Category Archives: Hình học

Định lý Ceva và Menelaus – Phần 3

Phần 2

Ví dụ 10. (USAMO 2012) Gọi $P$ là một điểm thuộc miền trong tam giác $ABC$ và $d$ là một đường thẳng qua $P$. Đường thẳng đối xứng của $PA$ qua $d$ cắt $BC$ tại $A’$; các điểm $B’, C’$ được xác định tương tự. Chứng minh rằng $A’, B’, C’$ thẳng hàng.

Lời giải

Ta có $\dfrac{A’B}{A’C} = \dfrac{S_{A’PC}}{S_{A’PC}} = \dfrac{PB\cdot \sin A’PB}{PC\cdot\sin A’PC}$. (1)
Tương tự ta cũng có $\dfrac{B’C}{B’A} = \dfrac{PC \cdot \sin B’PC}{PA \cdot \sin B’PA}$ và $\dfrac{C’A}{C’B} = \dfrac{PA \cdot \sin C’PA}{PB \cdot \sin C’PB}$. (2)
Theo tính chất đối xứng ta có $\sin A’PB = \sin B’PA,\\ \sin A’PC = \sin C’PA, \sin B’PC = \sin C’PB$. (3)
Từ (1), (2), (3) ta có $$\dfrac{A’B}{A’C}\cdot \dfrac{B’C}{B’A}\cdot \dfrac{C’A}{C’B} = 1$$
Do đó $A’,B’,C’$ thẳng hàng.

Ví dụ 11. Cho tam giác $ABC$. Ba đường tròn $w_a, w_b, w_c$ lần lượt đi qua các cặp đỉnh $B,C$; $C, A$; và $A, B$. Gọi $D, E, F$ lần giao điểm thứ hai của ba đường tròn này. Đường thẳng qua $D$ vuông góc với $AD$ cắt $BC$ tại $X$; các điểm $Y, Z$ được xác định tương tự. Chứng minh rằng $X, Y, Z$ thẳng hàng.

Lời giải

Ta có $\dfrac{XB}{XC} = \dfrac{DB\sin XDB}{DC \sin XDC}$;
$\dfrac{DB}{DC} = \dfrac{R_c \sin DAB}{R_b \sin DAC}$ và $\dfrac{\sin ADB}{\sin XDC} = \dfrac{\cos ADB}{\cos ADC}$;
Tương tự cho các phân thức $\dfrac{YC}{YA}, \dfrac{ZA}{ZB}$.
Mặt khác ta có $AD, BE, CZ$ đồng quy tại tâm đẳng phương nên $\dfrac{\sin DAB}{\sin DAC}\cdot \dfrac{\sin EBC}{\sin EBA}\cdot \dfrac{\sin FCA}{\sin FCB} = 1$.
Từ đó ta có $\dfrac{XB}{XC} \cdot \dfrac{YC}{YA} \cdot \dfrac{ZA}{ZB}=1$.
Vậy $X, Y, Z$ thẳng hàng.

Ví dụ 12. (IMO shortlist 2013) Cho tam giác $ABC$ nhọn. Gọi $O$ là tâm ngoại tiếp và $H$ là trực tâm tam giác $ABC$. Chứng minh rằng tồn tại các điểm $D, E, F$ thuộc các cạnh $BC, AC, AB$ thỏa: $OD + DH = OE+EH = OF + FH$ và $AD, BE, CF$ đồng quy.

Lời giải

Gọi $H_1$ là điểm đối xứng của $H$ qua $BC$, thì $H_1 \in (O)$.
Gọi $D$ là giao điểm của $OH_1$ và $BC$, khi đó $OD + DH = OD + DH_1 = OH_1 = R$.
Các điểm $E, F$ được xác định tương tự ta có $OD + DH = EO +EH = OF + FH$.
Ta cần chứng minh $AD, BE, CF$ đồng quy bằng định lý Ceva dạng sin.
Ta có $\dfrac{DB}{DC} = \dfrac{S_{BH_1D}}{S_{CH_1D}} = \dfrac{BH_1.\sin BH_1D}{CH_1 \sin CH_1D} = \dfrac{BH}{CH}\dfrac{\sin B}{\sin C}$
Các đẳng thức kia tương tự, nhân lại ta có điều cần chứng minh.

Ví dụ 13. Cho tam giác $ABC$ khác tam giác cân nội tiếp đường tròn $w$, các đường trung tuyến từ $A, B,C$ cắt $w$ tại $A’, B’, C’$. Gọi $A_1$ là giao điểm của tiếp tuyến tại $A’$ với $BC$; các điểm $B_1, C_1$ được xác định tương tự. Chứng minh rằng $A_1, B_1, C_1$ thẳng hàng.

Lời giải

Ta có $A_1B\cdot A_1C = A_1A’^2 \Rightarrow \dfrac{A_1B}{A_1C} = \dfrac{A_1B^2}{A_1A’^2} = \dfrac{\sin^2 A_1A’B}{\sin^2 A_1BA’} = \dfrac{\sin^2 A’AB}{\sin^2 A’AC}$.
Chứng minh tương tự cho các đẳng thức kia và nhân lại, áp dụng ceva sin cho 3 đường $AA’, BB’, CC’$ đồng quy.

Bài tập rèn luyện

 

Bài 1. Cho tứ giác $ABCD$, gọi $I$ là giao điểm của $AC$ và $BD$, $K$ là giao điểm của $AB$ và $CD$. Đường thẳng $IK$ cắt các cạnh $BC$ và $AD$ tại $P, Q$.
Chứng minh rằng: $ \dfrac{\overline{IP}}{\overline{IQ}} = -\dfrac{\overline{KP}}{\overline{KQ}}$

Bài 2. Cho tứ giác $ABCD$ ngoại tiếp đường tròn $w$, $w$ tiếp xúc với các cạnh $AB, BC, CD, DA$ lần lượt tại $M, N, P, Q$. Chứng minh $MQ, BD, PN$ song song hoặc đồng quy.

Bài 3. Cho tam giác $ABC$, đường phân giác ngoài góc $A$ cắt đường thẳng vuông góc với $BC$ kẻ từ $B$ và $C$ lần lượt tại $D$ và $E$. Chứng minh rằng $BE, CD$ và $AO$ đồng quy, với $O$ là tâm đường tròn ngoại tiếp tam giác $ABC$.

Bài 4. Gọi $I$ là tâm đường tròn nội tiếp của tam giác $ABC$. Gọi $A’, B’, C’$ lần lượt là điểm đối xứng của $I$ qua $BC, AC, AB$. Chứng minh rằng $AA’, BB’, CC’$ đồng quy.

Bài 5. Cho tam giác $ABC$. Về phía ngoài tam giác dựng các hình vuông $BCDE, ACFG, ABHK$ với tâm lần lượt là $O_1, O_2, O_3$. Chứng minh $AO_1, BO_2, CO_3$ đồng quy.

Bài 6. Cho tam giác $ABC$ không cân tại $A$. $M$ là một điểm nằm trong tam giác thỏa $\angle AMB – \angle ACB = \angle AMC – \angle ABC$. Chứng minh rằng đường thẳng nối tâm đường tròn nội tiếp tam giác $AMB$ và $AMC$ đi qua một điểm cố định.

Bài 7. Cho tam giác $ABC$ và điểm $M$ nằm trong tam giác. $AM, BM, CM$ cắt $BC, AC, AB$ lần lượt tại $A’, B’, C’$. Gọi $P$ là giao điểm của $BB’$ và $A’C’$; $Q$ là giao điểm của $CC’$ và $A’B’$. Chứng minh rằng: $$\angle MAP = \angle MAQ \Leftrightarrow \angle MAB = \angle MAC$$

Bài 8. Cho tam giác $ABC$. Gọi $O$ là tâm đường tròn ngoại tiếp tam giác $ABC$; $O_1, O_2, O_3$ lần lượt là tâm ngoại tiếp các tam giác $BCO, ACO$ và $ABO$. Chứng minh rằng $AO_1, BO_2, CO_3$ đồng quy tại một điểm.(Điểm Kosnita)

Bài 9. Cho tam giác $ABC$ có $M$ là trung điểm cạnh $AB$. $CE$ là phân giác góc $\angle ACB$. $D$ thuộc tia đối của tia $CA$ sao cho $CD = CB$. Gọi $K$ là giao điểm của $DM$ và $CE$. Chứng minh rằng $\angle KBC = \angle BAC$.

Bài 10. Cho tam giác $ABC$ nhọn nội tiếp đường tròn $(O)$ và có trực tâm $H$. Gọi $A_o, B_o, C_o$ là trung điểm của $BC, AC, AB$. $A_1$ là giao điểm của $AA_o$ và $(O)$, $A_2$ là giao điểm của $H$ qua $A_o$; đường thẳng $A_1A_2$ cắt $BC$ tại điểm $S_a$; các điểm $S_b, S_c$ được xác định tương tự. Chứng minh $S_a, S_b, S_c$ thẳng hàng.

Bài 11. Cho tam giác $ABC$. Các điểm $A_1, B_1, C_1$ lần lượt thuộc các cạnh $BC, AC, AB$ sao cho các đường thẳng $AA_1, BB_1, CC_1$ đồng quy.

a) Gọi $A_2$ là điểm đối xứng của $A_1$ qua trung điểm cạnh $BC$; các điểm $B_2, C_2$ được xác định tương tự. Chứng minh rằng $AA_2, BB_2, CC_2$ cũng đồng quy.
b) Đường tròn ngoại tiếp tam giác $A_1B_1C_1$ cắt $BC, AC, AB$ tại $A_3, B_3, C_3$. Chứng minh $AA_3, BB_3, CC_3$ đồng quy.

 

Bài 12. Cho tam giác $ABC$. Các điểm $A_1, B_1, C_1$ lần lượt thuộc các cạnh $BC, AC$ và $AB$. Gọi $G_a, G_b, G_c$ lần lượt là trọng tâm các tam giác $AB_1C_1, BC_1A_1, CA_1B_1$. Chứng minh rằng $AG_a, BG_b, CG_c$ đồng quy khi và chỉ khi $AA_1, BB_1, CC_1$ đồng quy.

Bài 13.(IMO SL 1995) Đường tròn nội tiếp tam giác $ABC$ tiếp xúc với các cạnh $BC, AC, AB$ tại $D, E, F$. $X$ là điểm bên trong tam giác $ABC$ sao cho đường tròn nội tiếp tam giác $XBC$ tiếp xúc với $BC$ tại $D$, tiếp xúc với $CX, BX$ tại $Y, Z$. Chứng minh rằng $E, F, Z, Y$ cùng thuộc một đường tròn.

Bài 14. Cho $P$ là điểm thuộc miền trong của tam giác $ABC$. Gọi $D, E, F$ là hình chiếu của $P$ trên $BC, AC, AB$. Gọi $X$ là điểm trên $EF$ sao cho $PX \bot PA$; các điểm $Y, Z$ được xác định tương tự. Chứng minh rằng các điểm $X, Y, Z$ thẳng hàng.

Bài 15. (IMO SL 2006) Cho tam giác $ABC$ có $\angle ACB < \angle BAC < 90^o$.Lấy $D$ là điểm thuộc cạnh $AC$ sao cho $BD = BA$. Đường tròn nội tiếp tam giác $ABC$ tiếp xúc với $AB$ tại $K$ và $AC$ tại $L$. Gọi $J$ là tâm đường tròn nội tiếp tam giác $BCD$. Chứng minh rằng đường thẳng $KL$ chia đôi đoạn $AJ$.

Bài 18. Cho tam giác $ABC$ nội tiếp đường tròn tâm $O$. Gọi $A_1$ là điểm đối xứng của $A$ qua $O$, gọi $A_2$ là điểm đối xứng của $O$ qua $BC$; các điểm $B_1, B_2, C_1, C_2$ được xác định tương tự. Chứng minh rằng đường tròn ngoại các tam giác $OA_1A_2 OB_1B_2$ và $OC_1C_2$ cùng đi qua 2 điểm.

Bài 19. Cho tam giác $ABC$, đường tròn tâm $I$ nội tiếp tam giác và tiếp xúc với các cạnh $BC, AC, AB$ tại $D, E, F$. $X$ là điểm nằm trong tam giác $DEF$, gọi $A_1, A_2$ là giao điểm của $DX$ với $EF$ và $(I)$; các điểm $B_1,B_2$;$C_1,C_2$ được xác định tương tự.

a) Chứng minh $AA_2, BB_2, CC_2$ đồng quy tại $Y$; $AA_1, BB_1, CC_1$ đồng quy tạu $Z$.
b) Chứng minh $X, Y, Z$ thẳng hàng.

 

Bài 20. Cho một đường tròn với hai dây $AB$ và $CD$ không song song. Đường vuông góc với $AB$ kẻ từ $A$ cắt đường vuông góc với $CD$ kẻ từ $C$ và từ $D$ lần lượt tại $M, P$. Đường vuông góc với $AB$ kẻ từ $B$ cắt đường vuông góc với $CD$ kẻ từ $C$ và $D$ lần lượt tại $Q$ và $N$. Chứng minh rằng các đường thẳng $AD, BC, MN$ đồng quy và các đường thẳng $AC, BD, PQ$ cũng đồng quy.

Bài 21. (IMO shortlis 2011) Cho $ABC$ là một tam giác với đường tròn nội tiếp tâm $I$ và đường tròn ngoại tiếp $(C)$. $D$ và $E$ là giao điểm thứ hai của $(C)$ với các tia $AI$ và $BI$ tương ứng. $DE$ cắt $AC$ tại điểm $F$, và cắt $BC$ tại điểm $G$. $P$ là giao điểm của đường thẳng đi qua $F$ song song với $AD$ và đường thẳng qua $G$ song song với $BE$. Giả sử rằng $K$ là giao điểm của các tiếp tuyến của $(C)$ tại $A$ và $B$. Chứng minh rằng ba đường thẳng $AE, BD$ và $KP$ là song song hoặc đồng quy.

Bài 22. (China TST 2014) Cho tam giác $ABC$ nội tiếp đường tròn $(O)$; $H_a$ là chân đường cao hạ từ $A$ của tam giác $ABC$. $AO$ cắt đường tròn ngoại tiếp tam giác $BOC$ tại $A’$. Gọi $D, E$ là hình chiếu của $A’$ trên $AB$ và$AC$; và $O_a$ là tâm đường tròn ngoại tiếp tam giác $DEH_a$; Ta định nghĩa các điểm $H_b, O_b, H_c, O_c$ tương tự. Chứng minh rằng $H_aO_a, H_bO_b$ và $H_cO_c$ đồng quy.

 

Định lý Ceva và Menelaus – Phần 2

Trong hình học ta gặp nhiều bài toán về chứng minh ba đường đồng quy và ba điểm thẳng hàng, một trong những công cụ quen thuộc và kinh điển nhất là định lý Ceva và định lý Menelaus. Ngoài việc áp dụng chứng minh thẳng hàng đồng quy, các định lý Ceva và Nemelaus còn áp dụng chứng minh các đẳng thức về độ dài, góc, là cơ sở của những phương pháp mạnh khác như: hàng điểm điều hòa, cực đối cực,…

Hai định lý được phát biểu với dạng hình học, dạng đại số và dạng lượng giác, trong phần này ta ưu tiên các phát biểu dưới dạng độ dài hình học, góc hình học vì sự đơn giản của nó.

Định lý Ceva

(Dạng độ dài hình học) Cho tam giác $ABC$, nếu $A_1, B_1, C_1$ là là các điểm thuộc các cạnh $BC, AC, AB$. Khi đó $AA_1, BB_1, CC_1$ đồng quy khi và chỉ khi:

\begin{equation} \dfrac{A_1B}{A_1C} \cdot \dfrac{B_1C}{B_1A}\cdot \dfrac{C_1A}{C_1B} = 1
\end{equation}

(Dạng độ dài đại số) Cho tam giác $ABC$ và các điểm $A_1, B_1, C_1$ lần lượt thuộc các đường thẳng $BC, AC, AB$. Khi đó các đường thẳng $AA_1, BB_1, CC_1$ song song hoặc đồng quy khi và chỉ khi:
\begin{equation}\label{ceva2}
\dfrac{\overline{A_1B}}{\overline{A_1C}}.\dfrac{\overline{B_1C}}{\overline{B_1A}}.\dfrac{\overline{C_1A}}{\overline{C_1B}}=-1
\end{equation}

(Dạng lượng giác) Cho tam giác $ABC$ và các điểm $A_1, B_1, C_1$ lần lượt thuộc các đường thẳng $BC, AC, AB$. Khi đó các đường thẳng $AA_1, BB_1, CC_1$ song song hoặc đồng quy khi và chỉ khi:
\begin{equation}\label{ceva3}
\dfrac{\sin(AA_1;AB)}{\sin(AA_1;AC)}\cdot \dfrac{\sin(BB_1;BC)}{\sin(BB_1;BA)}\cdot \dfrac{\sin(CC_1;CA)}{\sin(CC_1;CB)}=-1
\end{equation}

Định lý Menelaus

(Dạng độ dài hình học) Cho tam giác $ABC$, các điểm $C_1$ thuộc cạnh $AB$; $B_1$ thuộc cạnh $AC$ và $A_1$ thuộc phần kéo dài của cạnh $BC$. Khi đó $A_1, B_1, C_1$ thẳng hàng khi và chỉ khi
\begin{equation}\label{mene1}
\dfrac{A_1B}{A_1C} \cdot \dfrac{B_1C}{B_1A}\cdot \dfrac{C_1A}{C_1B} = 1 \end{equation}

(Dạng độ dài đại số) Cho tam giác $ABC$ và các điểm $A_1, B_1, C_1$ lần lượt thuộc các đường thẳng $BC, AC, AB$. Khi đó các điểm $A_1, B_1, C_1$ thẳng hàng khi và chỉ khi:
\begin{equation}\label{mene2}
\dfrac{\overline{A_1B}}{\overline{A_1C}}\cdot \dfrac{\overline{B_1C}}{\overline{B_1A}}\cdot \dfrac{\overline{C_1A}}{\overline{C_1B}}= 1
\end{equation}

(Dạng lượng giác) Cho tam giác $ABC$ và các điểm $A_1, B_1, C_1$ lần lượt thuộc các đường thẳng $BC, AC, AB$. Khi đó các điểm $A_1, B_1, C_1$ thẳng hàng khi và chỉ khi:
\begin{equation}\label{mene3}
\dfrac{\sin(AA_1;AB)}{\sin(AA_1;AC)}\cdot \dfrac{\sin(BB_1;BC)}{\sin(BB_1;BA)}\cdot \dfrac{\sin(CC_1;CA)}{\sin(CC_1;CB)}=1
\end{equation}

Các ví dụ về định lý Ceva và Menelaus

Ví dụ 1. Cho tứ giác $ABC$, các đường chéo $AC, BD$ cắt nhau tại $I$; $AD, BC$ cắt nhau tại $E$; $AB, CD$ cắt nhau tại $F$. $EI$ cắt $AB, CD$ tại $K, L$. Khi đó $\dfrac{LC}{LD} = \dfrac{FC}{FD}$.

Lời giải

Áp dụng định lý Ceva cho tam giác $ECD$ ta có $$\dfrac{LD}{LC} \cdot \dfrac{BC}{BA} \cdot \dfrac{AE}{AD} = 1$$
Áp dụng Menelaus cho cho tam giác $ECD$ với 3 điểm $F, A, B$ ta có: $$\dfrac{FD}{FC}\cdot \dfrac{BC}{BA} \cdot \dfrac{AE}{AD} = 1$$
Từ trên ta có $\dfrac{LD}{LC} = \dfrac{FD}{FC}$.

Ví dụ 2. (Đường thẳng Gauss) Cho tứ giác $ABCD$ khác hình thang. Gọi $I$ là giao điểm của $AD, BC$; gọi $J$ là giao điểm của $AB, CD$. Chứng minh rằng trung điểm của các đoạn $AC, BD$ và $IJ$ cùng thuộc một đường thẳng.

Lời giải

Gọi $E, F, H$ lần lượt là trung điểm của $AD, IC, CD$. \\Rõ ràng $P \in EF, M \in FH, N \in EH$. \\
Ta có $\dfrac{PE}{PF} = \dfrac{JD}{JC}$; $\dfrac{NH}{NE} = \dfrac{BC}{BI}$ và $\dfrac{MF}{MH} = \dfrac{AI}{AD}$.\hfill (1)\\
Áp dụng Menelaus cho tam giác $IDC$ với 3 điểm thẳng hàng $J, A, B$ ta có: \\
$\dfrac{JD}{JC}\cdot \dfrac{BC}{BI}\cdot \dfrac{AI}{AD} = 1$. \hfill (2)\\
Từ (1) và (2) suy ra $\dfrac{PE}{PF}\cdot \dfrac{JD}{JC}\cdot \dfrac{MF}{MH}= 1$.\\ Do đó 3 điểm $P, N, M$ thẳng hàng.

Ví dụ 3. Cho tứ giác $ABCD$, trên các cạnh $AD, BC$ lấy các điểm $P, Q$ sao cho $\dfrac{AP}{AD} = \dfrac{BQ}{BC}$. Gọi $I$ là giao điểm $AC, BD$ và $K$ là giao điểm của $DQ, CP$. Chứng minh $PQ$ đi song song với đường thẳng qua trung điểm của $AB, CD$.

Lời giải

Gọi $E$ là giao điểm của $AD, BC$; $X, Y$ lần lượt là trung điểm của $IE$ và $PQ$; $M, N$ là trung điểm $AB, CD$. \\
Theo định lý đường thẳng Gauss ta có $M, N, X$ thẳng hàng. \\
Mặt khác do $\dfrac{AP}{AD} = \dfrac{BQ}{BC}$ nên $Y, M, N$ thẳng hàng. Do đó 4 điểm $X, M, N, Y$ thẳng hàng.\\
Theo định lý Thales ta có $XM \parallel IK$.\\
Từ đó ta có $IK \parallel MN$.

Ví dụ 4. Cho tam giác $ABC$ ngoại tiếp đường tròn $w$ tâm $I$, $w$ tiếp xúc với các cạnh $BC, AC, AB$ lần lượt tại $D, E, F$.

a) Chứng minh các đường thẳng $AD, BE$ và $CF$ đồng quy tại một điểm. (Điểm Gergonne)
b) Gọi $D’, E’, F’$ lần lượt là điểm đối xứng của $D, E, F$ qua $I$. Chứng minh rằng $AD’, BE’, CF’$ đồng quy tại một điểm.(Điểm Nagel)

Lời giải

a)Ta có $BD = BF, CD = CE, AE = AF$. Suy ra $\dfrac{BD}{CD}\cdot \dfrac{CE}{AE}\cdot \dfrac{AE}{AF} = 1$. Do đó $AD, BE, CF$ đồng quy.
b) Cho $AD’$ cắt $BC$ tại $D_1$; các điểm $E_1, F_1$ được xác định tương tự. \\
Vẽ đường thẳng qua $D’$ song song với $BC$ cắt $AB, AC$ tại $L,K$. Ta có $D’K\cdot CD = KE\cdot CE = IE^2$; $D’L\cdot BD = LF\cdot BF = ID^2$.\\
Suy ra $D’K\cdot CD = D’L\cdot BD$, suy ra $\dfrac{D’K}{D’L} =\dfrac{DB}{CD}$.\\
Mặt khác $\dfrac{D’K}{CD_1} = \dfrac{AD’}{AD_1} = \dfrac{D’L}{BD_1}$, suy ra $\dfrac{D’K}{D’L} = \dfrac{CD_1}{BD_1}$.\\
Do đó $\dfrac{BD}{CD} = \dfrac{CD_1}{CD_1}$, suy ra $BD = CD_1$.\\
Chứng minh tương tự ta có $CE = AE_1, BF = AF_1$.
Từ đó ta có các đường thẳng $AA_1, BB_1, CC_1$ đồng quy.

Ví dụ 5. Cho tam giác $ABC$ nội tiếp đường tròn $w$. Tiếp tuyến tại $A$ của $w$ cắt $BC$ tại $A’$; các điểm $B’, C’$ được xác định tương tự. Chứng minh rằng $A’, B’, C’$ thẳng hàng.

Lời giải

Mà $\triangle A’AB \backsim \triangle A’CA$ nên $\dfrac{A’A^2}{A’C^2} = \dfrac{AB^2}{AC^2}$. \\
Chứng minh tương tự ta có: $\dfrac{B’C}{B’A}= \dfrac{BC^2}{AB^2}, \dfrac{C’A}{C’B} = \dfrac{AC^2}{BC^2}$.\\
Khi đó $\dfrac{A’B}{A’C}\cdot \dfrac{B’C}{B’A}\cdot \dfrac{C’A}{C’B} = 1$.
Vậy $A’, B’, C’$ thẳng hàng.

Ví dụ 6. Cho tam giác $ABC$ khác tam giác cân. Đường tròn tâm $I$ nội tiếp tam giác và tiếp xúc với các cạnh $BC, AC, AB$ lần lượt tại $D, E, F$. Chứng minh rằng tâm đường tròn ngoại tiếp các tam giác $ADI, BEI, CFI$ thẳng hàng.

Lời giải

Gọi $D’$ là chân đường phân giác ngoài của góc $A$, khi đó $I, A, D, D’$ thuộc đường tròn đường kính $ID’$, suy ra tâm $O_1$ của $(IDA)$ là trung điểm của $ID’$. \\
Xác định tương tự cho $E’, F’$. Ta có tâm của $(IBE), (ICF)$ lần lượt là trung điểm của $IE’, IF$. \\
Sử dụng Menelaus ta chứng minh được $D’, E’, F’$ thẳng hàng.
Do đó $O_1, O_2,O_3$ thẳng hàng.

Ví dụ 7. (Định lý Jacobi) Cho tam giác $ABC$. Về phía ngoài tam giác lấy các điểm $D, E, F$ sao cho $\angle DBC = \angle FBA, \angle DCB = \angle ECA, \angle EAC = \angle FAB$. Chứng minh rằng các đường thẳng $AD, BE$ và $CF$ đồng quy.

Lời giải

Để chứng minh định lý này, ta sử dụng định lý Ceva dạng sin, ta cần chứng minh $$\dfrac{\sin DAB}{\sin DAC}\cdot \dfrac{\sin EBC}{\sin EBA} \cdot \dfrac{\sin FCA}{\sin FCB} = 1$$
Áp dụng định lý Cevasin cho 3 đường đồng quy $AD, BD, CD$ ta có:
\begin{equation}
\dfrac{\sin DAB }{\sin DAC}\cdot \dfrac{\sin DBC}{\sin DBA}\cdot \dfrac{\sin DCA}{\sin DCB}
\end{equation}
Tương tự ta cũng có \begin{equation}
\dfrac{\sin EBC}{\sin EBA}\cdot \dfrac{\sin ECA}{\sin ECB}\cdot \dfrac{EAB}{\sin EAC} = 1 \end{equation} và
\begin{equation}
\dfrac{\sin FCA}{\sin FCB}\cdot \dfrac{FAB}{\sin FAC}\cdot \dfrac{FBC}{\sin FBA} = 1
\end{equation}
Nhân 3 đẳng thức lại và kết hợp $\angle DBC = \angle DBA, \angle DBA = \angle FBC, \angle DCB = \angle EDA \\ \angle DCA = \angle ECB, \angle FAB = \angle EAC, \angle FAC = \angle EAB$.
Ta có \begin{equation}
\dfrac{\sin DAB}{\sin DAC}\cdot \dfrac{\sin EBC}{\sin EBA }\cdot \dfrac{\sin FCA}{\sin FCB} =1
\end{equation}
Do đó $AD, BE, CF$ đồng quy.

Ví dụ 8. (Cevian Nest) Cho các đường thẳng $AX, BY, CZ$ đồng quy của tam giác $ABC$. Giả sử $XD, YE, CF$ là các đường đồng quy của tam giác $XYZ$. Chứng minh rằng $AD, BE, CF$ đồng quy.

Lời giải

Ví dụ 9. Cho tam giác $ABC$ nhọn. Về phía ngoài tam giác dựng các tam giác $ABD, ACE$ vuông tại $B, C$ và đồng dạng. Chứng minh rằng giao điểm của $BE$ và $CD$ thuộc đường cao hạ từ $A$ của tam giác $ABC$.

Lời giải

Áp dụng định lý Ceva sin cho các đường thẳng $BE, AE, CE$ ta có:
\begin{equation}
\dfrac{\sin EBC}{\sin EBA}\cdot \dfrac{\sin ECA}{\sin ECB}\cdot \dfrac{\sin EAB}{\sin EAC} = 1
\end{equation}

Tương tự ta có
\begin{equation}
\dfrac{\sin DCA}{\sin DCB}\cdot \dfrac{\sin DAB}{\sin DAC}\cdot \dfrac{\sin DBC}{\sin DBA} = 1
\end{equation}

Vẽ $AH \bot BC$, ta có $\sin BAH = \sin DBC, \sin CAH = \angle ECB$.\\
Hơn nữa $\angle EAB = \angle DAC, \angle ECA = \angle DBA = 90^\circ$. (3)\\
Nhân (1) và (2) kết hợp với 3 ta có:
\begin{equation}
\dfrac{\sin BAH}{\sin CAH}\cdot \dfrac{\sin EBC}{\sin EBA}\cdot \dfrac{\sin DCA}{\sin DCB} = 1
\end{equation}
Vậy $AH, BE, CD$ đồng quy.

Các bài toán biến đổi góc cạnh – Bài tập

BÀI TẬP CÁC BÀI TOÁN BIẾN ĐỔI GÓC

 

Bài 1 Cho tam giác $ABC$ các đường cao cắt nhau tại $H$. Chứng minh rằng đường tròn Euler của các tam $ABH, ACH, BCH$ và $ABC$ là trùng nhau

Bài 2 Cho tứ giác $ABCD$. Chứng minh rằng đường tròn Euler của các tam giác $ABC, ACD, ABD, BCD$ cùng đi qua một điểm.

Bài 3 Cho tứ giác $ABCD$ nội tiếp. Gọi $d_a$ là đường thẳng simson của tam giác $BCD$ ứng với điểm $A$; các đường thẳng $d_b, d_c, d_d$ được định nghĩa tương tự. Chứng minh rằng các đường thẳng $d_a, d_b, d_c, d_d$ đồng quy.

Bài 4 Cho hai điểm $P, Q$ thuộc miền trong của tam giác $ABC$ sao cho $$\angle ACP = \angle BCQ, \angle CAP = \angle BAQ$$ Gọi $D, E, F$ là hình chiếu vuông góc của $P$ trên các đường thẳng $BC, AC, AB$. Chứng minh rằng nếu $\angle DEF = 90^\circ$ thì $Q$ là trực tâm của tam giác $BDF$.

Bài 5(IMO 2007) Xét 5 điểm $A, B, C, D, E$ sao cho $ABCD$ là hình bình hành và $B, C, D, E$ cùng thuộc một đường tròn. Gọi $d$ là đường thẳng qua $A$, giả sử $d$ cắt đoạn $BC$ tại $F$ và $BC$ tại $G$. Giả sử $EF = EG = EC$, chứng minh rằng $d$ là phân giác góc $\angle DAB$.

Bài 6(VMO 2009) Trong mặt phẳng cho hai điểm $A$ và $B$ cố định ($A$ khác $B$). Một điểm $C$ di động trên mặt phẳng sao cho $\angle ACB = \alpha (0^o < \alpha < 180^o)$. Đường tròn tâm $I$ nội tiếp tam giác $ABC$ và tiếp xúc với $AB, BC, CA$ lần lượt tại $D, E, F$. $AI, BI$ cắt $EF$ tại $M, N$.

a) Chứng minh $MN$ có độ dài không đổi.
b) Chứng minh rằng đường tròn ngoại tiếp tam giác $DMN$ luôn đi qua một điểm cố định khi $C$ lưu động.

Bài 7 Cho tam giác nhọn $ABC$ nội tiếp đường tròn $(O)$. Các đường cao $AD$ và $BD$. Gọi $M$ là trung điểm $AB$, phân giá trong góc $\angle BCA$ cắt $DE$ tại $P$ và cắt $(O)$ tại $Q$. Gọi $C’$ là điểm đối xứng của $C$ qua $AB$. Tính $\angle C$ biết rằng 4 điểm $M, P, Q$ và $C’$ cùng thuộc một đường tròn.

Bài 8 Cho tam giác $ABC$, $M$ là trung điểm $BC$. Trên đoạn $AM$ lấy điểm $P$. Gọi $D$ là hình chiếu của $P$ trên $BC$. $E$ là một điểm thuộc đoạn $PD$. Gọi $H, K$ là hình chiếu của $E$ trên $AB, AC$. Chứng minh rằng $H, P, K$ thẳng hàng khi và chỉ khi $\angle EAB = \angle EAC$.

Bài 9 Cho tam giác $ABC$ với $I$ là tâm đường tròn nội tiếp. Gọi $K, L$ lần lượt là trực tâm các tam giác $IBC$ và $IAC$. Gọi $T$ là tiếp điểm của đường tròn bàng tiếp góc $C$ với cạnh $AB$. Chứng minh rằng $CT$ và $KL$ cắt nhau tại một điểm thuộc đường tròn $(I)$.

Bài 10 Cho đoạn thẳng $AB$ và điểm $C$ thuộc đoạn $AB (AC < BC)$. Đường tròn $w$ tâm $O$ thay đổi tiếp xúc với $AB$ tại $C$. Từ $A$ và $B$ vẽ các tiếp tuyến $AD$ và $BE$ ($D, E$là hai tiếp điểm khác $C$). $AD$ và $BE$ cắt nhau tại $P$.

a) Chứng minh rằng $DE$ luôn đi qua một điểm cố định
b) Gọi $F$ là giao điểm của $OC$ và $DE$. Chứng minh $PF$ luôn đi qua một điểm cố định.

Bài 11 Cho đường tròn $(O)$ và điểm $P$ nằm ngoài đường tròn. Vẽ các tiếp tuyến $PA, PB$ đến $(O)$ với $A, B$ là các tiếp điểm. $C$ là điểm trên cung nhỏ $AB$, tiếp tuyến tại $C$ cắt $PA, PB$ và $PO$ lần lượt tại $D, E, F$. Chứng minh rằng đường tròn ngoại tiếp các tam giác $PAB, PDE$ và $PCF$ cùng đi qua một điểm khác $P$.

Bài 12(Chọn đội tuyển Toán Việt Nam năm 2000) Cho hai đường tròn $(C_1)$ và $(C_2)$ cắt nhau tại $P$ và $Q$. Tiếp tuyến chung (tiếp tuyến gần $P$) tiếp xúc với $(C_1)$ tại $A$ và tiếp xúc với $(C_2)$ tại $B$. Tiếp tuyến của $(C_1)$ và $(C_2)$ tại $P$ cắt hai đường tròn tại $E$ và $F$ (khác $P$). Gọi $H$ và $K$ là các điểm trên tia $AF$ và $BE$ sao cho $AH = AP$ và $BK = BP$. Chứng minh rằng $A, H, Q, K, B$ cùng thuộc một đường tròn.

Bài 13(IMO 2009) Cho tam giác $ABC$ cân tại $A$. Phân giác trong góc $A$ và $B$ cắt $BC$ và $AC$ lần lượt tại $D$ và $E$. Gọi $K$ là tâm đường tròn nội tiếp tam giác $ACD$. Cho $\angle BEK = 45^o$. Tìm tất cả các giá trị của $\angle BAC$.

Bài 14 Cho tam giác $ABC$ ngoại tiếp đường tròn tâm $I$. Trên các đoạn $AI, BI$ và $CI$ lấy các điểm $A’,B’,C’$. Đường trung trực của các đoạn $AA’, BB’, CC’$ đôi một cắt nhau tại $A_1, B_1, C_1$. Chứng minh rằng tâm đường tròn ngoại tiếp của tam giác $ABC$ và tam giác $A_1B_1C_1$ trùng nhau khi và chỉ khi $I$ là trực tâm của tam giác $A’B’C’$.

Bài 15 (IMO 2017) Cho $R,S$ là hai điểm phân biệt trên đường tròn $\Omega$ sao cho $RS$ không phải đường kính. Gọi $d$ là tiếp tuyến của $\Omega$ tại $R$. Lấy điểm $T$ sao cho $S$ là trung điểm của đoạn thẳng $RT$. Lấy điểm $J$ trên cung nhỏ $RS$ của $\Omega$ sao cho $(JST)$ cắt $d$ tại hai điểm phân biệt. Gọi $A$ là giao điểm gần $R$ nhất của $d$ và $(JST)$. $AJ$ cắt lại $\Omega$ tại $K$. Chứng minh $KT$ tiếp xúc với $(JST)$.

Bài 16(Đề thi HSG Bulgari năm 2016) Cho tam giác $ABC$ cân tại $C$, trên tia đối của tia $CA$ lấy điểm $D$ sao cho $AC > CD$. Phân giác $\angle BCD$ cắt $BD$ tại $N$. $M$ là trung điểm $BD$, tiếp tuyến tại $M$ của $(AMD)$ cắt $BC$ tại $P$. Chứng minh rằng 4 điểm $A, P, M, N$ cùng thuộc một đường tròn.

Bài 17(Đề thi HSG Iran 2018 – Vòng 3) Cho tam giác $ABC$, đường tròn $w$ thay đổi qua $B, C$ cắt các cạnh $AB, AC$ tại $E$ và $F$. $BF, CE$ cắt $(ABC)$ tại $B’, C’$. $A’$ là điểm thuộc $BC$ sao cho $\angle C’A’B = \angle B’A’C$. Chứng minh rằng đường tròn ngoại tiếp tam giác $A’B’C’$ luôn đi qua một điểm cố định.

Bài 18(IMO shortlist 2017) Cho tam giác $ABC$ nhọn nội tiếp đường tròn tâm $O$. Đường thẳng $OA$ cắt đường cao từ $B$ và $C$ của tam giác $ABC$ lần lượt tại $P$ và $Q$. $H$ là trực tâm tam giác $ABC$. Chứng minh rằng tâm đường tròn ngoại tiếp tam giác $HPQ$ thuộc đường trung trung tuyến của tam giác $ABC$.

Bài 19 Cho tam giác $ABC$ nội tiếp đường tròn $(O)$. Tiếp tuyến tại $A$ và $B$ cắt nhau tại $N$, tiếp tuyến tại $B$ và $C$ của $(O)$ cắt nhau tại $P$; tiếp tuyến tại $A$ và $C$ cắt nhau tại $M$.
a) Chứng minh $PA, CN$ và $BM$ đồng quy tại một điểm $L$.
b) Gọi $X, Y, Z$ là hình chiếu của $L$ trên $BC, AC$ và $AB$. Chứng minh $L$ thuộc đường thẳng Euler của tam giác $XYZ$.
c) Gọi $A’, B’, C’$ là trung điểm của $OP, OM$ và $ON$. Chứng minh rằng các đường thẳng $AA’, BB’$ và $CC’$ đồng quy.

Bài 20 Cho tam giác $ABC$ có các đường cao $AD, BE, CF$ cắt nhau tại $H$. Đường tròn đường kính $BH$ cắt $DE$ tại $K$, đường tròn đường kính $CH$ cắt $DF$ tại $L$. Chứng minh $KL$ vuông góc với đường thẳng euler của tam giác $ABC$.

Bài 21 Cho tam giác $ABC$ có $\angle A = 45^o$. Các đường cao $AD, BE, CF$. Gọi $A’, B’, C’$ lần lượt là hình chiếu của $A, B, C$ trên $EF, DF, DE$. Chứng minh rằng tâm đường tròn ngoại tiếp của tam giác $A’B’C’$ thuộc đường tròn euler của tam giác $ABC$.

Bài 22 Cho tam giác $ABC$, đường thẳng $d$ cắt các cạnh $AB, AC$ tại $D, E$ và đường thẳng $BC$ tại $F$. Gọi $O,O_a, O_b, O_c$ lần lượt là tâm đường tròn ngoại tiếp các tam giác $ABC, ADE, BDF, CEF$.

a) Chứng minh rằng 4 điểm $O, O_a, O_b, O_c$ cùng thuộc một đường tròn.
b) Chứng minh trực tâm tam giác $O_aO_bO_c$ thuộc $d$.

Bài 23(IMO 2019) Cho tam giác $ABC$, các điểm $A_1$ thuộc cạnh $BC$ và $B_1$ thuộc cạnh $AC$. Trên đoạn $AA_1, BB_1$ lấy $P, Q$ sao cho $PQ$ song song $AB$. Trên tia $PB_1$ lấy $P_1$ sao cho $\angle PP_1C = \angle BAC$, trên tia $QA_1$ lấy điểm $Q_1$ sao cho $QQ_1C = \angle ABC$. Chứng minh 4 điểm $P, Q, P_1, Q_1$ đồng viên.

Bài 24 Cho tứ giác $ABCD$ nội tiếp đường tròn tâm $O$. Các đường phân giác trong của các góc $A, B, C, D$ cắt nhau tạo thành tứ giác nội tiếp tâm $I$. Các đường phân giác ngoài cắt nhau tạo thành tứ giác nội tiếp tâm $J$. Chứng minh rằng $O$ là trung điểm của $IJ$.

Bài 25 Cho tứ giác $ABCD$ nội tiếp đường tròn tâm $O$, $AD$ và $BC$ cắt nhau tại $K$. Đường tròn ngoại tiếp tam giác $KAC$ và $KBD$ có tâm là $I$ và $J$ cắt nhau tại $M$. Chứng minh
a) $O, J, I, M$ đồng viên.
b) $OM \bot KM$.

Bài 26 Cho tam giác $ABC$ nội tiếp đường tròn $w$. Trung tuyến $BM$ và $CN$ cắt $w$ tại $D$ và $E$. Đường tròn tâm $O_1$ qua $D$ và tiếp xúc với $AC$ tại $C$; đường tròn $O_2$ qua $E$ và tiếp xúc với $AB$ tại $B$.

a) Chứng minh rằng $O_1 O_2$ qua tâm đường tròn euler của tam giác $ABC$.
b) Gọi $K$ là giao điểm của $O_1M$ và $O_2N$. Chứng minh rằng $AK\bot BC$.

 

Bài 27 (IMO Shorlist 2019) Cho tam giác $ABC$, đường tròn $w$ qua $A$ cắt các cạnh $AB, AC$ tại $D$ và $E$ tương ứng; $w$ cắt $BC$ tại $F$ và $G$ sao cho $F$ nằm giữa $B$ và $G$. Tiếp tuyến tại $F$ của $(BDF)$ và tiếp tuyến tại $G$ của $(CEG)$ cắt nhau tại $T$. Giả sử $A, T$ phân biệt. Chứng minh rằng $AT$ song song $BC$.

Bài 28 (ISL 2107) Cho tam giác $ABC$ khác tam giác cân. Các đường cao từ $B$ và $C$ cắt nhau tại $H$. Đường thẳng $OA$ cắt $BH, CH$ tại $P$ và $Q$. Chứng minh rằng tâm đường tròn ngoại tiếp tam giác $HPQ$ thuộc trung tuyến của tam giác $ABC$.

 

Bài 29 (ISL 2015 – G2) Cho tam giác $ABC$ nội tiếp đường tròn $(O)$. Đường tròn $w$ tâm $A$ cắt cạnh $BC$ tại $D, E$ sao cho $D$ nằm giữa $B$ và $E$; $w$ cắt $(O)$ tại $F$ và $G$, trong đó $F$ thuộc cung nhỏ $AB$. Đường tròn ngoại tiếp tam giác $BDF$ cắt $AB$ tại $K$; đường tròn ngoại tiếp tam giác $CEG$ cắt $AC$ tại $L$. Gọi $X$ là giao điểm của $FK$ và $GL$. Chứng minh $A, X, O$ thẳng hàng.

Bài 30 (IMO 2013 – G6) Cho tam giác $ABC$, gọi $A_1$ là tiếp điểm của đường tròn bàng tiếp góc $A$ với $BC$; các điểm $B_1, C_1$ được xác định tương tự. Giả sử tâm đường tròn ngoại tiếp tam giác $A_1B_1C_1$ thuộc đường tròn ngoại tiếp tam giác $ABC$. Chứng minh tam giác $ABC$ vuông.

 

Góc định hướng và ứng dụng

Góc định hướng. 

Góc giữa hai tia. Cho hai tia $Ox, Oy$, ta cho tia $Ot$ lúc đầu trùng với $Ox$ và cho $Ot$ quay quanh $O$, đến khi $Ot$ trùng với $Oy$, ta nó $Ot$ tạo ra một góc lượng giác (góc định hướng) có tia đầu là $Ox$ tia cuối là $Oy$, kí hiệu $(Ox, Oy)$.

Chú ý: Với hai tia $Ox, Oy$ thì có vô số góc lượng giác có tia đầu $Ox$ tia cuối $Oy$ và hơn kém nhau $k2 \pi$.

Góc giữa hai đường thẳng. Cho hai đường thẳng $a, b$ cắt nhau tại $O$, ta cho đường thằng $t$ qua $O$ lúc đầu trùng với $O$, quay $t$ quanh $O$ đến khi $t$ trùng $a$, ta nói $t$ tạo ra góc giữa đường thẳng $a, b$, kí hiệu là $(a;b)$.

Các góc lượng giác tạo giữa $a, b$ hơn kém nhau $k\pi$.

Một số tính chất thường sử dụng. 

Tính chất 1. Hệ thức Charles
a) Cho $a, b, c$ là ba đường thẳng bất kì thì $(a, b)=(a, c)+(c, b)(\bmod \pi)$
b) $\mathrm{Cho} O x, O y, O z$ là ba tia thì $(O x, O y)=(O x, O z)+(O z, O y)(\bmod 2 \pi)$

Tính chất 2. (Điều kiện 3 điểm thẳng hàng) Cho 3 điểm $A, B, C$ và đường thẳng $d$. Khi đó $A, B, C$ thẳng hàng khi và chỉ khi $(A B, d)=(A C, d)(\bmod \pi)$

Tính chất 3. (Điều kiện 4 điểm đồng viên) Cho 4 điểm $A, B, C, D .$ Khi đó $A, B, C, D$ cùng thuộc một đường tròn khi và chỉ khi $(A C, A D)=(B C, B D)(\bmod \pi)$.

Tính chất 4. Nếu $a$ là phân giác của góc tạo bởi hai đường thẳng $b, c$ thì $(b, a)=-(c, a)=\frac{1}{2}(b, c)\left(\bmod \frac{\pi}{2}\right)$

Tính chất 5. Nếu $a$ và $a^{\prime}$ đỗi xứng nhau qua đường thẳng $d$ thì $(a, d)=-\left(a^{\prime}, d\right)(\bmod \pi)$.

Tính chất 6 . Nếu $a^{\prime}$ là ảnh của $a$ qua phép quay với góc quay $\alpha$ thì $\left(a, a^{\prime}\right)=\alpha(\bmod \pi)$

Các ví dụ

Bài 1. (Định lý Migel) Cho tam giác $A B C$; Gọi $D, E, F$ lần lượt là các điểm thuộc các đường thẳng $B C, A C$ và $A B$
a) Chứng minh rằng các đường tròn ngoại tiếp các tam giác $A E F, B F E, C D E$ cùng đi qua một điểm $M$.
b) Nếu $D, E, F$ thẳng hàng thì điểm $M$ thuộc đường tròn ngoại tiếp của tam giác $A B C$; hơn nữa tâm các đường tròn $(A B C),(A E F),(B F E),(C D E)$ cùng thuộc một đường tròn và đường tròn đó qua $\mathrm{M}$.

Lời giải

a) Gọi $M$ là giao điểm của $(A E F)$ và $(B D F)$, ta chứng minh $C, D, E, M$ đồng viên.
Ta có $(E M ; E C)=(E M ; E A)=(F M ; F A)(\bmod \pi)($ Do $A, E, M, F$ đồng viên $)$
Mà $(F M, F A)=(F M ; F B)=(D M: D B)(\bmod \pi)($ Do $D, M, F, B$ đồng viên $)$
Suyra $(E M ; E C)=(D M ; D B)=(D M ; D C)(\bmod \pi)$
Do đó $M, E, C, D$ đồng viên.

b) $\operatorname{Tacó}(A M: A F)=(E M ; E F)(\bmod \pi),(A M: A F)=(C M ; C B)(\bmod \pi)$ và $(C M ; C B)=(E M ; E D)(\bmod \pi)$
Do đó $E, D, F$ thẳng hàng khi và chỉ khi $(E M ; E F)=(E M: E D)$ khi và chỉ khi $(A M ; A F)=(C M ; C B)$ khi và chỉ khi $A \cdot B, C, M$ đồng viên.
Gọi $O, O_{a}, O_{b}, O_{c}$ lần lượt là tâm đường tròn ngoại tiếp các tam giác $A B C, A E F, B D F, C D E$. Ta chứng minh $O, M, O_{a}, O_{b}, O_{c}$ đồng viên.
Thật vậy ta có $\left(O_{a} M ; O_{a} O_{b}\right)=(E M ; E F)=(C M ; C D)=\left(O M ; O O_{b}\right)(\bmod \pi)$. Do đó $O_{a}, M, O, O_{b}$ đồng viên. Tương tự $O_{a}, M, O, O_{c}$ đồng viên. Suy ra điều cần chứng minh.

Bài 2. (Đường thẳng Steiner – Điểm Antisteiner)

a) Cho tam giác $A B C$ nội tiếp đường tròn $(O), M$ là một điểm thuộc $(O)$. Gọi \$latex $A^{\prime}, B^{\prime}, C^{\prime} \$$ lần lượt là điểm đối xúng của $M$ qua $B C, A C, A B$. Chứng minh rằng $A^{\prime}, B^{\prime}, C^{\prime}$ cùng thuộc một đường thẳng và đường thẳng đó qua trực tâm $\mathrm{H}$ của tam giác $A B C$.
b) Ngược lại lấy $d$ là một đường thẳng qua $H$. Gọi $d_{a}, d_{b}, d_{c}$ lần lưọt là các đường thẳng đối xứng của d qua BC, $A C, A B$. Chúng minh rằng $d_{a}, d_{b}, d_{c}$ đồng qui tai một điểm thuộc đường tròn $(O)$.

Lời giải

a) Gọi $H_{c}, H_{b}$ là điểm đõi xứng của $H$ qua $A B: A C$. Ta có $H_{c}, H_{b} \in(A B C)$
a) $\left(H C^{\prime} ; H B^{\prime}\right)=\left(H C^{\prime} ; H A\right)+\left(H A ; H B^{\prime}\right)=-\left(H_{c} M ; H A\right)-\left(H_{b} A ; H_{b} M\right)=0($ $\bmod \pi)$
Vầy $H, B^{\prime}, C^{\prime}$ thẳng hàng.

b) Ta thấy $H_{a} \in d_{a}, H_{b} \in d_{b} \cdot$ Gọi $M$ là giao điểm của $d_{a}, d_{b}$. Ta chứng minh $M \in(A B C)$. Ta có:
$$
\begin{aligned}
&\left(M H_{a} ; M H_{b}\right)=\left(A^{\prime} H_{a} ; A^{\prime} C\right)+\left(A^{\prime} C ; C A\right)+\left(C A ; M H_{b}\right) \\
&=-\left(A^{\prime} H ; B C\right)+(C B ; C A)-\left(C A ; B^{\prime} H\right) \\
&=\left(B C ; A^{\prime} H\right)+\left(B^{\prime} H ; C A\right)+(C B ; C A) \\
&=2(B C ; C A)(\bmod \pi) \\
&=\left(C H_{a} ; C H_{b}\right)(\bmod \pi)
\end{aligned}
$$
Do đó $M \in(A B C)$.

Bài 3. 
a) Cho tam giác $A B C$ nội tiếp đương tròn $(O), P Q$ là đương kính. Chứng minh rằng đường thẳng Simson của tam giác ABC úng vói các điểm $P, Q$ vuông góc nhau.
b) Tổng quát hơn, nếu $P Q$ là dây cung bất kì thì góc tạo bởi hai đương thẳng Simson ứng với $P$ và $Q$ bằng nủa số đo chung nhỏ $P Q$.

Lời giải

b)
$$
\begin{aligned}
(\mathrm{DI} ; \mathrm{JK}) &=(\mathrm{DI} ; \mathrm{DP})+(\mathrm{DP} ; \mathrm{AC})+(\mathrm{AC} ; \mathrm{CJ})+(\mathrm{CJ} ; \mathrm{JK})(\bmod \pi) \\
&=(\mathrm{CI} ; \mathrm{CP})+1 / 2 \pi+(\mathrm{AC} ; \mathrm{BC})+(\mathrm{QC} ; \mathrm{QK})(\bmod \pi) \\
&=(\mathrm{CB} ; \mathrm{CP})+1 / 2 \pi+(\mathrm{AC} ; \mathrm{BC})+(\mathrm{CQ} ; \mathrm{CK})+(\mathrm{CK} ; \mathrm{QK})(\bmod \pi) \\
&=(\mathrm{CB} ; \mathrm{CP})+(\mathrm{AC} ; \mathrm{CB})+(\mathrm{CQ} ; \mathrm{CA})(\bmod \pi) \\
&=(\mathrm{CQ} ; \mathrm{CP})(\bmod \pi) \square
\end{aligned}
$$

Bài 4. (Chọn đội dự tuyển PTNK 2008) Cho tam giác ABC. Các điểm $M, N, P$ lần luợt thuộc các đt $B C, C A$, AB sao cho tam giác MNP và tam giác $A B C$ đồng dạng. Chúng minh ràng tâm đưòng tròn ngoại tiếp của tam giác $B C$ là thục tâm của tam giác $M N P$.

Lời giải

Theo định lý Migel thì các đường tròn (ANP), (BMP) và (CMN) cắt nhau tại $O$. Ta có
$$
\begin{aligned}
(\overline{O B} ; \overrightarrow{O C}) &=(\overline{O B} ; \overline{O P})+(\overline{O P} ; \overline{O M})+(\overline{O M} ; \overrightarrow{O C}) &(\bmod \pi) \\
&=(\overline{M B} ; \overline{M P})+(\overline{O P} ; \overline{O M})+(\overline{O M} ; \overrightarrow{O C}) &(\bmod \pi) \\
&=-(\overline{M P} ; \overline{M B})+(\overline{B P} ; \overline{B M})+(\overline{N M} ; \overrightarrow{N C}) \quad(\bmod \pi) \\
&=-(\overline{M P} ; \overline{M N})-(\overline{M N} ; \overline{M B})+(\overline{B P} ; \overline{B M})+(\overline{N M} ; \overrightarrow{N C}) \\
&=(\overline{M N} ; \overline{M P})+(\overline{M B} ; \overline{M N})+(\overline{M N} ; \overline{C N})+(\overline{B P} ; \overline{B M}) \\
&=(\overline{M N} ; \overline{M P})+(\overline{M B} ; \overline{C N})+(\overline{B P} ; \overline{B M}) \\
&=(\overline{M N} ; \overline{M P})+(\overline{B P} ; \overline{C N})=2(A B ; A C) \quad(\bmod \pi)
\end{aligned}
$$
Từ đó ta có $\mathrm{O}$ là tâm đường tròn ngoại tiếp tam giác $\mathrm{ABC}$.

Mặt khác
$$
\begin{aligned}
(O N ; P M) &=(O N ; O P)+(O P ; P M) & &(\bmod \pi) \\
&=(A N ; A P)+(B O ; B M) & &(\bmod \pi) \\
&=(A C ; A B)+(B O ; B C) & &(\bmod \pi) \\
&=\frac{\pi}{2} \quad &(\bmod \pi)
\end{aligned}
$$
Suy ra $\mathrm{ON} \perp \mathrm{PM}$. Chứng minh tương tự ta có $\mathrm{MO} \perp \mathrm{NP}$. Hay $\mathrm{O}$ là trực tâm của tam giác $\mathrm{ABC}$.

Bài 5. Cho hai hình vuông $A B C D$ và $A E F G$ cùng hướng, $A, B, E$ không thẳng hàng. Chứng minh rẳng $B E, C F, D G$ đồng quy.

Lời giải

 

Xét phép quay tâm A góc quay $(A B: A D)=90^{\circ}$. Khi đó $B$ biên thành $D, E$ biên thành $G$. Gọi $H$ là giao điểm của $\mathrm{BE}$ và $\mathrm{GD}$. Khi đó $(B E ; G D)=(A B ; A D)=(C B ; C D)=90^{\circ}(\bmod \pi)$. Suy ra $A, H, B, C, D$ đồng viên.
Từ đó ta có $(H B: H C)=(A B: A C)(\bmod \pi)$,
Hơn nữa, $(H G ; H E)=(A G ; A E)=90^{\circ}(\bmod \pi)$ nên $A, E, H, G, F$ cũng đồng viên. Suy ra $(H E ; H F)=(A B: A C)(\bmod \pi)$
Ta có $(H B ; H C)=(H E ; H F)(\bmod \pi)$ mà $H, E, B$ thẳng hàng nên $H, C, F$ thẳng hàng, hay $B E . C F, D G$ đồng quy.

Bài tập rèn luyện

Bài 1 (VMO 2006) Cho tứ giác lồi $A B C D$. Xét một điểm $M$ di động trên đường thẳng $A B$ sao cho $M$ không trùng với $A$ và B. Gọi $N$ là giao điểm thứ hai khác $M$ của đường tròn đi qua 3 điểm $M, N, C$ và đường tròn đi qua 3 điếm $M, B$, D. Chứng minh:
a) Điểm $\mathrm{N}$ di động trên một đường tròn cố định.
b) Đường thẳng MN luôn đi qua một điểm cố định.

Bài 2. Cho tứ giác lồi $A B C D$ nội tiếp một đường tròn. Gọi $P, Q, R, S$ là giao điểm của các đường phân giác ngoài của Các góc ADB và ADB, DAB Và DBA, ACD và ADC, DAC và DCA tương ứng. Chứng minh rẳng $P, Q, R, S$ đồng viên.

Bài 3. Cho tứ giác $A B C$. Chứng minh rằng đường tròn Euler của các tam gíác $A B C, A C D, A B D$ và $B C D$ cùng đi qua một điểm.

Bài 4. Cho hai đường tròn (O) và (O’) cắt nhau tại $A$ và B. Một đường thẳng qua A cắt $(O)$ và $\left(O^{\prime}\right)$ tai $M$ và N. Một đường thẳng qua $B$ cắt $(O)$ và $(O)$ tai $P$ và Q. Chứng minh $M P / / N Q .$

Bài 5. Cho tam giác $A B C$, đưòng cao $A H$ (H thuộc BC). Gọi $D, E$ là hình chiếu của H trên $A B$ và $A D$, đương thẳng $D E$ cắt $B C$ tại $F$. Goi $O_1, O_2$ là tâm đương tròn ngoại tiếp các tam giác BDF và CEF; gọi I là trung điểm $\mathrm{AH}$ và $\mathrm{O}$ là tâm đường tròn ngoại tiếp tam giác $A B C$. Chúng minh rằng 4 điểm $I, O, O_1$ và $O_2$ cùng thuộc một đương tròn.

Định lý Carnot

Ta bắt đầu với định lí 4 điểm, được sử dụng trong việc chứng minh các đường thẳng vuông góc.

Định lý 1. Cho các đoạn thẳng $AB$ và $CD$. Chứng minh rằng $AB$ vuông góc $CD$ khi và chỉ khi $$AC^2 – AD^2 = BC^2 – BD^2$$

Chứng minh. Chứng minh định lí ta có thể dụng định lí pitago  hoặc có thể dùng trục đẳng phương (thực ra cũng tương đương như dùng pitago)

Xét các đường tròn $(C;CA)$ và $(D;DA)$ ta có $BC^2 – CA^2 = BD^2 – BD^2$
hay $P_{B/(C;CA)} = P_{B/(D;DA)}$.
Do đó $AB$ là trục đẳng phương của $(C)$ và $(D)$ nên $AB \bot CD$.

Định lý 2. (Định lý Carnot) Cho tam giác $ABC$, các điểm $M, N, P$ lần lượt thuộc các đường thẳng $BC, AC$ và $AB$. Khi đó đường thẳng qua $M, N, P$ lần lượt vuông góc $BC, AC$ và $AB$ đồng quy khi và chỉ khi $$MB^2 – MC^2 + NC^2 – NA^2 + PA^2 -PB^2 = 0$$

Chứng minh.

Gọi $X$ là giao điểm của đường thẳng qua $P$ vuông góc $AB$ và đường thẳng qua $N$ vuông góc $AC$. Theo định lí 4 điểm ta có
$XA^2 – XB^2 = PA^2 – PB^2$ và $XC^2 – XA^2= NC^2 – NA^2$
Khi đó $PA^2-PB^2 + NC^2- NA^2 = XC^2-XB^2$.\
Do đó $XM$ vuông góc với $BC$ khi và chỉ khi $XC^2-XB^2 = MC^2 -MB^2$\
hay $PA^2-PB^2 +NC^2+NA^2 = MC^2-MB^2 \Leftrightarrow MB^2 – MC^2 + NC^2 – NA^2 + PA^2 -PB^2 = 0$.

Đường thẳng Euler

Định lý. Trong một tam giác thì trọng tâm, trực tâm và tâm đường tròn ngoại tiếp cùng nằm trên một đường thẳng.

(Đường thẳng qua 3 điểm này được gọi là đường thẳng Euler của tam giác)

Chứng minh định lý.

Cách 1. (THCS) Cho tam giác $ABC$, gọi $H, G, O$ lần lượt là trực tâm, trọng tâm và tâm đường tròn ngoại tiếp tam giác $ABC$. Ta chứng minh $H, G, O$ thẳng hàng.

Gọi $M$ là trung điểm $BC$ và $D$ là đối xứng của $A$ qua $O$. Ta có $HBDC$ là hình bình hành.

Do đó $M$ là trung điểm $BC$ cũng là trung điểm $HD$.

Tam giác $AHD$ có $AM$ là trung tuyến và $AG = 2GM$ nên $G$ là trọng tâm.

Cách 2 (Vectơ) 

Cho tam giác $ABC$ có trực tâm $H$, tâm ngoại tiếp là $O$, $G$ là trọng tâm tam giác. Gọi $M$ là trung điểm $BC$ và $D$ là chân đường cao từ $A$.
Ta cần chứng minh $\overrightarrow{OH} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$. Thật vậy đặt $\overrightarrow{v} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} -\overrightarrow{OH}$.
Thực hiện phép chiếu vectơ $\overrightarrow{v}$ trên $BC$ ta có $\overrightarrow{v_{BC}} = \overrightarrow{MD} + \overrightarrow{MB} + \overrightarrow{MC} – \overrightarrow{MD} = \overrightarrow{0}$.
Tương tự hình chiếu của $\overrightarrow{v}$ trên $AC$ là $\overrightarrow{v_{AC}} = \overrightarrow{0}$.
Do đó $\overrightarrow{v} = \overrightarrow{0}$.
Khi đó $\overrightarrow{OH} = \overrightarrow{OA}+ \overrightarrow{OB}+ \overrightarrow{OC} = 3\overrightarrow{OG}$, do đó $O, H, G$ thẳng hàng và $OH = 3OG$.

Cách 3 (phép vị tự) Xét phép vị tự tâm $G$ thì số $k = \dfrac{-1}{2}$ thì tam giác $ABC$ biến thành tam giác $MNP$ với $M, N, P$ là trung điểm các cạnh $BC, AC, AB$.

Khi đó trực tâm tam giác $ABC$ biến thành trực tâm tam giác $MNP$, hay $H \mapsto O$.

Do đó $\overrightarrow{GO} = \dfrac{-1}{2} \overrightarrow{GH}$.

Hay $H, G, O$ thẳng hàng và $GH = 2GO$.

 

Bài tập liên quan

Bài 1. Cho tam giác $ABC$. Gọi $M, N, P$ lần lượt là trung điểm của các cạnh $BC, AC, AB$. Chứng minh rằng đường thẳng euler của các tam giác $ABC$ và $MNQ$ trùng nhau.

Bài 2. Cho tam giác $ABC$, các đường cao $AA’, BB’, CC’$ cắt nhau tại $H$. Chứng minh rằng đường thẳng euler của các tam giác $AB’C’, BA’C’, CA’B’$ đồng quy tại một điểm thuộc đường tròn ngoại tiếp của tam giác $A’B’C’$.

Bài 3. Cho tam giác $ABC$ có $AB^2 + AC^2 = 2BC^2$. Gọi $H$ là trực tâm và $M$ là trung điểm cạnh $BC$. Tia $MH$ cắt đường tròn ngoại tiếp tam giác tại $D$. Chứng minh $AD, BC$ và đường thẳng euler của tam giác $ABC$ đồng quy.

Bài 4. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$ và ngoại tiếp đường tròn $(I)$. Gọi $A’, B’, C’$ lần lượt là giao điểm của $AI, BI, CI$ với $(O)$. Chứng minh rằng đường thẳng euler của tam giác $A’B’C’$ đi qua điểm $I$.

Bài 5. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$. Đường tròn tâm $I$ nội tiếp tam giác $ABC$ và tiếp xúc với các cạnh $AB, AC$ tại $D, E$. Gọi $M, N$ lần lượt là giao điểm của $BI, CI$ với $DE$; $P$ là giao điểm của $BN$ và $CM$, $AI$ cắt $(O)$ tại $Q$. Chứng minh rằng $PQ$ là đường thẳng euler của tam giác $IBC$.

Bài 6. Cho hai đường tròn (O) và $(O’)$ cắt nhau tại A và B. Một đường thẳng qua A cắt (O) tại C và cắt (O’) tại D (A nằm giữa C và D). Chứng minh rằng đường thẳng euler của tam giác BCD luôn đi qua một điểm cố định.

Bài 7. Cho tam giác ABC có 3 đường cao AD,BE,CF đồng quy tại H. DE cắt đường tròn đường kính BH lần 2 tại K, DF cắt đường tròn đường kính CH lần 2 tại L. Chứng minh KL vuông góc với đường thẳng Euler của tam giác ABC

Bài 8. Cho tam giác $ABC$ có tâm đường tròn ngoại tiếp $O$. Gọi $T, U, V$ là tâm đường tròn ngoại tiếp các tam giác $BOC, COA, AOB$. Gọi $K$ là tâm đường tròn ngoại tiếp của tam giác $TUV$. Chứng minh $K$ thuộc đường thẳng euler của tam giác $ABC$.

Bài 9. Cho tam giác $ABC$, $D$ là điểm thuộc phân giác trong của góc $\angle BAC$. Đường tròn ngoại tiếp tam giác $ABD$ cắt $AC$ tại $E$, đường tròn ngoại tiếp tam giác $ACD$ cắt $AB$ tại $F$. Gọi $O$ là tâm đường tròn ngoại tiếp tam giác $ABC$. Chứng minh rằng $EF$ vuông góc với $OD$.

Ý tưởng chuyển đổi mô hình trong các bài toán hình học phẳng

(Bài viết của Đào Sơn Trà – SV ĐHSP TPHCM)

 

Giới thiệu ý tưởng

Trong tam giác $ABC$ nhọn có $D,E,F$ là các chân đường cao và $H$ là trực tâm. Khi đó:

a) $H$ là tâm đường tròn nội tiếp tam giác $DEF$.
b) $A,B,C$ là tâm bàng tiếp của tam giác $DEF$.

Từ đây ta có thể đổi giữa hai mô hình “bàng tiếp – trực tâm” để xem cách tiếp cận nào thuận lợi hơn để xử lý bài toán. Tất nhiên trong tình huống tam giác tù hoặc vuông cũng có các kết quả tương tự nhưng để đơn giản, ta không đề cập ở đây. Trong các ví dụ, bài tập bên dưới, ta quy ước xét các tam giác nhọn, không cân:

Ví dụ 1.
Cho tam giác $ABC$ có các đường cao $AD,BE,CF$. Gọi $H,K,L$ lần lượt là hình chiếu của $A,B,C$ lên $EF,DF,DE$. Chứng minh rằng các đường thẳng $DH,EK,FL$ đồng quy; các đường thẳng $AH,BK,CL$ đồng quy.

Ta phát biểu lại bài toán như sau: Cho tam giác $DEF$ có $A,B,C$ lần lượt là tâm đường tròn bàng tiếp góc $D,E,F$. Gọi $H,K,L$ lần lượt là hình chiếu của $A,B,C$ lên $EF,DF,DE$. Chứng minh rằng $DH,EK,FL$ đồng quy và $AH,BK,CL$ cũng đồng quy.
Lời giải.

Sau khi chuyển đổi mô hình ta có thể dễ dàng chứng minh được ý a) $DH,EK,FL$ đồng quy (tại điểm Nagel của tam giác $DEF$) bằng cách kết hợp tính chất đường tròn bàng tiếp và định lý Ceva.

Với ý b) ta có: $EF$ là phân giác $\angle DEF$ nên $\angle FEA=\angle DEC$ suy ra $$90^\circ – \angle FEA = 90^\circ – \angle DEC \Rightarrow \angle HAC= \angle LCA$$

Gọi $O$ là giao điểm của $HA$ và $CL$. Khi đó: $$\angle AOC=180^\circ-2\angle HAC=2(90^\circ -\angle HAC)=2\angle BAC$$
nên $AH,CL,BK$ đồng quy tại tâm $(ABC)$.

Ví dụ 2.
Cho tam giác $ABC$ nội tiếp đường tròn $(O;R)$ có $BE,CF$ là hai phân giác cắt nhau tại $I$. $EF$ cắt đường tròn $(O)$ tại hai điểm $M,N$. Chứng minh bán kính đường tròn ngoại tiếp tam giác $IMN$ bằng $2R$.

Ở ví dụ này không xuất hiện trực tiếp yếu tố “trực tâm” hay “tâm bàng tiếp” nhưng ta vẫn có thể vận dụng ý tưởng trên bằng cách xem tâm nội $I$ của tam giác $ABC$ là trực tâm của tam giác tạo bởi $3$ tâm đường tròn bàng tiếp. Cụ thể, ví dụ trên tương đương với bài toán sau:

Cho tam giác $ABC$ nội tiếp $(O;R)$ có đường cao $AD,BE,CF$ cắt nhau tại $H$. Gọi $K,L$ lần lượt là giao điểm của các cặp đường thẳng $(CH,DE),(BH,DF)$. $KL$ cắt đường tròn $Euler$ của tam giác $ABC$ tại $M,N$. Chứng minh bán kính đường tròn ngoại tiếp tam giác $HMN$ bằng $R$.

Lời giải.
Do tứ giác $BDHF$ và $DCEH$ nội tiếp nên ta có:
$$\overline {LD} \cdot \overline {LF} = \overline {LH} \cdot \overline {LB} \Rightarrow P_{L/(DEF)} = P_{L/(BHC)}$$

$$\overline {KC} \cdot \overline {KH} = \overline {KD} \cdot \overline {KE} \Rightarrow P_{K/(DEF)} = P_{K/(BHC)}$$
suy ra $LK$ là trục đẳng phương của $(DEF)$ và $(BHC)$ nên $M,N$ nằm trên $(BHC)$.

Theo tính chất quen thuộc thì $(BHC)$ đối xứng với $(ABC)$ qua $BC$ nên bán kính $(HMN)$ cũng bằng $R$.

Bài tập vận dụng
Bài 1. Cho tam giác $(ABC)$ nội tiếp đường tròn $(O)$. Gọi $M,N,P$ lần lượt là tâm đường tròn bàng tiếp góc $A,B,C$ của tam giác $ABC$. Giả sử $BC$ cắt $NP$ tại $R$ và $T$ là trung điểm cung lớn $BC$ của $(O)$. Chứng minh rằng $MT \bot IR$ với $I$ là tâm đường tròn nội tiếp tam giác $ABC$.

Lời giải
Bài toán được phát biểu lại như sau:

Cho tam giác $MNP$ có $I$ là trực tâm và $A,B,C$ lần lượt là chân đường cao kẻ từ $M,N,P$. $BC$ cắt $NP$ tại $R$. Gọi $T$ là trung điểm cung lớn $BC$ của $(ABC)$. Chứng minh $MI \bot IR$.

Dễ thấy $(ABC)$ là đường tròn $Euler$ của tam giác $MNP$ và $T$ là trung điểm $NP$. Ta sẽ chứng minh $IR$ là trục đẳng phương của $(TM)$ và $(BC)$. \medskip

Ta có:

$$\overline {RA} \cdot \overline {RT} = \overline {RC} \cdot \overline {RB} \Rightarrow P_{R/(NP)} = P_{R/(MT)}$$
$$\overline {IA} \cdot \overline {IM} = \overline {IB} \cdot \overline {IN} \Rightarrow P_{I/(NP)} = P_{I/(MT)}$$

Vậy $IR$ là trục đẳng phương của $(MT)$ và $(NP)$ nên $IR \bot MT$

Bài 2. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$ có phân giác $BE,CF(E \in AC, F \in AB)$. Giả sử $(I)$ là đường tròn nội tiếp tam giác $ABC$. Gọi $M$ là tâm đường tròn bàng tiếp góc $A$. Chứng minh $MO \bot EF$.

Lời giải
Ta phát biểu lại bài toán trên dưới mô hình trực tâm như sau:

Cho tam giác $MNP$ có $I$ là trực tâm và $MA,NB,PC$ là các đường cao. Gọi $NB$ cắt $AC$ tại $E$, $AB$ cắt $PC$ tại $F$. Gọi $O$ là tâm đường tròn $Euler$ của tam giác $MNP$. Chứng minh $MO \bot EF$.

Gọi $O_2$ là tâm ngoại tiếp tam giác $NIP$ thì dễ thấy rằng $O_2$ đối xứng với $O_1$ qua $NP$. Gọi $T$ là trung điểm $NP$ thì $MI = 2O_1T = O_1O_2$. Mà $O_1O_2 \parallel MI$ nên kéo theo tứ giác $MIO_2O_1$ là hình bình hành. Vì thế nên $MO_2$ đi qua trung điểm của $IO_1,$ cũng chính là tâm đường tròn Euler $O$ của tam giác $MNP$.

Tiếp theo, ta thấy rằng

$\overline {EA} \cdot \overline {EC} = \overline {EN} .\overline {EI}$ $\Rightarrow P_{E/(O)} = P_{E/(O_2)}$
$\overline {FA} \cdot \overline {FB} = \overline {FN} \cdot \overline {FI} \Rightarrow P_{F/(O)} =P_{F/(O_2)}$

Suy ra $EF$ là trục đẳng phương của $(O)$ và $(O_2)$ nên $EF \bot OO_2$.

Từ hai điều trên, ta có $EF$ vuông góc với $MO$.

 

Bài 3. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$ và tâm nội tiếp $I$. Đường tròn bàng tiếp $(L)$ của đỉnh $C$ của tam giác $ABC$ tiếp xúc với $AB$ tại $M$. $MI$ cắt $BC$ tại $N$. $P$ là hình chiếu của $C$ lên $LB$. Chứng minh rằng $AI$ và $NP$ cắt nhau trên $(O)$.

Lời giải
Bài toán được phát biểu lại như sau:

Cho tam giác $JKL$ có các đường cao $JA,KB,LC$. Gọi $I$ là trực tâm tam giác $JKL$. Gọi $M$ là hình chiếu của $L$ lên $AB$, $P$ là hình chiếu của $C$ lên $JL$. $MI$ cắt $BC$ tại $N$. Chứng minh rằng $NP$ cắt $JA$ trên đường tròn $Euler$ của tam giác $JKL$.

Gọi $R$ là giao điểm của $JA$ và $NP$. Dễ thấy việc chứng minh $R$ nằm trên đường tròn $Euler$ của tam giác $JKL$ tương đương với việc chứng minh $R$ là trung điểm $IJ$.

Ta có $\Delta LAB \sim \Delta CJB$ mà $LM,CP$ lần lượt là các đường cao nên $\frac{BM}{MA}=\frac{BP}{PJ}$ suy ra $MP \parallel AJ$.

Do $M,I,N$ thẳng hàng nên $P(BI,MN)=B(PI,MN)=B(JK,AC)=-1$ kết hợp với $MP \parallel AJ$ suy ra $R$ là trung điểm $IJ$. Bài toán đã được chứng minh.

Bài 4. Cho tam giác $ABC$ có đường cao $BD,CE$ cắt nhau tại $I$. Chứng minh rằng $AI$ đi qua tâm $Euler$ của tam giác $IDE$.

Lời giải
Dựa vào bổ đề ở \textbf{bài tập 2} ta có thể chuyển bài toán về mô hình sau: \medskip

Cho tam giác $ABC$ có các đường cao $AD,BE,CF$ cắt nhau tại $H$. Gọi $P,Q$ là giao điểm của các cặp đường thẳng $(CH,DE),(BH,DF)$. Lấy $K$ là trực tâm tam giác $HPQ$. Gọi $L$ là tâm $(PKQ)$. Chứng minh $L$ nằm trên $AD$.

Ta có: $$\angle LQP=\frac{180^\circ-\angle QLP}{2}=\frac{180^\circ-2\angle QKP}{2}=90^\circ-\angle QKP=\angle HPK=\angle HCA =\angle LDP$$

Suy ra $QLPD$ nội tiếp. Lại có $LP=LQ$ nên $DL$ là phân giác góc $EDF$ nên $L$ thuộc $AD$. Vậy bài toán đã được chứng minh.

Bài 5.  Chọn đội tuyển 30/4 PTNK 2016 Cho $(O)$ và dây cung $BC$ cố định, điểm $C$ di động. Gọi $I,I_a,I_b$ lần lượt là tâm nội tiếp, tâm bàng tiếp góc $A,B$ của tam giác $ABC$. Gọi $M$ là điểm đối xứng với $I$ qua $O$.

a) Chứng minh rằng $MI_a=MI_b$.
b) Gọi $H,K$ là hình chiếu của $I_b,I_a$ lên $OI$. Đường thẳng qua $H$ vuông góc với $BI_a$ cắt đường thẳng qua $K$ vuông góc với $AI_b$ ở $T$, chứng minh rằng $T$ thuộc đường tròn cố định.

Lời giải
Nhận xét: Khi chuyển đổi sang mô hình trực tâm, giả sử $I_c$ là tâm bàng tiếp góc $C$ của tam giác $ABC$. Ta có $I,O$ lần lượt là trực tâm và tâm đường tròn $Euler$ tam giác $I_aI_bI_c$ nên $M$ là tâm $(I_aI_bI_c)$ từ đó $MI_a=MI_b$. Vậy ta đã giải quyết được ý a) của bài toán.

Ý b) của bài toán sau khi chuyển đổi mô hình, ta có thể dự đoán được $T$ di chuyển trên đường tròn $Euler$ của tam giác $I_aI_bI_c$. Đó là kết quả về cực trực giao của một đường thẳng đi qua tâm ngoại tiếp được phát biểu bởi bài toán sau:

Cho tam giác $ABC$ có đường thẳng $d$ đi qua tâm ngoại tiếp $O$. Gọi $D,E,F$ lần lượt là hình chiếu của $A,B,C$ lên $d$. Chứng minh rằng đường thẳng qua $D,E,F$ vuông góc với $BC,CA,AB$ đồng quy trên đường tròn $Euler$ của tam giác $ABC$.

Gọi $l$ là đường thẳng đi qua trực tâm $H$ của tam giác $ABC$ và vuông góc với $d$. Gọi $S$ là điểm anti-Steiner của $l$. $J$ là điểm đối xứng của $S$ qua $BC$ và $X$ là giao điểm của $SJ$ và $(O)$. $K$ là điểm đối xứng với $H$ qua $BC$.

Ta có: $$\angle AXS =\angle AKS=\angle KHJ$$ suy ra $HJ \parallel AX$.\ Do đó, $D$ nằm trên $AX$ hay $D$ là trung điểm $AX$. Suy ra đường thẳng qua $D$ vuông góc với $BC$ đi qua trung điểm $I$ của $SH$ và nằm trên đường tròn $Euler$ của tam giác $ABC$.

Bài 6. Cho tam giác $ABC$ có phân giác $BE,CF$ cắt nhau tại $I$. Gọi $XP,YQ$ là tiếp tuyến chung ngoài của $(O)$ và $(I_a)$-đường tròn bàng tiếp góc $A$ ($P,Q \in (O)$,$X,Y \in (I_a))$. Chứng minh $P,Q,E,F$ thẳng hàng.

Lời giải
Gọi $I_b,I_c$ là tâm đường tròn bàng tiếp góc $B,C$ để chuyển về mô hình trực tâm thì theo ví dụ I.2 ta cần chứng minh $I,I_c,I_b,P,Q$ cùng nằm trên một đường tròn.

Gọi $M$ là giao điểm của $I_aP$ với $(ABC)$, $K$ là hình chiếu của $O$ lên $XI_a$. \medskip

Theo hệ thức $Euler$ ta có: $$OI_a^2=R^2+2Rr_a$$
suy ra $$PX^2=OK^2=OI_a^2-KI_a^2=R^2+2Rr_a-(r_a-R)^2=4Rr_a-r_a^2$$
ta thu được $PI_a^2=4Rr_a$. Mà $I_aP\cdot I_aM=BI_a^2=OI_a^2-R^2=2Rr_a$. Suy ra $M$ là trung điểm $PI_a$.

Do $(O),I$ là đường tròn $Euler$ và trực tâm của tam giác $I_aI_bI_c$ nên theo Bài tập 2 ta có: ${V_{{I_a}}}^2:(O) \to (I{I_b}{I_c});M \to P$ mà $M \in (O)$ nên $P \in (II_bI_c)$.

Tương tự thì $Q \in (II_bI_c)$ nên ta có được điều phải chứng minh.

Bài 7. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$ và ngoại tiếp đường tròn $(I)$. Gọi $M,N$ là điểm chính giữa cung $BC$ và cung $BAC$ của $(O)$. $NI$ cắt $(O)$ lần thứ hai tại $P$. $MP$ cắt trung trực $AI$ tại $T$. Gọi $S$ là giao điểm tiếp tuyến tại $A$ của $(O)$ với $BC$. Chứng minh rằng $TS \parallel AI$.

Lời giải

Gọi $I_a,I_b,I_c$ lần lượt là tâm đường tròn bàng tiếp góc $A,B,C$ của tam giác $ABC$ để chuyển về mô hình trực tâm. Gọi $X$ là giao điểm của $BC$ và $I_bI_c$. $J$ là giao điểm của $(I_aBIC)$ với $(I_aI_bI_c)$ thì ta có $N,I,J$ thẳng hàng.

Tứ giác toàn phần $BCI_bI_cI_aX$ nội tiếp nên $J$ là điểm Miquel và $I_a,J,X$ thẳng hàng mà $\angle IJI_a =90^\circ$ suy ra tứ giác $AIJX$ nội tiếp.

Ta có: $$\angle MPJ =\angle I_aJI = 90^\circ$$ suy ra $MP \parallel I_aJ$. Lại có $M$ là trung điểm $JI_a$ nên $P$ là trung điểm $IJ$. Suy ra $T$ là tâm $(AIJX)$. Ta thu được $TX=TA$.

Mà $S$ là tâm $A-Apollonius$ của tam giác $ABC$ nên $SX=SA$. Vậy $ST$ là trung trực của $XA$ nên $ST \bot XA$ suy ra $ST \parallel AI$.

Bài 8. (Trích VN TST 2019) Cho tam giác $ABC$ ngoại tiếp $(O)$ và nội tiếp $(I)$. Gọi $E,F$ là giao điểm của các cặp đường thẳng $(BI,AC),(CI,AB)$. Gọi $P,Q$ lần lượt là trung điểm cung $ABC$ và $ACB$. $PQ$ cắt $BC,EF$ tại $G$ và $H$. $EF$ cắt $BC$ ở $K$. Chứng minh rằng tiếp tuyến ứng với $G$ của tam giác $GHK$ vuông góc với $OI$.

Lời giải
Đây là một bài toán hay và khó. Nếu không có cách tiếp cận chuyển đổi mô hình thích hợp thì việc xử lý các tính chất sẽ gặp nhiều khó khăn. Vận dụng ý tưởng ở Ví dụ I.2 ta chuyển bài toán về mô hình trực tâm như sau:

Cho tam giác $ABC$ có các đường cao $AD,BE,CF$. Gọi $M,N,P$ lần lượt là trung điểm của $BC,CA,AB$. Gọi $BH,CH$ cắt $FD,ED$ lần lượt tại $S,T$. $ST$ cắt $PN$ tại $Y$ và cắt $EF$ tại $Z$. Gọi $X$ là giao điểm của $PN$ và $EF$, $K$ là trung điểm $YZ$. Chứng minh rằng: $XK$ vuông góc với đường thẳng $Euler$ của tam giác $ABC$.

Ta có: $$\overline {XN} .\overline {XP} = \overline {XE} .\overline {XF} \Rightarrow P_{X/(APN)} = {{\mathscr{P}}_{X/\left(AEF \right)}} $$
suy ra $AX$ là trục đẳng phương của $(APN)$ và $(AEF)$ nên $AX \bot OH$.

Gọi $U$ là tâm $Euler$ của tam giác $ABC$ thì theo \textbf{Bài tập 2} ta có $AU \bot ST$.

 

Qua $A$ kẻ đường thẳng song song với $YZ$ cắt $EF$ tại $I$ và cắt $PN$ tại $J$ thì $AU \bot IJ$, áp dụng định lý con bướm cho tứ giác $FPEN$ nội tiếp ta thu được $AJ=AI$. Từ đó suy ra $AX$ đi qua trung điểm $YZ$ dẫn đến $A,X,K$ thẳng hàng nên $XK$ vuông góc với $OH$. Vậy ta thu được điều phải chứng minh.

Bài 9. (Trích VN TST 2016) Cho tam giác $ABC$ nội tiếp đường tròn $(O)$ có $B,C$ cố định, $A$ di động trên cung $BC$ của $(O)$. Các phân giác $BE,CF$ cắt nhau tại $I$. $BE,CF$ cắt đường tròn $(O)$ tại $K,L$. $AI$ cắt $KL$ tại $P$. Gọi $Q$ là một điểm trên $EF$ sao cho $QP=QI$. $J$ nằm trên $(BIC)$ sao cho $IJ \bot IQ$. Chứng minh rằng trung điểm $IJ$ di chuyển trên một đường tròn cố định.

Lời giải
Tiếp tục với ý tưởng Ví dụ I.2 Ta dựng $I_b,I_c$ lần lượt là tâm đường tròn bàng tiếp góc $B,C$ của tam giác $ABC$ để chuyển về mô hình trực tâm thì ta thu được $L,K$ lần lượt là trung điểm của $II_c$ và $II_b$.

Gọi $R,S$ là giao điểm của $EF$ với $(O)$(như hình vẽ). $RI,SI$ cắt đường tròn $(O)$ lần thứ hai tại $T,W$. $TW$ cắt $BI$ tại $G$. Đường thẳng qua $I$ vuông góc với $OI$ cắt $LK,BC,SR,TW$ tại $V,U,Q’,X$.

Theo ví dụ 2,ta có $S,R \in (II_bI_c)$. Do đó: $$\angle GTR= \angle ISR=\angle II_bR$$
suy ra tứ giác $GTI_bR$ nội tiếp. Ta thu được $$IG\cdot II_b=IT \cdot IR=IB \cdot IK=\frac{1}{2}IB \cdot II_b$$
suy ra $TW$ đi qua trung điểm $IB$. Tương tự: $TW$ cũng đi qua trung điểm $IC$ nên $TW$ là đường trung bình của tam giác $IBC$.

 

Áp dụng định lý con bướm cho hai dây cung $LC,BK$ cắt nhau tại $I$, ta được $IV=IU$. Tiếp tục áp dụng định lý con bướm cho hai dây cung $SW,TR$, ta được $IX=IQ’$.

Mà $X$ là trung điểm $IU$ nên $Q’$ là trung điểm $IV$ do đó $IQ’=Q’V=Q’P$ suy ra $Q \equiv Q’$. Vậy $OI \bot IQ$. Gọi $O_1$ là trung điểm cung $BC$ không chứa $A$ thì $O_1$ là tâm $(BIC)$. Gọi $M$ là trung điểm $IJ$ khi đó ta có $\angle OMO_1 =90^\circ$ nên $M$ nằm trên $(OO_1)$, là đường tròn cố định. Ta có điều phải chứng minh.

Bài tập tự luyện

  1. Cho tam giác $ABC$ có các đường cao $AD,BE,CF$. Gọi $M,N,P$ là trung điểm của $EF,FD,DE$ và $K$ là tâm nội tiếp tam giác $MNP.$ Gọi $x,y,z$ lần lượt là khoảng cách từ $A\to EF,B\to DF,C\to DE.$ Chứng minh rằng
    $${{x}^{2}}-K{{A}^{2}}={{y}^{2}}-K{{B}^{2}}={{z}^{2}}-K{{C}^{2}}.$$

  2. Cho tam giác $ABC$ có $T$ là trung điểm $BC$ và $X,Y$ là tâm bàng tiếp góc $B,C$ của tam giác $ABC.$ Giả sử $TX$ cắt $AB,AC$ lần lượt tại $M,N,$ còn $TY$ cắt $AB,AC$ lần lượt tại $P,Q.$ Chứng minh rằng $M,N,P,Q$ là các đỉnh của một hình thang ngoại tiếp được đường tròn.

  3. Cho tam giác $ABC$ nội tiếp $(O)$ có tâm nội tiếp $I,$ tâm bàng tiếp góc $A$ là $J.$ Trên các đường thẳng $JB,JC$ lần lượt lấy $M,N$ sao cho $MA=MJ$ và $NA=NJ.$ Đường thẳng $MN$ cắt $IB,IC$ ở $E,F.$ Chứng minh rằng trung tuyến đỉnh $I$ của tam giác $IEF$ chia đôi cung $BAC$ của $(O)$.

  4. Cho tam giác $ABC$ có trực tâm $H$. Đường tròn $(BHC)$ cắt đường tròn Euler của tam giác $ABC$ ở $M,N$. Chứng minh rằng $AM=AN.$

  5. (Bài toán về điểm Bevan) Cho tam giác $ABC$ có $I_a,I_b,I_c$ lần lượt là tâm đường tròn bàng tiếp góc $A,B,C.$ Khi đó, ký hiệu $X$ là tâm đường tròn ngoại tiếp tam giác $I_aI_bI_c,$ cũng chính là điểm Bevan của tam giác $ABC$. Gọi $O,I,G,H$ lần lượt là tâm ngoại tiếp, tâm nội tiếp, trọng tâm, trực tâm của tam giác $ABC.$ Chứng minh rằng $O$ là trung điểm của $XI$ và $G$ là trọng tâm của $HIX.$

Hệ thức lượng trong tam giác vuông – Chứng minh đẳng thức P2

Bài 1. Cho tam giác $ABC$ vuông tại $A$ có $BC = 3\sqrt{5}$, hình vuông $ADEF$ có $D$ thuộc $AB$, $E$ thuộc $BC$ và $F$ thuộc $AC$. Biết hình vuông có cạnh 2, tính độ dài các cạnh $AB, AC$ (giả sử $AB < AC$).
Lời giải. Đặt $BD = x, CF = y$, vì $AB < AC$ nên $x < y$.
Ta có $\triangle BDE \backsim \triangle EFC \Rightarrow BD \cdot CF = ED \cdot EF = 4$.
Mặt khác $AB^2 + AC^2 = BC^2 \Rightarrow (x+2)^2+(y+2)^2 = 45 \Rightarrow (x+y)^2 + 4(x+y) -45 = 0 \Rightarrow x+y = 5$.
Suy ra $x(5-x) = 4$, giải ra được $x = 1, y = 4$.
Từ đó suy ra $AB = 3, AC = 6$.

Bài 2. Cho tam giác $ABC$ nhọn trung tuyến $AM$. \begin{enumerate}
a) Chứng minh rằng $4AM^2 + BC^2=2(AB^2+AC^2)$.
b) Vẽ trung tuyến $BN$. Tìm điều kiện về độ dài các cạnh của tam giác $ABC$ để $AM \bot AN$.
Lời giải.
a) Gọi $H$ là chân đường cao kẻ từ $A$, giả sử $H$ nằm giữa $B$ và $M$. Ta có:

$AB^2 + AC^2 = 2AH^2 + BH^2 + CH^2$
$= 2AH^2 + (BM – HM)^2 + (CM + HM)^2 $
$= 2AH^2 + 2HM^2 + 2BM^2 = 2AM^2 + \dfrac{BC^2}{2}$

b) Gọi $G$ là trọng tâm tam giác: $GM=\dfrac{1}{3}AM,GB=\dfrac{2}{3}BN$. Ta có $AM\perp BN$ khi và chỉ khi:\

$GM^2 + GB^2 = BM^2$
$\Leftrightarrow \dfrac{1}{9}AM^2 + \dfrac{4}{9}BN^2 = \dfrac{1}{4}BC^2$
$\Leftrightarrow \dfrac{1}{9} \left( \dfrac{AB^2 + AC^2}{2} – \dfrac{BC^2}{4} \right) + \dfrac{4}{9}\left(\dfrac{AB^2 + BC^2}{2} – \dfrac{AC^2}{4}\right) = \dfrac{BC^2}{4}$
$\Leftrightarrow 5AB^2 = AC^2 + BC^2$

Bài 3. Cho tam giác $ABC$, hai đường phân giác $BD$ và $CE$ cắt nhau tại $I$ thỏa mãn $BD\cdot CE = 2\cdot BI\cdot CI$. Tam giác $ABC$ là tam giác gì? vì sao?
Lời giải.

Đặt $ BC = a, CA = b, AB = c $. Ta có, $ AI $ là phân giác trong $ \triangle ABD $\
Suy ra:
$ \dfrac{BI}{c} = \dfrac{DI}{AD} = \dfrac{BD}{c + AD} \Rightarrow \dfrac{BI}{BD} = \dfrac{c}{c+ AD} $
Chứng minh tương tự
$ \dfrac{CD}{CE} = \dfrac{b}{b + AE} $
Như vậy điều cần chứng minh tương đương với

$\dfrac{BI}{BD} \cdot \dfrac{CI}{CE} = \dfrac{1}{2} \Leftrightarrow \dfrac{bc}{(c + AD)(b + AE)} = \dfrac{1}{2}$
$\Leftrightarrow bc = AD\cdot b + AE\cdot c + AD\cdot AE \qquad (*)$

Mặt khác, trong tam giác $ ABC $ ta có
$ BD $ là phân giác $ \angle ABC$ ta có $\dfrac{AD}{c} = \dfrac{CD}{a} = \dfrac{b}{a + c} \Rightarrow AD = \dfrac{bc}{a + c}$
$ CD $ là phân giác $ \angle ACB$ ta có \dfrac{AE}{b} = \dfrac{BE}{a} = \dfrac{c}{a + b} \Rightarrow AE = \dfrac{bc}{a + b}$
Do đó (*) tương đương với

$bc = \dfrac{b^2c}{a + c} + \dfrac{bc^2}{a + b} + \dfrac{b^2c^2}{(a+b)(a+c)}$
$\Leftrightarrow a^2 = b^2 + c^2$

Vậy tam giác $ ABC$ vuông tại $ A $.

Bài 4. Cho tam giác $ABC$ đều cạnh $a$. $M$ là một điểm thay đổi bên trong tam giác. Gọi $D, E, F$ lần lượt là hình chiếu vuông góc của $M$ trên các cạnh $BC, AC, AB$. Tìm giá trị nhỏ nhất của biểu thức: $P = AF^2 + BD^2 + CE^2$.
Lời giải.
Ta có $AM^2 = AF^2 + MF^2 = AE^2 + ME^2$. Suy ra $AF^2 – AE^2 = ME^2 – MF^2$.
Tương tự $BD^2 – BF^2 = MF^2 – MD^2, CE^2 – CD^2 = MD^2 -MD^2$.
Khi đó $AF^2 -AE^2 + BD^2 – BF^2 + CE^2-CE^2 = 0 \Leftrightarrow AF^2 +DB^2 + CE^2 = AE^2+BF^2+CE^2$.
Mặt khác $AF^2 + BF^2 \geq \dfrac{(AF+BF)^2}{2} = \dfrac{a^2}{4}$.
Tương tự thì $BD^2 +CD^2 \geq \dfrac{a^2}{2}$ và $CE^2+AE^2 \geq \dfrac{a^2}{2}$.
Do đó $P =AF^2 + BD^2 + CE^2 \geq \dfrac{3a^2}{4}$.
Đẳng thức xảy ra khi $D, E, F$ lần là trung điểm của $BC, AC, AB$.
Vậy $P_{min} = \dfrac{3a^2}{4}$.

Bài 5. Cho hình vuông $ABCD$ cạnh $a$. Các điểm $M, N$ lần lượt thay đổi trên cạnh $BC, CD$ sao cho $\angle MAN = 45^\circ$. Chứng minh chu vi tam giác $CMN$ không đổi và tìm giá trị lớn nhất của diện tích tam giác $CMN$.

Trên tia đối của tia $DC$ lấy điểm $K$ sao cho $\angle KAN = \angle MAN = 45^\circ$.
Do $\angle KAD+\angle DAN =45^\circ \quad \text{và} \quad \angle DAN+\angle MAB =45^\circ \quad \text{nên} \quad \angle KAD =\angle MAB$
$\Rightarrow \triangle KAD =\triangle MBA$(ch-cgv) $\Rightarrow AK=AM \quad \text{và} \quad KD=BM$
Khi đó $\triangle KAN=\triangle MAN$(c-g-c) $\Rightarrow MN=KN$
Ta có:
$P_{\triangle CMN}=MN+MC+NC=KN+MC+NC
=KD+DN+NC+MC=BM+MC+NC+ND=DC+CB=2a$.
Vậy chu vi của $\triangle CMN$ luôn không đổi và bằng $2a$
Đặt $MC=x,NC=y$
$P_{\triangle CMN}=MN+MC+NC=x+y+\sqrt{x^2+y^2}=2a$
Áp dụng bất đẳng thức Cauchy:
$2a=x+y+\sqrt{x^2+y^2}\ge 2\sqrt{xy}+ \sqrt{2xy}=\left(\sqrt{2}+2\right)\sqrt{xy} \Rightarrow xy\le \dfrac{4a^2}{(\sqrt{2}+2)^2}$
$S_{\triangle CMN}=\dfrac{1}{2}xy\le \dfrac{1}{2}.\dfrac{4a^2}{6+4\sqrt{2}}=\dfrac{a^2}{\sqrt{2}+3}$

Bài 6. Cho $\triangle A B C$ vuông ờ $A, A H \perp B C, H \in B C . H E \perp A C$,
$H F \perp A B$
\begin{enumerate}
a) Chứng minh rằng $H A^{3}=B F \cdot C E \cdot B C$.
b) Chứng minh rằng $\sqrt[3]{B F^{2}}+\sqrt[3]{C E^{2}}=\sqrt[3]{B C^{2}}$.
c) Gọi $M, N$ là hình chiếu của $E, F$ lên $B C$.
Chứng minh rằng $\sqrt{M C}+\sqrt{N B}=\sqrt{B C}$.
d) Chứng minh rằng $\sqrt[3]{N B \cdot N F}+\sqrt[3]{M C \cdot M E}=\sqrt[3]{A B \cdot A C}$.

Bài 7. Cho tam giác $ABC$ vuông tại $A$, $M$ là điểm thuộc cạnh $BC$ thỏa $MA^2 = MB \cdot MC$. Chứng minh rằng $M$ là trung điểm của $BC$ hoặc $M$ là chân đường cao từ $A$ đến $BC$.

Chuyên đề hình học: Bổ đề Eriq và ứng dụng

BỔ ĐỀ ERIQ VÀ ỨNG DỤNG (Trích tập san Star số 3)

Trương Tuấn Nghĩa – Lớp 12 Trường ĐHKHTN ĐHQG HN

Giới thiệu.

Bổ đề $ERIQ$ được đặt tên bởi tác giả Kostas Vittas trên diễn đàn AoPS với nick name vittasko. (là các chữ viết tắt của cụm từ $Equal$ $Ratios$ $In$ $Quadrilateral$). Nội dung bổ đề:

Cho tứ giác $ABCD$, lấy các điểm $M,N$ nằm trên cạnh $AD,BC$ sao cho
$\dfrac{MA}{MD}=\dfrac{NB}{NC}.$
Khi đó, trung điểm của $AB,MN,CD$ thẳng hàng.

Chứng minh.
Gọi $X,Y,Z$ là trung điểm của $AB,MN,CD$. Lấy $P,Q$ nằm trên $XM,XN$ sao cho $DP,CQ\parallel AB.$

Khi đó, theo định lý Thales, ta có $\frac{MA}{MD}=\frac{AX}{DP}=\frac{MX}{MP};\text{ }\frac{NB}{NC}=\frac{AY}{CQ}=\frac{NX}{NQ}.$ Suy ra
$DP=CQ;$ $\frac{MX}{MP}=\frac{NX}{NQ}$ hay $MN\parallel PQ$.
Do $DP=CQ;DP\parallel CQ$ nên $PCQD$ là hình bình hành hay $Z$ là trung điểm $PQ$. \

Kết hợp với $Y$ là trung điểm của $MN$, ta có $X,Y,Z$ thẳng hàng.

Nhận xét. Ta có thể chứng minh $X,Y,Z$ là các điểm chia cùng tỉ lệ trên $AB,MN,CD$ thẳng hàng bằng cách tương tự. Tiếp theo, ta sẽ đến với một số các mở rộng và ứng dụng của bổ đề trên.

Ứng dụng

Bài 1.  Cho tứ giác $ABCD$, lấy $M,N$ nằm trên cạnh $AD,BC$ sao cho $\frac{MA}{MD}=\frac{NB}{NC}.$ Lấy các điểm $X,Y,Z$ sao cho các tam giác $XAB,YMN,ZCD$ đồng dạng và $X,Y,Z$ lần lượt nằm trên các nửa mặt phẳng bờ $AB$ không chứa $C$, $MN$ không chứa $D$ và $CD$ chứa $A$. Chứng minh rằng $X,Y,Z$ thẳng hàng.
Lời giải.
Lấy $P,Q\in XM,XN$ sao cho $DP\parallel XA,CQ\parallel XB$.

Theo định lý Thales, $DP=XA.\frac{MD}{MA},CQ=XB.\frac{NB}{NC}$ mà $\frac{MA}{MD}=\frac{NB}{NC}$ nên $DP=CQ$
Mặt khác vì $\angle AXB=\angle CZD$ nên $\angle ZDP=\angle ZCQ.$
Do đó, $\vartriangle ZDP=\vartriangle ZCQ(c.g.c)$ dẫn tới $\angle PZD=\angle QZC$ hay $\angle CZD=\angle PZQ.$
Vì $DP\parallel XA,CQ\parallel XB$ nên $\frac{XM}{MP}=\frac{XN}{NQ}(=\frac{MA}{MD})$ nên $MN\parallel PQ$.
Lấy $Y’\in XZ$ sao cho $\frac{XY’}{Y’Z}=\frac{XM}{MP}=\frac{XN}{NQ}.$
Theo định lý Thales, $\frac{XY’}{Y’Z}=\frac{XM}{MP}=\frac{XN}{NQ}$ nên $$\begin{aligned}
& Y’M\parallel ZP,Y’N\parallel ZQ \
& Y’M=Y’N(=ZP.\frac{XY’}{XZ}=ZQ.\frac{XY’}{XZ}) \
\end{aligned}$$
Hay $\angle MY’N=\angle MYN,Y’M=Y’N.$
Do đó, $Y’\equiv Y$ hay $X,Y,Z$ thẳng hàng.

Bài 2. Cho tứ giác $ABCD$ có phân giác trong của các góc $\angle A,\angle B,\angle C,\angle D$ đồng quy tại $I$. $AD$ cắt $BC$ tại $E$, $AB$ cắt $CD$ tại $F$. Gọi $M,N$ là trung điểm $AC,EF.$ Chứng minh rằng $M,N,I$ thẳng hàng.
Lời giải.

Gọi $P,Q$ là giao điểm của đường thẳng qua $I,$ vuông góc với $IB$ với $BA,AC.$
Đầu tiên, dễ thấy $I$ là giao 3 phân giác $\vartriangle ABE$.
Do $BI$ là phân giác $\angle ABC$ nên $\vartriangle BPQ$ cân tại $B$ hay $I$ là trung điểm $PQ.$


Ta có $\angle BPQ=90{}^\circ -\frac{\angle ABE}{2}=\frac{\angle AEB}{2}+\frac{\angle BAE}{2},\angle IAB=\frac{\angle BAE}{2}$ nên $\angle PIA=\frac{\angle AEB}{2}.$
Tương tự thì $\angle EIQ=\frac{\angle BAE}{2}.$
Do đó, $\vartriangle PIA\sim \vartriangle QEA(g.g)$ nên $PA.QE=PI.QI.$
Hoàn toàn tương tự, $PF.QC=PI.QI.$
Vậy ta có $\frac{PA}{FA}=\frac{QC}{QE}$ nên theo bổ đề $ERIQ$, $M,I,N$ lần lượt là trung điểm của $PQ,AC,EF$ thẳng hàng.

Bài 3. Cho tứ giác $ABCD$ nội tiếp, không là hình thang. Gọi $E,F$ là giao điểm của các cặp đường thẳng $(AB,CD);(AD,BC).$ Giả sử phân giác của góc $\angle AEC,\angle AFB$ cắt nhau tại $I$. Gọi $M,N$ lần lượt là trung điểm của $AC,BD$. Chứng minh rằng $I\in MN.$

Lời giải.
Giả sử các điểm có vị trí như hình vẽ, các trường hợp khác tương tự.


Gọi $P,Q$ lần lượt là giao điểm của $FI$ với $AB,CD$.
Do $\angle ABC+\angle CDA=180^\circ $ nên $\angle FAB=\angle FCD$ nên $\triangle FAB \backsim \triangle FCD(g.g)$ () và $\angle EPQ=\angle FAB+\angle AFI=\angle FCD+\angle BFI=\angle EQP$
hay tam giác $EPQ$ cân tại $E$.
Mà $EI$ là phân giác $\angle AED$ nên $I$ là trung điểm $PQ$.
Mặt khác theo (
), $\frac{FA}{FB}=\frac{FC}{FD}$ nên theo tính chất đường phân giác, $\frac{AP}{PB}=\frac{CQ}{QD}.$
Do đó theo bổ đề $ERIQ$, trung điểm $AC,BD,PQ$ thằng hàng hay $I\in MN$. (đpcm)

Bài 4. (AOPS). Cho $\vartriangle ABC$, trực tâm $H$,$P$ bất kỳ trên $BC$, $X$ bất kỳ trên $HP$. Gọi $E,F\ne A$ là giao điểm của đường tròn đường kính $AX$ với $CA,AB$. Tiếp tuyến tại $E,F$ của $(AEF)$ cắt nhau tại $T$. Đường thẳng qua $P$ vuông góc $BC$ cắt $CA,AB$ tại $Z,Y$. Gọi $L$ là trung điểm $ZY$. Chứng minh rằng $LT$ chia đôi $BC.$

Lời giải.
Trước hết, ta phát biểu và chứng minh hai bổ đề sau:
Bổ đề 1. Cho $\vartriangle ABC$, đường cao $BE,CF$. Gọi $M$ là trung điểm của $BC.$ Khi đó, $ME,MF$ là tiếp tuyến của $(AEF)$.
Bổ đề trên có thể chứng minh dễ dàng qua các phép cộng góc.
Bổ đề 2.Cho tứ giác $ABCD$, $AB$ cắt $CD$ tại $E$. Gọi $H,K$ là trực tâm của $\vartriangle EAD,\vartriangle EBC$. Khi đó, $HK$ là trục đẳng phương của 2 đường tròn đường kính $BD,AC$.
Chứng minh bổ đề
Gọi $M,N$ là hình chiếu của $B,C$ lên $EC,EB$. Khi đó, $MNBC$ là tứ giác nội tiếp nên $KN.KC=KM.KB.$

Mặt khác, $M,N$ lần lượt nằm trên đường tròn đường kính $BD,AC$ mà $KN.KC=KM.KB$ nên $K$ nằm trên trục đẳng phương của 2 đường tròn trên. Chứng minh tương tự, $HK$ là trục đẳng phương của đường tròn đường kính $BD$ và đường tròn đường kính $AC$.

Trở lại bài toán,


Gọi $M,N$ là giao điểm của $XF,XE$ với $CA,AB.$ Khi đó, theo bổ đề 1 dễ có $T$ là trung điểm của $MN$ nên theo bổ đề $ERIQ$, ta chỉ cần chứng minh $\frac{BN}{BZ}=\frac{CM}{CY}.$
Gọi $U,V$ là hình chiếu của $N,M$ lên $BC.$ Theo bổ đề 2 thì $HX$ là trục đẳng phương của đường tròn đường kính $MB,NC.$ Dễ thấy $U,V$ lần lượt nằm trên đường tròn đường kính $CN,BM$ nên và $P$ nằm trên $HX,BC$ nên ta có $PU.PC=PV.PB$ hay $\frac{PB}{PU}=\frac{PC}{PV}$, và theo định lý Thales thì
$\frac{BN}{BZ}=\frac{CM}{CY}$ .
Vậy ta thu được $LT$ chia đôi $BC.$

Bài 5. Cho $\vartriangle ABC$, $P$ bất kỳ trên $BC$, $J$ là trung điểm của $AP$. Gọi $E,F$ là giao điểm của $(J,JA)$ với $CA,AB.$ Gọi $L$ là tâm đường tròn ngoại tiếp $\vartriangle JEF$. Chứng minh rằng khi $P$ di chuyển trên $BC$ thì $L$ chuyển động trên đường thẳng cố định.

Lời giải
Trước hết ta chứng minh bổ đề sau:
Cho $\vartriangle ABC$, lấy điểm $M$ cố định trên $BC,P$ bất kỳ trên $BC.$ Gọi $E,F$ là hình chiếu của $P$ lên $CA,AB$, $K,L$ là hình chiếu của $M$ lên $CA,AB$. Khi đó, tỉ số $\frac{EK}{FL}$ không phụ thuộc vào vị trí của $P$ trên $BC.$

Chứng minh.
Gọi $X,Y$ là hình chiếu của $M,P$ lên $PF,MK$. Khi đó,
$$\begin{aligned}
& MX=LF=MP.\cos \angle XMP=MP.cos\angle ABC; \
& YP=KE=MP.\cos \angle YPM=MP.\cos \angle ACB. \
\end{aligned}$$
Do đó, $\frac{EK}{FL}=\frac{\cos \angle ACB}{\cos \angle ABC}.$

Trở lại bài toán,


Lấy $M,N$ cố định trên $BC.$ $X,Z$ là hình chiếu của $M$ lên $AB,AC;$ $Y,T$ là hình chiếu của $N$ lên $AB,AC.$ Khi đó, theo bổ đề 1 thì dễ có được $\frac{YF}{YX}=\frac{TE}{TZ}.$ (1)
Do $J$ là tâm đường tròn ngoại tiếp $\vartriangle AEF$ nên $\angle FJE=2.\angle BAC.$ Mà $L$ là tâm đường tròn ngoại tiếp của $\vartriangle JEF$ nên $\angle FLE=360{}^\circ -4.\angle BAC.$
Theo (1) và bổ đề $ERIQ$ thì các đỉnh của tam giác cân có đáy $FE,YT,XZ$ và có góc ở đỉnh là $360{}^\circ -4.\angle BAC$ thì thẳng hàng mà $M,N$ cố định nên $L$ nằm trên đường thẳng cố định. (đpcm)

Bài 6.  (Nguyễn Văn Linh) Cho $\vartriangle ABC$, đường cao $AD$, $K\in AD.$ Gọi $E,F$ lần lượt là giao điểm của $BK,CK$ với $CA,AB.$ Giả sử $DE,DF$ cắt lại đường tròn ngoại tiếp $\vartriangle ABD;\vartriangle ACD$ tại $M,N$. Gọi $T$ là trung điểm của $MN.$ Chứng minh rằng $AT$ chia đôi đoạn thẳng $EF.$

Lời giải
Gọi $BP,CQ$ là đường cao của $\vartriangle ABC$, đường thẳng qua $A$ song song $BC$ cắt $DE,DF$ tại $K,L.$ Theo kết quả quen thuộc $DF,DE$ đối xứng nhau qua $AD$ và $DQ,DP$ đối xứng nhau qua $AD.$ Nên $A$ là trung điểm của $KL.$


Khi đó, theo bổ đề $ERIQ,$ ta chỉ cần chứng minh $\frac{NL}{NF}=\frac{MK}{ME}.$
Ta có, $A,M,P,D,Q$ nằm trên đường tròn và $A,N,Q,D,C$ nằm trên đường tròn. (1) \
Do đó, $\angle NAQ=\angle NDQ,\angle MAP=\angle MDP.$ Do $DF,DE$ đối xứng nhau qua $AD$ và $DQ,DP$ đối xứng nhau qua $AD,$nên $\angle QDF=\angle PDE.$
Từ (1), ta cũng có
$\angle AQN=\angle ADN=\angle ADM=\angle APM.$
Do đó, $\vartriangle ANQ\sim \vartriangle AMP.$ (2) \
Mặt khác, $\frac{FL}{AL}=\frac{\sin LFA}{\sin LAF};\frac{KA}{KE}=\frac{\sin KAE}{\sin KEA}.$ Vì $AK=AL;\angle FAL=\angle ABC;\angle EAK=\angle ACB,$ nên
$$\begin{aligned}
\frac{FL}{AL}.\frac{KA}{KE} &=\frac{\sin LFA}{\sin FAL}.\frac{\sin KAE}{\sin KEA}=\frac{FL}{KE} \
& =\frac{\sin LFA}{\sin KEA}.\frac{\sin KAE}{\sin FAL}=\frac{\sin ACB}{\sin ABC}.\frac{\sin LFA}{\sin KEA}=\frac{AB}{AC}.\frac{\sin LFA}{\sin KEA}. \
\end{aligned}$$
Ta lại có
$$\frac{\sin LFA}{\sin KEA}=\frac{\sin NFA}{\sin NAF}.\frac{\sin MAP}{\sin MEA}=\frac{AN}{FN}.\frac{ME}{MA}=\frac{AN}{AM}.\frac{ME}{FN}=\frac{AQ}{AP}.\frac{ME}{FN}=\frac{AC}{AB}.\frac{ME}{FN}.$$ (do (2)). Vậy nên $$\frac{FL}{KE}=\frac{AB}{AC}.\frac{\sin LFA}{\sin KEA}=\frac{AB.AC}{AC.AB}.\frac{ME}{NF}=\frac{ME}{NF}.$$

Bài 7. (Chọn đội tuyển PTNK TPHCM) Cho $\vartriangle ABC$, trực tâm $H.$ Lấy điểm $M$ bất kỳ trên cung $BHC$ của $(BHC)$. Trên $BM,CM$ lấy các điểm $E,F$ sao cho $\angle ECA=\angle FBA=90{}^\circ .$ Chứng minh rằng khi $M$ chuyển động thì trung điểm $EF$ luôn nằm trên đường thẳng cố định.

Lời giải. Ở bài toán này, ta có hai hướng tiếp cận như sau:
Cách 1.
Gọi $N$ là giao điểm của $CE,BF.$ Lấy $P$ đối xứng với $N$ qua $BC$, $BP,CP$ lần lượt cắt $CE,BF$ tại $X,Y.$ Dễ dàng chứng minh $B,H,M,P,C$ nằm trên đường tròn.


Ta sẽ chứng minh $\frac{XE}{YF}$ không đổi khi $M$ chuyển động trên cung $BHC.$
Do $\angle BMC=\angle BNC=180{}^\circ -\angle BAC$ nên $\angle CME=\angle CNF$ hay 4 điểm $M,N,E,F$ nằm trên đường tròn nên $\angle CFY=\angle BEX.$ (1)
Mặt khác, do $B,H,M,P,C$nằm trên đường tròn nên $\angle YCF=\angle MCP=\angle XBE.$ (2)
Từ (1) và (2) suy ra $\vartriangle CYF\sim \vartriangle BXE(g.g)$. Do đó, $\frac{XE}{YF}=\frac{BX}{CY}$ không đổi.
Vậy $\frac{XE}{YF}$ không đổi khi $M$ chuyển động trên cung $BHC$ nên theo bổ đề $ERIQ$, trung điểm của $EF$ luôn nằm trên đường thẳng cố định. \medskip

Cách 2. Trước hết ta phát biểu và chứng minh bổ đề sau: \textbf{(IMO2009 Shortlist G4)} Cho tứ giác $ABCD$ nội tiếp đường tròn $(O).$ $AC$ cắt $BD$ ở $E,$ $AD$ cắt $BC$ tại $F.$ Gọi $M,N$ lần lượt là trung điểm của $AB,CD$. Khi đó, $EF$ tiếp xúc với đường tròn ngoại tiếp của $\vartriangle EMN.$
Chứng minh.
Gọi $I$ là trung điểm của $EF.$ Xét tứ giác toàn phần $AEBF.CD$ có $I,M,N$ lần lượt là trung điểm của các đường chéo $EF,AB,CD$ nên $I,M,N$ thẳng hàng.


Ta sẽ chứng minh $\overline{IM}.\overline{IN}=I{{E}^{2}}.$
Gọi $L,P,T$ lần lượt là giao điểm của $AB$ với $CD$, $EF$ với $AB,CD$. Khi đó,
$(LP,AB)=(LT,CD)=-1$
nên áp dụng hệ thức $Maclaurin$ và $ABCD$ là tứ giác nội tiếp, ta thu được
$\overline{LM}.\overline{LP}=\overline{LA}.\overline{LB}=\overline{LC}.\overline{LD}=\overline{LT}.\overline{LN}$
nên 4 điểm $M,P,N,T$ nằm trên đường tròn.
Do đó, $\overline{IM}.\overline{IN}=\overline{IP}.\overline{IT}.$
Mặt khác, ta lại có $(EF,PT)=-1$ nên theo $I{{E}^{2}}=\overline{IT}.\overline{IP}$.
Vậy $\overline{IM}.\overline{IN}=I{{E}^{2}}.$ Do đó, $EF$ là tiếp tuyến của đường tròn ngoại tiếp $\vartriangle EMN.$ (đpcm)

Trở lại bài toán,
Gọi $N$ là giao điểm của $CE,BF.$ Lấy $I,P,Q$ lần lượt là trung điểm của $BC,EF,MN.$

Theo lời giải thứ nhất, ta có 4 điểm $M,N,E,F$ nằm trên đường tròn nên theo bổ đề 4 thì $BC$ là tiếp tuyến của $(QCP)$ hay $I{{C}^{2}}=\overline{IQ}.\overline{IP}.$

Do đó, $I_I^{IC^2}:P\leftrightarrow Q.$ (1)
Mặt khác $V_{N}^{2}:Q\mapsto M$ mà $M$ chuyển động trên cung $BHC$ nên $Q$ chuyển động trên đường tròn $(\omega )$ cố định. (2)

Từ (1) và (2), ta thu được $P$ chuyển động trên đường thẳng ảnh của $(\omega )$ qua ${I}_{I}^{IC^2}:P\leftrightarrow Q.$

Nhận xét. Qua các bài toán trên, ta có thể thấy được ứng dụng của bổ đề $ERIQ$ trong các bài toán hình học. Sau đây sẽ là một số các bài toán luyện tập.

Bài tập tự giải.

  1. Cho $\vartriangle ABC$ nội tiếp $(O)$. Tiếp tuyến của $(O)$ tại $A$ cắt tiếp tuyến của $(O)$ tại $B,C$ lần lượt tại $E,F$. Gọi $M,N$ là trung điểm của $BF,CE$. Đường thẳng qua $O$ và vuông góc với $OA$ cắt $BC$ tại $S$. Chứng minh rằng $MN$ chia đôi $SO$.

  2. Cho $\vartriangle ABC,$ trực tâm $H$, trung tuyến $AM.$ $P$ bất kỳ trên $HM$. Đường tròn đường kính $AP$ cắt $CA,AB$ tại $E,F$. Tiếp tuyến tại $E,F$ của $(AEF)$ cắt nhau tại $T$. Chứng minh rằng $TB=TC.$

  3. Cho $\vartriangle ABC$, đường tròn $(K)$ đi qua $B,C$ cắt $CA,AB$ tại $E,F$. Gọi $H$ là giao điểm của $BE,CF.$ Lấy $P$ bất kỳ trên $BC$. Đường thẳng qua $P$ và song song với $AH$ cắt $CA,AB$ tại $X,Y.$Lấy $Q$ bất kỳ trên $HP.$ Đường thẳng qua $Q$ song song với $BE,CF$ cắt $CA,AB$ tại $X,Y,Z,T.$ \
    a) Chứng minh rằng 4 điểm $X,Y,Z,T$ nằm trên đường tròn $(L)$. \
    b) $KL$ cắt trung trực $PQ$ tại $Z$. Chứng minh rằng $\vartriangle ZPQ\sim \vartriangle KBC.$

  4. Cho $\vartriangle ABC$, $P$ bất kỳ trên $BC.$ Đường thẳng qua $P$ song song với $CA,AB$ cắt trung trực $BA,AC$ tại $M,N$. Chứng minh rằng khi $P$ chuyển động trên $BC$, tâm đường tròn ngoại tiếp của $\vartriangle MNP$ luôn nằm trên một đường thẳng cố định.

  5. (Việt Nam TST 2008) Cho $\triangle ABC$ nhọn không cân nội tiếp $(O).$ Với $k\in {{\mathbb{R}}^{+}},$ trên các đoạn phân giác $AD,BE,CF,$ lấy $M,N,P$ sao cho $\frac{AM}{AD}=\frac{BN}{BE}=\frac{CP}{CF}=k.$

Vẽ đường tròn $({{O}_{1}})$ đi qua $A,M$ và tiếp xúc với $OA;$

Vẽ đường tròn $({{O}_{2}})$ đi qua $B,N$ và tiếp xúc với $OB;$

vẽ đường tròn $({{O}_{3}})$ đi qua $C,P$ và tiếp xúc với $OC.$

Tìm tất cả các giá trị $k$ sao cho $(O_1),(O_2),(O_3)$ có đúng hai điểm chung.

  1. Cho tam giác $ABC$ nhọn không cân có điểm $D$ thay đổi trong tam giác sao cho $\angle ABD=\angle ACD,$ lấy $E\in AB,F\in AC$ sao cho $D$ là trực tâm tam giác $AEF.$ Chứng minh rằng:
    a) Trung tuyến đỉnh $D$ của tam giác $DEF$ luôn đi qua điểm cố định.
    b) Trung trực $EF$ luôn đi qua điểm cố định.
    c) Tâm đường tròn ngoại tiếp tam giác $(DEF)$ luôn thuộc đường cố định.
    d) Trục đẳng phương của $(BDE),(CDF)$ luôn đi qua một điểm cố định.

Tài liệu tham khảo.

  1. Nguyễn Văn Linh, Về bài 3 đề VMO 2016.
  2. Nguyễn Văn Linh, 2015, Định lý ERIQ, \url{https://nguyenvanlinh.wordpress.com
  3. Diễn đàn \url{artofproblemsolving.com/community
  4. Trần Quang Hùng, Các bài giảng đội tuyển.

Biến đổi góc – Phần 1

Một trong những kĩ năng làm toán hình học đó là chứng minh các góc bằng nhau hay so sánh các góc, để dẫn tới các tam giác bằng nhau hay tam giác đồng dạng. Do đó kĩ năng biến đổi góc chiếm vị trí quan trọng trong việc chứng minh các tính chất hình học, vì thế chương đầu tiên của sách này tôi đưa ra một số bài toán liên quan đến việc tính toán, so sánh các góc, từ đó giải quyết được yêu cầu bài toán.

Việc tính toán các góc, tôi ưu tiên cho góc hình học mà không sử dụng góc định hướng. Việc sử dụng góc hình học phụ thuộc và hình vẽ nên lời giải nhiều khi không mang tính tổng quát, tuy vậy đối với các em mới từ lớp 9 lên thì cách trình bày này dễ tiếp thu hơn, và thực sự đối với số đông cũng vậy. Việc vẽ hình đó cũng là kĩ năng của người làm hình học, chú ý các trường hợp đề bài nêu ra để vẽ hình chính xác yêu cầu, từ đó có lời giải phù hợp. Chương trình vẽ hình trong sách là geogebra đã rất phổ biến với cộng đồng làm toán sơ cấp, tôi sẽ dùng chương trình này hỗ trợ làm tài liệu này. Có một điều khuyên cho các em học sinh là hãy vẽ bằng tay và dùng compa thước, không nên dùng phần mềm hỗ trợ để vẽ, vì khi thi cử thì không dùng máy để vẽ hay phát hiện tính chất.

Kiến thức chính của chương này là các kiến thức liên quan đến góc và đường tròn, tam giác đồng dạng, tứ giác nội tiếp đã học trong chương trình THCS. Các bài toán cũng chỉ sử dụng kiến thức của trung học cơ sở để giải.

Ví dụ 1. (Định lý Migel) Cho tam giác $ABC$. Các điểm $D, E, F$ lần lượt thuộc các đường thẳng $BC, AC$ và $AB$.
a. Chứng minh rằng đường tròn ngoại tiếp các tam giác $AEF, BDF, CDE$ cùng đi qua một điểm. Điểm này được gọi là điểm Migel.
b. Chứng minh điểm Migel thuộc đường tròn ngoại tiếp của tam giác $ABC$ khi và chỉ khi $D, E, F$ thẳng hàng.
c. Khi $D, E, F$ thẳng hàng. Chứng minh rằng tâm đường tròn ngoại tiếp của các tam giác $AEF, BDF, CDE$ và điểm $P$ cùng thuộc một đường tròn.

Giải

a. Gọi $P$ là giao điểm của $(AEF)$ và $(BDF)$. Ta có $\angle PDC = \angle BFP = \angle AEP$. Suy ra $CDPE$ nội tiếp, hay $P \in (CDE)$. \\Vậy $(AEF), (BDF)$ và $(CDE)$ cùng đi qua một điểm.

b. Khi $D, E, F$ thẳng hàng.
Ta có $\angle DPB = \angle PFD = \angle PAE = \angle PAC$. Suy ra $P \in (ABC)$.
Ngược lại nếu $P \in (ABC)$ ta có $\angle PFD = \angle PBD = \angle PAE = 180^\circ – \angle PFE$. Suy ra $D, E, F$ thẳng hàng.

c.  

  • Gọi $O, O_a, O_b, O_c$ lần lượt là tâm đường tròn ngoại tiếp các tam giác $ABC, AEF, BDF, CDE$.
  • Gọi $H = O_bO_c \cap PD, K = OO_a \cap PB, L = OO_c \cap PC$.
    Ta có $O_bOc$ là trung trực của $PD$ nên $H$ là trung điểm của $PD$ và $\angle PH \bot O_bO_c$; tương tự với $K, L$.
  • $H, K, L$ là hình chiếu của $P$ trên các đường thẳng chứa các cạnh của tam giác $OO_bO_c$, dễ thấy $H, K, L$ thẳng hàng nên 4 điểm $P, O, O_b, O_c$ cùng thuộc đường tròn. (Định lý đảo của đường thẳng Simson).
  • Tương tự cho $P, O, O_a, O_c$ cũng cùng thuộc một đường tròn. Vậy 5 điểm $P, O, O_a, O_b, O_c$ cùng thuộc một đường tròn.

 

Ví dụ 2. (Đề đề nghị IMO 2002) Cho đường tròn $w$, $B$ là một điểm $w$. Trên tiếp tuyến tại $B$ của $w$ lấy điểm $A$; lấy điểm $C$ sao cho đoạn thẳng $AC$ cắt $w$ tại hai điểm phân biệt. Đường tròn $w’$ tiếp xúc với $AC$ tại $C$, tiếp xúc với $w$ tại $D$ sao cho $D$ khác phía $B$ đối với $AC$. Chứng minh tâm đường tròn ngoại tiếp tam giác $BCD$ thuộc đường tròn ngoại tiếp tam giác $ABC$.

Giải

  •  Vẽ tiếp tuyến chung tại $D$ của $w$ và $w’$.
  • Ta có $\angle BDC = \angle BDy + \angle yDC = \angle 180^o – \angle xDB$ $+ DCH + \angle 180^\circ – \angle ACD + \angle DCH$  $= \angle BAC + \angle AHB +\angle DCH = \angle BAC + 180^\circ – \angle BDC$.
  • Suy ra $2 \angle BDC = 180^\circ + \angle BAC$. (1)
  • Mặt khác $\angle BTC = 2 (180^\circ – \angle BDC)$, suy ra $2 \angle BDC = 360^\circ – \angle BTC$.(2)
  • Từ (1) và (2) ta có $\angle BAC + \angle BTC = 180^\circ$, vậy tứ giác $ABTC$ nội tiếp.

Ví dụ 3. Tiếp tuyến của đường tròn $(O)$ tại $A$ và $B$ cắt nhau tại điểm $P$. Trên cung nhỏ $AB$ lấy điểm $C$ sao cho $CAB$ khác tam giác cân. Các đường thẳng $CA$ và $BP$ cắt nhau tại $D$, $BC$ và $AP$ cắt nhau tại $E$. Chứng minh rằng tâm đường tròn ngoại tiếp các tam giác $ACE, BCD$ và $OPC$ thẳng hàng.

Giải

  • Gọi $Q$ là giao của $(ACE)$ và $BCD$ ($Q$ khác $C$).Ta có $\angle BDQ = \angle BCQ = \angle QAE$. Suy ra $AQDP$ nội tiếp. Tương tự thì $BQEP$ nội tiếp.
  •  Khi đó $\angle PQC = \angle EQC – \angle EQP = \angle PAC – \angle PBE = \dfrac{1}{2}(\angle AOC – \angle BOC) = \angle POQ$.
  • Vậy tứ giác $OPCQ$ nội tiếp.
  • Từ đó ta có tâm các đường tròn $(ACE), (BCD), (OPC)$ thẳng hàng.

Ví dụ 4. Cho đường tròn $(O)$ và điểm $P$ nằm ngoài $(O)$. Từ $P$ vẽ các tiếp tuyến $PA$ và $PB$ đến $(O)$ với các tiếp điểm $A, B$. Trên tia đối của tia $BP$ lấy điểm $M$. Đường tròn ngoại tiếp tam giác $APM$ cắt $(O)$ tại điểm thứ hai là $D$. Gọi $H$ là hình chiếu của $B$ trên $AM$. Chứng minh rằng $\angle HDM = 2\angle AMP$.

Giải

  • Gọi $E$ là giao điểm của $MD$ và $(O)$, $K$ là giao điểm của $AM$ và $OB$.
  • $\angle xAE = \angle ADE = \angle APM$. Suy ra $AE\parallel PM$, suy ra $\angle EAM = \angle AMP$. (1)
  • Ta có $MD\cdot ME = MB^2 = MH\cdot MK$. Suy ra $DHKE$ nội tiếp. Do đó $\angle HDM = \angle HKE = 2\angle EAM$. (2)
  • Từ (1) và (2) ta có $\angle HDM = 2\angle AMP$.