực tâm của $\triangle ABC \Rightarrow  $AH \bot BC$.

b) $\triangle AEH$ và $\triangle ADH$ lần lượt vuông tại $E$ và $D$

Nên $4$ điểm $A, E, H, D$ cùng nằm trên đường tròn đường kính $AH$ hay đường tròn tâm $K$.

$\Rightarrow \angle BAC = \dfrac{1}{2} \angle EKD$.

Lại có $\angle ABD = \dfrac{1}{2} \angle DOE$ nên

$\angle BAC + \angle ABD = \dfrac{1}{2} \left( \angle EKD + \angle DOE \right) $

$\Rightarrow 180^\circ – ADB = \dfrac{1}{2} \left( \angle EKD + \angle DOE \right) $

$\Rightarrow 90^\circ = \dfrac{1}{2} \left( \angle EKD + \angle DOE \right) $

$\Rightarrow \angle EKD + \angle DOE = 180^\circ $

Vậy $KDOE$ nội tiếp.

c) $\angle A =60^\circ \Rightarrow \angle EKD = 120^\circ \Rightarrow \angle DOE = 60^\circ$

$\triangle DOE$ cân tại $O$ có $\angle DOE =60^\circ $ nên $\triangle DOE$ đều.

$\Rightarrow DE=DO=EO=4cm$

Lại có $\triangle ADE \backsim \triangle ABC$ $(g-g)$ nên

$\dfrac{S_{ADE}}{S_{ABC}}= \left( \dfrac{AD}{AB} \right) ^2 = \left( \cos \angle BAC \right) ^2 = \left( \cos 60^\circ \right) ^2 = \dfrac{1}{4}$

Đề thi và đáp án tuyển sinh vào 10 TPHCM 2011

Đề thi vào lớp 10 TPHCM Năm 2011

Bài 1. Giải các phương trình và hệ phương trình sau:

a) $3 x^{2}-2 x-1=0$

b)  $\left\{\begin{array}{l}5 x+7 y=3 \\ 5 x-4 y=-8\end{array}\right.$

c) $x^{4}+5 x^{2}-36=0$

d) $3 x^{2}-x\sqrt{3}+\sqrt{3}-3=0$.

Giải

a) Vì phương trình $3x^2-2x-1 =0$ có $a+b+c=0$ nên

$(a) \Leftrightarrow x=1$ hoặc $x=\dfrac{-1}{3}$.

b)  $\left\{\begin{array}{l}5 x+7 y=3 \\ 5 x-4 y=-8 \end{array} \right. \Leftrightarrow \left\{\begin{array}{l}11 y=11 \\ 5 x-4 y=-8\end{array} \right.$

$\quad((1)-(2))$ $\Leftrightarrow\left\{\begin{array}{l}y=1 \\ 5 x=-4\end{array} \\ \Leftrightarrow\left\{\begin{array}{l}x=-\dfrac{4}{5} \\ y=1\end{array}\right.\right.$.

c)  Đặt $\mathrm{u}=\mathrm{x}^{2} \geq 0,$ phương trình thành $: \mathrm{u}^{2}+5 \mathrm{u}-36=0$

$(*)$ có $\Delta=169,$ nên

$(*) \Leftrightarrow u=\dfrac{-5+13}{2}=4$ hay $u=\dfrac{-5-13}{2}=-9\ ($loại$)$

Do đó, phương trình có nghiệm $ \mathrm{x}=\pm 2$.

Cách khác $:(\mathrm{c}) \Leftrightarrow\left(\mathrm{x}^{2}-4\right)\left(\mathrm{x}^{2}+9\right)=0 \Leftrightarrow \mathrm{x}^{2}=4 \Leftrightarrow \mathrm{x}=\pm 2$.

d) $(d)$ có $: \mathrm{a}+\mathrm{b}+\mathrm{c}=0$ nên

$(\mathrm{d}) \Leftrightarrow \mathrm{x}=1$ hay $x=\dfrac{\sqrt{3}-3}{3}$.

Bài 2.

a) Vẽ đồ thị $(P)$ của hàm số $y=-x^{2}$ và đường thẳng $(\mathrm{D}): y=-2 x-3$ trên cùng một hệ trục toạ độ.

b) Tìm tọa độ các giao điểm của (P) và (D) ở câu trên bằng phép tính.

Giải

a) Đồ thị tự vẽ.

Lưu ý: $(P)$ đi qua $\mathrm{O}(0 ; 0),(\pm 1 ;-1),(\pm 2 ;-4)$

$(D)$ đi qua $(-1 ;-1),(0 ;-3)$.

b) Phương trình hoành độ giao điểm của $(P)$ và $(D)$ là

$-x^{2}=-2 x-3 \Leftrightarrow x^{2}-2 x-3=0 \Leftrightarrow x=-1$ hay $x=3($vì $a-b+c=0)$

$y(-1)=-1, y(3)=-9$.

Vậy toạ độ giao điểm của $(P)$ và $(D)$ là $(-1 ;-1),(3 ;-9)$.

Bài 3. Thu gọn các biểu thức sau:

$$A=\sqrt{\dfrac{3 \sqrt{3}-4}{2 \sqrt{3}+1}}+\sqrt{\dfrac{\sqrt{3}+4}{5-2 \sqrt{3}}} $$

$$B=\dfrac{x \sqrt{x}-2 x+28}{x-3 \sqrt{x}-4}-\dfrac{\sqrt{x}-4}{\sqrt{x}+1}+\dfrac{\sqrt{x}+8}{4-\sqrt{x}} \quad(x \geq 0, x \neq 16)  $$

Giải

Ta có: $A=\sqrt{\dfrac{(3 \sqrt{3}-4)(2 \sqrt{3}-1)}{11}}-\sqrt{\dfrac{(\sqrt{3}+4)(5+2 \sqrt{3})}{13}} $

$=\sqrt{\dfrac{22-11 \sqrt{3}}{11}} -\sqrt{\dfrac{26+13 \sqrt{3}}{13}}=\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}} $

$=\dfrac{1}{\sqrt{2}}(\sqrt{4-2 \sqrt{3}}-\sqrt{4+2 \sqrt{3}})=\dfrac{1}{\sqrt{2}}\left(\sqrt{(\sqrt{3}-1)^{2}}-\sqrt{(\sqrt{3}+1)^{2}}\right) $

$=\dfrac{1}{\sqrt{2}}[\sqrt{3}-1-(\sqrt{3}+1)]=-\sqrt{2}$

 

Ta có: $B=\dfrac{x \sqrt{x}-2 x+28}{x-3 \sqrt{x}-4}-\dfrac{\sqrt{x}-4}{\sqrt{x}+1}+\dfrac{\sqrt{x}+8}{4-\sqrt{x}} \quad(x \geq 0, x \neq 16) $

$=\dfrac{x \sqrt{x}-2 x+28}{(\sqrt{x}+1)(\sqrt{x}-4)}-\dfrac{\sqrt{x}-4}{\sqrt{x}+1}+\dfrac{\sqrt{x}+8}{4-\sqrt{x}} $

$=\dfrac{x \sqrt{x}-2 x+28-(\sqrt{x}-4)^{2}-(\sqrt{x}+8)(\sqrt{x}+1)}{(\sqrt{x}+1)(\sqrt{x}-4)} $

$=\dfrac{x \sqrt{x}-2 x+28-x+8 \sqrt{x}-16-x-9 \sqrt{x}-8}{(\sqrt{x}+1)(\sqrt{x}-4)}=\dfrac{x \sqrt{x}-4 x-\sqrt{x}+4}{(\sqrt{x}+1)(\sqrt{x}-4)} $

$=\dfrac{(\sqrt{x}+1)(\sqrt{x}-1)(\sqrt{x}-4)}{(\sqrt{x}+1)(\sqrt{x}-4)}=\sqrt{x}-1$

Bài 4. Cho phương trình $x^{2}-2 m x-4 m-5=0$ ($x$ là ẩn số)

a) Chứng minh rằng phương trình luôn luôn có nghiệm với mọi $m$.

b) Gọi $x_1, x_2$ là các nghiệm của phương trình. Tìm $m$ để biểu thức $A=x_{1}^{2}+x_{2}^{2}-x_{1} x_{2}$ đạt giá trị nhỏ nhất.

Giải

a) Phương trình $(1)$ có $\Delta^{\prime}=\mathrm{m}^{2}+4 \mathrm{~m}+5=(\mathrm{m}+2)^{2}+1>0$ với mọi $m$ nên phương trình $(1)$ có $2$ nghiệm phân biệt với mọi $m$.

b) Do đó, theo Viet, với mọi $\mathrm{m},$ ta có: $\mathrm{S}=-\dfrac{b}{a}=2 m ; \mathrm{P}=\dfrac{c}{a}=-4 m-5$

$\begin{array}{l} \Rightarrow \mathrm{A}=\left(x_{1}+x_{2}\right)^{2}-3 x_{1} x_{2}=4 m^{2}+3(4 m+5)=(2 m+3)^{2}+6 \geq 6, \text { với mọi } \mathrm{m} . \\ \text { Và } \mathrm{A}=6 \text { khi } \mathrm{m}=\dfrac{-3}{2} \end{array} $

Vậy $A$ đạt giá trị nhỏ nhất là 6 khi $\mathrm{m}=\dfrac{-3}{2}$

Bài 5. Cho đường tròn $(O)$ có tâm $O$, đường kính $BC$. Lấy một điểm $A$ trên đường tròn $(O)$ sao cho $\mathrm{AB}>\mathrm{AC}$. Từ $A$, vẽ $\mathrm{AH}$ vuông góc với $\mathrm{BC}$ ($H$ thuộc $\mathrm{BC}$ ). Từ $\mathrm{H},$ vẽ $\mathrm{HE}$ vuông góc với $\mathrm{AB}$ và $\mathrm{HF}$ vuông góc với $\mathrm{AC}$ (E thuộc $\mathrm{AB}, \mathrm{F}$ thuộc $\mathrm{AC}$ ).

a) Chứng minh rằng $AEHF$ là hình chữ nhật và OA vuông góc với EF.

b) Đường thắng $EF$ cắt đường tròn $(O)$ tại $\mathrm{P}$ và $\mathrm{Q}$ ($E$ nằm giữa $\mathrm{P}$ và $\mathrm{F}$ ). Chứng minh $\mathrm{AP}^{2}=\mathrm{AE} . \mathrm{AB}$. Suy ra $APH$ là tam giác cân.

c) Gọi $D$ là giao điểm của $\mathrm{PQ}$ và $\mathrm{BC} ; \mathrm{K}$ là giao điểm cùa $AD$ và đường tròn $(O)$ ($K$ khác $A$). Chứng minh $AEFK$ là một tứ giác nội tiếp.

d) Gọi $I$ là giao điểm của $\mathrm{KF}$ và $\mathrm{BC}$. Chứng minh $\mathrm{IH}^{2}=\mathrm{IC} . \mathrm{ID}$.

Giải

a) Tứ giác $AEHF$ là hình chữ nhật vì có $3$ góc vuông.

$\angle HAF = \angle EFA$ ($AEHF$ là hình chữ nhật),

$\angle OAC=\angle OCA$ ($\triangle OAC$ cân)

Do đó: $\angle OAC+\angle AFE=90^{\circ}$

$\Rightarrow$ $OA$ vuông góc với $EF$.

b) $OA$ vuông góc $\mathrm{PQ} \Rightarrow$ cung $\mathrm{PA}=$ cung $\mathrm{AQ}$

Do đó: $\triangle \mathrm{APE}\backsim \triangle \mathrm{ABP}$

$\Rightarrow \dfrac{A P}{A B}=\dfrac{A E}{A P} \Rightarrow \mathrm{AP}^{2}=\mathrm{AE} \cdot \mathrm{AB}$.

Ta có : $\mathrm{AH}^{2}=$ AE.AB (hệ thức lượng $\Delta \mathrm{HAB}$ vuông tại $\mathrm{H}$, có $\mathrm{HE}$ là chiều cao) $\Rightarrow \mathrm{AP}=\mathrm{AH} \Rightarrow \triangle \mathrm{APH}$ cân tại $\mathrm{A}$

c) $\mathrm{DE.DF}=\mathrm{DC.DB}, \mathrm{DC.DB}=\mathrm{DK.DA} \Rightarrow \mathrm{DE.DF}=\mathrm{DK.DA}$.

Do đó $\Delta \mathrm{DFK}\backsim \Delta \mathrm{DAE} \Rightarrow$ $\angle \mathrm{DKF}= \angle \mathrm{DEA} \Rightarrow$ tứ giác $AEFK$ nội tiếp.

d) $\angle ICF = \angle AEF = \angle DKF$ vậy ta có: $IC\cdot ID=IF\cdot IK$ ( $\triangle \mathrm{ICF}$ đồng dạng $\triangle \mathrm{IKD})$ và $\mathrm{IH}^{2}=IF.IK$ (từ $\triangle \mathrm{IHF}$ đồng dạng $\left.\triangle \mathrm{IKH}\right) \Rightarrow \mathrm{IH}^{2}=\mathrm{IC} . \mathrm{ID}$.

Đề thi và đáp án tuyển sinh vào lớp 10 TPHCM 2016

I. ĐỀ 

Bài 1. Giải các phương trình và hệ phương trình sau:
a) $x^2-2\sqrt{5}x+5=0$
b) $4x^4-5x^2-9=0$
c) $2x+5y=-1$ và $3x-2y=8 $
d) $x(x+3)=15-(3x-1)$.

Bài 2.
a) Vẽ đồ thị (P) của hàm số $y = \dfrac{-x^2}{4}$ và đường thẳng (D): $y = \dfrac{x}{2}-2$ trên cùng một hệ trục tọa độ.
b) Tìm tọa độ giao điểm của (P) và (D) ở câu trên bằng phép tính.
Bài 3.
a) Thu gọn biểu thức $A = \dfrac{2-\sqrt{3}}{1+\sqrt{4+2\sqrt{3}}} + \dfrac{2+\sqrt{3}}{1-\sqrt{4-2\sqrt{3}}}$
b) Ông Sáu gửi một số tiến vào ngân hàng theo mức lãi suất tiết kiệm với kù hạn 1 năm là 6$\%$. Tuy nhiên sau thời hạn một năm ông Sáu không đến nhận tiền lãi mà để thêm một năm nữa mới lãnh. Khi đó số tiền lãi có được sau năm đầu tiên sẽ được ngân ghàng cộng dồn vào số tiền gửi ban đầu để thành số tiền gửi cho năm kế tiếp với mức lãi suất cũ. Sau 2 năm ông Sáu nhận được số tiền là 112.360.000 đồng kể cả gốc lẫn lãi. Hỏi ban đầu ông Sáu đã gửi bao nhiêu tiền?
Bài 4. Cho phương trình $x^2 – 2mx + m – 2= 0 $(1) ($x$ là ẩn số.)

a) Chứng minh phương trình (1) luôn có 2 nghiệm phân biệt với mọi giá trị $m$.
b) Định $m$ để hai nghiệm $x_1, x_2$ của phương trình (1) thỏa mãn : $(1+x_1)(2-x_2) + (1+x_2)(2-x_1) = x_1^2+x_2^2+2 $
Bài 5. Cho tam giác $ABC$ $(AB < AC) $ có ba góc nhọn. Đường trong tâm $O$ đường kính $BC$ cắt các cạnh $AC, AB$ lần lượt tại $D, E$.
Gọi $H$ là giao điểm của $BD$ và $CE$; $F$ là giao điểm của $AH$ và $BC$.
a) Chứng minh $AF \bot BC$ và $\angle AFD = \angle ACE$.
b) Gọi $M$ là trung điểm của $AH$. Chứng minh $BD \bot OD$ và 5 điểm $M, D, O, F, E$ cùng thuộc một đường tròn.
c) Gọi $K$ là giao điểm của $AH$ và $DE$. Chứng minh $MD^2 = MK.MF$ và $K$ là trực tâm của tam giác $MBC$.
d) Chứng minh $\dfrac{2}{FK} = \dfrac{1}{FH} + \dfrac{1}{FA}$.

II. ĐÁP ÁN

Bài 1. Giải các phương trình và hệ phương trình sau:
a) $x^2 – 2\sqrt{5}x + 5=0$
$\Delta ‘= 0
x_1=x_2 = \sqrt{5}$.
b) $4x^4 – 5x^2 -9 =0$
Đặt $t=x^2 \ge 0$
Phương trình trở thành: $4t^2 – 5t -9=0$
$a-b+c =0$.
$\Rightarrow t_1 =-1$ (loại) và $t_2 = \dfrac{9}{4}$ (nhận)
Với $t=\dfrac{9}{4} \Rightarrow x= \pm \dfrac{3}{2}$
c) $2x + 5y =-1 $ và $3x-2y=8$
$ \Leftrightarrow 4x+ 10y =-2 $ và $15x -10y =40 $
$ \Leftrightarrow x=2$ và $y=-1$.
d) $x(x+3) = 15 – (3x-1) $
$\Leftrightarrow x^2 + 6x -16 =0$
$\Leftrightarrow x_1 =2$; $x_2 = -8$.

Bài 2.
a) Lưu ý: $(P)$ đi qua $O(0;0)$, $( \pm 2 ;-1)$, $\pm 4; -4 )$
$(D)$ đi qua $(2;-1)$, $(0;-2)$

Đồ thị:
b) Phương trình hoành độ giao điểm của $(P)$ và $(D)$ là:
$-\dfrac{x^2}{4}= \dfrac{x}{2}-2 $
$\Leftrightarrow x^2 + 2x -8 =0 $
$\Leftrightarrow x=-4$ hoặc $x=2$

$y(-4) = -4$, $y(2) = -1$
Vậy tọa độ giao điểm của $(P)$ và $(D)$ là $(-4;-4)$, $(2;-1)$.
Bài 3.
a) $A=\dfrac{2-\sqrt{3}}{1+\sqrt{4+2\sqrt{3}}}+ \dfrac{2+\sqrt{3}}{1-\sqrt{4-2\sqrt{3}}} $
$= \dfrac{2-\sqrt{3}}{1+ \left( 1+ \sqrt{3} \right) } + \dfrac{2+\sqrt{3}}{1- \left( \sqrt{3}-1 \right) } $
$= \dfrac{\left( 2+ \sqrt{3} \right) ^2 + \left( 2- \sqrt{3} \right) ^2}{\left( 2+\sqrt{3} \right) \left( 2- \sqrt{3}\right) } $
$=14$

b) Gọi số tiền ban đầu ông Sáu gửi là: $x$ (đồng)
Số tiền vốn và lãi sau năm thứ nhất là: $x+x \cdot 6 \% = 1,06 x$
Số tiền vốn và lãi sau năm thứ hai là: $1,06x + 1,06x \cdot 6\% = 1,06^2 \cdot x$
Theo đề ta được phương trình:\ $1,06^2 \cdot x = 112.360.000 \Rightarrow x= 100.000.000$ (đồng)
Bài 4.

a) $x^2 -2mx +m-2 =0$
$\Delta ‘= m^2 -m+2 = \left( m- \dfrac{1}{2} \right) ^2 + \dfrac{7}{4} >0, \; \forall m$
Do đó phương trình luôn có hai nghiệm phân biệt.
b) Theo Viet, ta có:

$S= x_1+ x_2 = 2m $ và  $P = x_1 \cdot x_2 = m-2$

$\left( 1+ x_1 \right) \left( 2-x_2 \right) + \left( 1+ x_2 \right) \left( 2- x_1 \right) = x_1^2 + x_2^2 +2 $
$\Leftrightarrow 2+ x_1 + x_2 = \left( x_1 + x_2 \right) ^2 $
$\Leftrightarrow 2+ 2m = 4m^2 $
$\Leftrightarrow m=1 $ hoặc $m= \dfrac{-1}{2}$
Bài 5.


a)

  • $\angle BEC = \angle BDC = 90^\circ $
    $\Rightarrow $ $CE$ và $BD$ là hai đường cao của tam giác $ABC$
    $\Leftrightarrow $ $H$ là trực tâm của tam giác $ABC$
    $\Rightarrow $ $AH$ là đường cao của tam giác $ABC$
    $\Rightarrow AF \bot BC$.
  • Tứ giác $HFCD$ nội tiếp ($\angle HFC + \angle HDC = 180^\circ$)
    $\Rightarrow \angle AFD = \angle ACE$

b)

  • $\angle MAD = \angle MDA$ và $\angle ODC = \angle OCD $
    Mà $\angle FAC + \angle FCA = 90^\circ
    \Rightarrow \angle MDA + \angle ODC = 90^\circ
    \Rightarrow \angle MDO = 90^\circ \Rightarrow MD \bot OD $
  • Chứng minh tương tự: $ME \bot OE$
  •  3 điểm $E$, $F$, $D$ cùng nhìn $MO$ dưới 1 góc $90^\circ$
    $\Rightarrow $ 5 điểm $M$, $D$, $O$, $F$, $E$ cùng thuộc đường tròn đường kính $MO$

c)

  • $MD$ là tiếp tuyến của đường tròn tâm $O$
    $\Rightarrow \angle MDE = \angle DCE$
    mà $\angle AFD = \angle ACE$ nên $\angle MDK = \angle MFD$
    Vậy $\triangle MDK \backsim \triangle MFD \Rightarrow MD^2 = MK \cdot MF$
  •  $MC$ cắt $(O)$ tại $L$
  • $\triangle MDL \backsim \triangle MCD \Rightarrow MD^2 = ML \cdot MC
    \Rightarrow MK \cdot MF = ML \cdot MC
    \Rightarrow \triangle MLK \backsim \triangle MFC
    \Rightarrow \angle KLM = \angle MFC =90^\circ
    \Rightarrow KL \bot MC$
    Mà $BL \bot MC$ (góc nội tiếp chắn nửa đường tròn)
    $\Rightarrow $ $B$, $K$, $L$ thẳng hàng
    $\Rightarrow$ $K$ là trực tâm $\triangle MBC$.

d)

  • $FH \cdot FA = FB \cdot FC$ ($\triangle BFH \backsim \triangle AFC$)
  • $FK \cdot FM = FB \cdot FC$ ($\triangle BFK \backsim \triangle MFC$)
    $\Rightarrow FH \cdot FA = FK \cdot FM
    \Rightarrow 2FH \cdot FA = 2 FK \cdot FM = FK ( FA + FH )
    \Rightarrow \dfrac{2}{FK} = \dfrac{1}{FH} + \dfrac{1}{FA}$.

Đề thi và đáp án tuyển sinh vào lớp 10 TPHCM 2015

I. ĐỀ tuyển sinh vào lớp 10 TPHCM 2015

Bài 1. Giải các phương trình và hệ phương trình sau:
a)  $x^2 – 8x+15=0$.
b)  $2x^2 – \sqrt{2}x -2 =0$.
c)  $x^4 -5 x^2 -6=0$.
d) $2x+ 5y = -3$ và $3x-y =4$

Bài 2.

a) Vẽ đồ thị (P) của hàm số $y = x^2$ và đường thẳng (D): $y = x + 2$ trên cùng một hệ trục tọa độ.
b) Tìm tọa độ giao điểm của (P) và (D) ở câu trên bằng phép tính.

Bài 3. Thu gọn các biểu thức sau:
a) $A = \dfrac{{\sqrt x }}{{\sqrt x – 2}} + \dfrac{{\sqrt x – 1}}{{\sqrt x + 2}} + \dfrac{{\sqrt x – 10}}{{x – 4}}\left( {x \ge 0,x \ne 4} \right)$
b) $B = (13-4\sqrt{3})(7+4\sqrt{3})-8\sqrt{20+2\sqrt{43+24\sqrt{3}}}$.
Bài 4. Cho phương trình $x^2 – mx+m-2=0$ (1) ($x$ là ẩn số).

a) Chứng minh phương trình (1) luôn có 2 nghiệm phân biệt với mọi giá trị $m$.
b) Định $m$ để hai nghiệm $x_1, x_2$ của (1) thỏa $\dfrac{x_1^2-2}{x_1-1}.\dfrac{x_2^2-2}{x_2-1} = 4$.
Bài 5. Cho tam giác $ABC$ có $AB < AC$ có ba góc nhọn. Đường tròn tâm $O$ đường kính $BC$ cắt các cạnh $AC, AB$ lần lượt là tại $E, F$. Gọi $H$ là giao điểm của $BE$ và $CF$. D là giao điểm của $AH$ và $BC$.
a) Chứng minh $AD \bot BC$ và $AH.AD = AE.AC$.
b) Chứng minh $EFDO$ là tứ giác nội tiếp.
c) Trên tia đối của tia $DE$ lấy điểm $L$ sao cho $DL = DF$. Tính số đo góc $BLC$.
d) Gọi $R, S$ lần lượt là hình chiếu của $B, C$ lên $EF$. Chứng minh $DE + DF = RS$.

II. ĐÁP ÁN

Bài 1. Giải các phương trình và hệ phương trình sau:
a) $x^2 -8x +15 =0$
$\Delta ‘ =1 $
Hai nghiệm của phương trình là $x_1 = 3$; $x_2 =5$
b)  $2x^2 – \sqrt{2}x -2 =0$
$\Delta =18$
Hai nghiệm của phương trình là $x_1 = \sqrt{2}$; $x_2 = \dfrac{-\sqrt{2}}{2}$
c) $x^4 – 5x^2 -6 =0 $
Đặt $t= x^2 \ge 0$
Phương trình trở thành $t^2 -5t -6=0$
$\Delta = 49$
$t_1 = -1$ (loại) và $t_2 = 6$ (nhận)
Với $t=6 \Rightarrow x= \pm \sqrt{6}$
d) $2x+ 5y =-3 \;\; (1)$ và $3x-y =4 \;\; (2)$
$\Leftrightarrow  2x+5y = -3 \;\; (1) $ và $17x = 17 \;\; ((1) + 5\cdot (2))$
$ \Leftrightarrow  x=1 $ và $y= -1$.

Bài 2.

a) Lưu ý: $(P)$ đi qua $O(0;0)$, $( \pm 1 ;1)$, $\pm 2; 4 )$
$(D)$ đi qua $(1;3)$, $(0;2)$

Đồ thị:
b) Phương trình hoành độ giao điểm của $(P)$ và $(D)$ là:
$x^2 = x + 2 \Leftrightarrow x^2 -x-2=0 $

$\Leftrightarrow  x=-1$ và $x=2$
$y(-1) = 1$, $y(2)=4$
Vậy tọa độ giao điểm của $(P)$ và $(D)$ là $(2;4)$, $(-1;1)$.

Bài 3.
a) $A=\dfrac{\sqrt{x}}{\sqrt{x}-2}+ \dfrac{\sqrt{x}-1}{\sqrt{x}+2}+ \dfrac{\sqrt{x}-10}{x-4} $
$= \dfrac{\sqrt{x} \left( \sqrt{x}+2 \right) + \left( \sqrt{x} -1 \right) \left( \sqrt{x}-2 \right) + \sqrt{x}-10}{x-4} $
$= \dfrac{x+2\sqrt{x}+x – 2\sqrt{x}-\sqrt{x}+2+ \sqrt{x}-10}{x-4}
= \dfrac{2x-8}{x-4} =2$
b) $B=\left( 13- 4\sqrt{3} \right) \left( 7+ 4\sqrt{3} \right) – 8\sqrt{20 + 2\sqrt{43 + 24\sqrt{3}}} $
$= 43 + 24\sqrt{3} – 8 \sqrt{20 + 2\sqrt{\left( 13-4\sqrt{3} \right) \left( 7+4\sqrt{3} \right) }} $
$= 43 + 24\sqrt{3} – 8\sqrt{\left( \sqrt{13-4\sqrt{3}} + \sqrt{7+ 4\sqrt{3}} \right) ^2} $
$= 43 + 24\sqrt{3} -8 \left( \sqrt{\left( 2\sqrt{3}-1 \right) ^2} + \sqrt{\left( 2+ \sqrt{3} \right) ^2 } \right) $
$= 43 + 24\sqrt{3} – 8 \left( 3\sqrt{3}+1 \right) $
$=35$.
Bài 4.

a) $x^2 – mx +m-2 =0$ $(1)$
$\Delta = m^2 -4m +8 = (m-2)^2 + 4 >0, \; \forall m$
Do đó phương trình $(1)$ luôn có hai nghiệm phân biệt.
b) Theo Viet, ta có:

$S= x_1 + x_2 = m $ và $P = x_1 \cdot x_2 = m-2$
$\dfrac{x_1^2 -2}{x_1-1} \cdot \dfrac{x_2^2-2}{x_2-1} =4 $
$\Leftrightarrow x_1^2x_2^2 – 2\left( x_1^2 + x_2^2 \right) + 4 = 4x_1x_2 – 4 \left( x_1 + x_2 \right) +4 $
$\Leftrightarrow P^2 -2 \left( S^2 -2P \right) -4P + 4S =0 $
$\Leftrightarrow P^2 -2S^2 + 4S =0 $
$\Leftrightarrow (m-2)^2 -2m^2 + 4m =0 $
$\Leftrightarrow -m^2 +4 =0 $
$\Leftrightarrow m= \pm 2$
Cách khác:
$x_1$, $x_2$ là hai nghiệm của phương trình nên:
$x_1^2 -mx_1 +m -2=0 \Rightarrow m= \dfrac{x_1^2-2}{x_1-1}$
$x_2^2 -mx_2 +m-2 =0 \Rightarrow m= \dfrac{x_2^2-2}{x_2-1}$
$\dfrac{x_1^2-2}{x_1-1} \cdot \dfrac{x_2^2 -2 }{x_2-1} =4
\Leftrightarrow m^2 =4 \Leftrightarrow m= \pm 2$.
Bài 5.


a) $\angle BEC = \angle BFC =90 ^\circ $
$H$ là trực tâm của $\triangle ABC \Rightarrow$ $AD$ là đường cao của $\triangle ABC \Rightarrow AD \bot BC$.
$\triangle ADC \backsim \triangle AEH \Rightarrow AH \cdot AD = AE \cdot AC$.
b) $\angle EOC = 2\angle EFC $
Tứ giác $HFBD$ nội tiếp $\Rightarrow \angle CFD = \angle EBC$ mà $\angle EBC = \angle CFE$
$\Rightarrow \angle CFD = \angle CFE \Rightarrow \angle DFE = 2\angle CFE$
Suy ra: $\angle EOC = \angle DFE \Rightarrow$ tứ giác $EFDO$ nội tiếp.
c) $EFDO$ nội tiếp $\Rightarrow \angle EDF = \angle EOF = 2\angle FCE$ (1)
Tam giác $DFL$ cân tại $D$ $\Rightarrow \angle EDF = 2\angle FLE$ (2)
Từ (1) và (2) $\Rightarrow \angle FCE = \angle FLE$
$\Rightarrow$ $EFLC$ nội tiếp $\Rightarrow L \in (O) \Rightarrow \angle BLC =90^\circ $
d) $\angle BIC =90^\circ \Rightarrow $ $SRBI$ là hình chữ nhật $\Rightarrow RS= BI$ (3)
$DF = DL$ và $OF = OL \Rightarrow $ $OD$ là trung trực của $FL$
$\Rightarrow \angle BIL = \angle BEF$ (vì cung $BL$ và $BF$ bằng nhau)
Mà $\angle BEF = \angle EBI$ nên $\angle BIL = \angle EBI \Rightarrow BE // LI$
$\Rightarrow $ $BEIL$ là hình thang cân $\Rightarrow EL = BI$ (4)
Từ (3) và (4) $\Rightarrow EL = RS$ hay $DE + DF = RS$.

 

 

Đề thi và đáp án thi vào lớp 10 TPHCM 2014

I. ĐỀ thi vào lớp 10 TPHCM 2014

Bài 1. Giải các phương trình và hệ phương trình sau:
a) $x^2-7x+12 = 0$
b) $x^2-(\sqrt{2}+1)x+\sqrt{2} = 0$
c) $x^4-9x^2+20=0$
d) $3x-2y=4$ và $ 4x-3y=5. $

Bài 2.
a) Vẽ đồ thị (P) của hàm số $y = x^2$ và đường thẳng $(D):y=2x+3$ trên cùng một hệ trục tọa độ.
b) Tìm tọa độ giao điểm của (P) và (D) ở câu trên bằng phép tính.
Bài 3. Thu gọn các biểu thức sau:
a) $A = \frac{{5 + \sqrt 5 }}{{\sqrt 5 + 2}} + \frac{{\sqrt 5 }}{{\sqrt 5 – 1}} – \frac{{3\sqrt 5 }}{{3 + \sqrt 5 }}$
b) $B = \left( {\frac{x}{{x + 3\sqrt x }} + \frac{1}{{\sqrt x + 3}}} \right):\left( {1 – \frac{2}{{\sqrt x }} + \frac{6}{{x + 3\sqrt x }}} \right)$ với $x > 0$.
Bài 4. Cho phương trình $x^2-mx-1=0$ (1) ($x$ là ẩn).

a) Chứng minh phương trình (1) luôn có hai nghiệm trái dấu.
b) Gọi $x_1, x_2$ là các nghiệm của phương trình (1). Tính giá trị của biểu thức $P = \dfrac{x_1^2+x_1-1}{x_1} – \dfrac{x_2^2+x_2-1}{x_2}$.
Bài 5. Cho tam giác $ABC$ có ba góc nhọn, nội tiếp đường tròn tâm $O$ $(AB < AC)$. Các đường cao $AD$ và $CF$ của tam giác $ABC$ cắt nhau tại $H$.
a) Chứng minh tứ giác $BFHD$ nội tiếp. Suy ra $\angle AHC = 180^o – \angle ABC$.
b) Gọi $M$ là điểm bất kì trên cung nhỏ $BC$ của đường tròn $(O)$. ($M$ khác $B$ và $C$) và $N$ là điểm đối xứng của $M$ qua $AC$. Chứng minh tứ giác $AHCN$ nội tiếp.
c) Gọi $I$ là giao điểm của $AM$ và $HC$. $J$ là giao điểm của $AC$ và $HN$. Chứng minh $\angle AJI = \angle ANC$.
d) Chứng minh rằng $OA$ vuông góc với $IJ$.

II. ĐÁP ÁN

Bài 1.
a) $x^2 – 7x +12 =0$
$\Delta =1 $
Hai nghiệm của phương trình là $x_1 = 3$; $x_2 =4$
b)  $x^2 – \left( \sqrt{2}+1 \right) + \sqrt{2} = 0 $
Phương trình có $a+b+c = 0$ nên hai nghiệm là $x_1=1$; $x_2 = \sqrt{2}$
c)  $x^4 – 9x^2 +20 =0$
Đặt $t= x^2 \ge 0$
Phương trình trở thành: $t^2 -9t +20 =0$
$\Delta =1 $
$t_1 =4$ (nhận) và $t_2 =5$ (nhận)
Với $t=4 \Rightarrow x= \pm 2$; với $t=5 \Rightarrow x= \pm \sqrt{5}$
d)  $3x-2y=4  (1) $ và $4x-3y =5  (2)$
$\Leftrightarrow  3x-2y=4  (1) $ và  $x= 2  (3\cdot (1) – 2 \cdot (2))$
$\Leftrightarrow  x=2$ và $y=1$.

Bài 2.
a) Đồ thị:

Lưu ý: $(P)$ đi qua $O(0;0)$, $( \pm 1 ;1)$, $\pm 2; 4 )$
$(D)$ đi qua $(-1;1)$, $(0;3)$
b) Phương trình hoành độ giao điểm của $(P)$ và $(D)$ là:
$x^2 = 2x+3 \Leftrightarrow x^2 -2x -3 =0$

$\Leftrightarrow  x = -1$ và $x= 3$
$y(-1) = 1$; $y(3) =9 $
Vậy tọa độ giao điểm của $(P)$ và $(D)$ là $(-1;1)$, $(3;9)$.
Bài 3.
a) $A= \dfrac{5+ \sqrt{5}}{\sqrt{5}+2} + \dfrac{\sqrt{5}}{\sqrt{5}-1}- \dfrac{3\sqrt{5}}{3+ \sqrt{5}} $
$= \dfrac{\left( 5+ \sqrt{5} \right) \left( \sqrt{5}-2 \right) }{1} + \dfrac{\sqrt{5}\left( \sqrt{5}+1 \right) }{4} – \dfrac{3\sqrt{5}\left( 3- \sqrt{5} \right) }{4} $
$= 3\sqrt{5}-5 + \dfrac{5+ \sqrt{5}-9\sqrt{5}+15}{4} $
$=3\sqrt{5}-5 + 5 -2\sqrt{5} = \sqrt{5}$.
b) $B=\left( \dfrac{x}{x+ 3\sqrt{x}}+ \dfrac{1}{\sqrt{x}+3} \right) : \left( 1- \dfrac{2}{\sqrt{x}} + \dfrac{6}{x+ 3\sqrt{x}} \right) \hspace{1.5cm} (x > 0) $
$= \left( \dfrac{\sqrt{x}}{\sqrt{x}+3} + \dfrac{1}{\sqrt{x}+3} \right) : \left( \dfrac{x+ 3\sqrt{x}- 2 \left( \sqrt{x} + 3 \right) + 6}{\sqrt{x} \left( \sqrt{x}+ 3 \right) } \right) $
$= \left( \dfrac{\sqrt{x}+ 1}{\sqrt{x} + 3} \right) : \left( \dfrac{\sqrt{x}+ 1}{\sqrt{x}+3} \right) =1$
Bài 4.

a) $x^2 – mx -1 =0$ $(1)$
$\Delta = m^2 + 4 >0$
Do đó phương trình luôn có hai nghiệm phân biệt với mọi $m$.
Theo Viet, ta có: $P = x_1 \cdot x_2 = \dfrac{c}{a} = -1 <0 $
Vậy phương trình luôn có hai nghiệm trái dấu.
b) Theo Viet, ta có:

$S= x_1 + x_2 = m $ và  $P = x_1 \cdot x_2 = -1$
$P = \dfrac{x_1^2 + x_1 -1}{x_1} – \dfrac{x_2^2 + x_2 -1}{x_2} $
$= \dfrac{x_1^2 + x_1 + x_1 x_2}{x_1} – \dfrac{x_2^2 + x_2 + x_1 x_2 }{x_2} $
$= x_1 + 1 + x_2 – x_2 -1 -x_1 =0$
Bài 5.


a) Ta có:
$\angle BFC = \angle BDA = 90^ \circ$ ($AD$, $CF$ là các đường cao)
$\Rightarrow \angle BFC + \angle BDA =180^ \circ \Rightarrow $ tứ giác $BFHD$ nội tiếp
$\Rightarrow \angle ABC + \angle DHF =180 ^\circ $
$\angle ABC + \angle AHC = 180 ^\circ $
$\angle AHC = 180 ^\circ – \angle ABC$.
b) Ta có $\angle AMC = \angle ABC$ ( cùng chắn cung $AC$)
$\angle AMC = \angle ANC$ (tính chất đối xứng)
$\Rightarrow \angle ANC = \angle ABC$
Mà $\angle AHC + \angle ABC = 180 ^\circ$
$\Rightarrow \angle AHC + \angle ANC = 180 ^\circ$
$\Rightarrow $ $AHCN$ nội tiếp.
c) Ta có $\angle MAC = \angle NAC$ ( tính chất đối xứng)
$\angle NAC = \angle NHC $ (cùng chắn cung $NC$)
$\Rightarrow \angle MAC = \angle NHC$ hay $\angle IAJ = \angle IHJ $
$\Rightarrow $ $AHIJ$ nội tiếp (2 đỉnh kề cùng nhìn cạnh dưới góc bằng nhau)
$\Rightarrow \angle AJI = 180 ^\circ \angle AHC = \angle ANC$.
d) Vẽ tiếp tuyến $xy$ của $(O)$ tại $A$ $\Rightarrow OA \bot xy$
$\angle AJI = \angle ANC = \angle AMC = \angle yAC \Rightarrow IJ // xy $
$\Rightarrow OA \bot IJ$.